Under review as a conference paper at ICLR 2024

CONTROLLABLE TEXT-TO-IMAGE GENERATION WITH
AUTOMATIC SKETCHES Supplementary Materials

Anonymous authors
Paper under double-blind review

1 APPENDIX

1.1 NETWORK ARCHITECTURE

In this section, we delve into the intricate details of our network architecture, modeled after the
ControlNet architecture. In adhering to the design principles of ControlNet, we implement a unique
strategy where all the weights associated with Stable Diffusion are "frozen” or fixed, meaning they
do not undergo any changes during the training phase.

But our design doesn’t stop there. We’ve added an innovative component - a controlling branch - that
runs parallel to the main network. This supplementary branch is not merely a structural addition;
it adds complexity and control to the overall architecture. It allows for intricate manipulations and
adjustments that can substantially influence the overall performance and functionality of the network.

By integrating these elements, we believe our architecture balances stability (through freezing Stable
Diffusion weights) and adaptability (through the controlling branch), creating a versatile and robust
network model.

Table 1: Control-GPT Structure

Network Block Name Resolution Number of Blocks
SD Encoder Block_1 64x64 3
SD Encoder Block_2 32x32 3
SD Encoder Block_3 16x16 3
SD Encoder Block_4 8x8 3
SD Middle Block 8x8 1

1.1.1 BOUNDING BOX EMBEDDING

In this section, we elucidate our bounding box embedding process, which aligns with the methodology
detailed in the GLIGEN work. The fundamental strategy we adopt involves the use of Fourier
embedding to transform the bounding boxes, thereby enabling more nuanced interaction with the
network architecture.

To give a holistic view of the process, consider the bounding box. Rather than including extensive
details, we have chosen to only incorporate the central position of the object within each bounding
box. This results in a set of pairs representing the x and y coordinates for each object’s center denoted
as [Xopj1, Yobj1, Xobj2, Yobj2s - Xobjks Yobjk)-

Each pair from this set is then individually processed through the Fourier embedding network. This
network serves a role analogous to a tokenizer in a language model, transforming each input into a
form that can be effectively processed and interpreted by the subsequent layers of our architecture.

Following this Fourier embedding process, we append the resulting vector representations to the
object name embeddings. The concatenated vector, representing spatial information and the object
identity, is fed into the higher-level attention network. This multi-layered approach ensures that our
model fully comprehends and effectively leverages the rich information within the bounding boxes
and associated object identities.



Under review as a conference paper at ICLR 2024

1.1.2 OBIJECT NAME EMBEDDING

In this segment, we illuminate how the object names associated with each bounding box are embedded.
To accomplish this, we rely on the tokenizer and language model encoder from the original stable
diffusion model. Given its inherent design to interpret and encode text data, this model offers an
organic and efficient means of creating text embeddings for the object names.

Following the text embedding, our process doesn’t halt. We move forward to concatenate these text
embeddings with two other crucial components - the bounding box embeddings and the image patch
embeddings. Each of these elements adds an additional layer of information, integrating spatial data
from the bounding box and visual data from the image patch with the textual data from the object
name.

Once the concatenation process is complete, we have a multi-dimensional vector that encapsulates a
comprehensive range of data. This enriched vector representation is then supplied to the attention
network. This network is designed to parse this multi-faceted input, emphasizing important features
while downplaying less critical information. Through this comprehensive and layered approach, our
model ensures a thorough understanding and utilization of the diverse data it is provided with.

1.1.3 TOKEN FUSION

We simply concat all the tokens before feeding them to the ControlNet structure.

Embedding = Concat([lbbox, lname; limage) ) )

1.2 DATASET DETAILS

In refining our model, we employ the LVIS dataset, a richly annotated subset of the COCO dataset,
renowned for its broad array of image categories and detailed labels. This dataset forms the bedrock
of our fine-tuning process, as we incorporate all the images from the training and evaluation segments.

The depth of our dataset extends beyond mere images. We also utilize the bounding boxes, object
names, and polygons provided within the LVIS dataset. Each component adds a layer of richness and
complexity to our data. The bounding boxes provide spatial information, indicating the position and
extent of each object within the images. The object names offer categorical data, identifying the type
of object encapsulated by each bounding box. The polygons provide even more granular spatial data,
detailing the precise shape and orientation of the objects.

By combining these diverse data types — image, spatial, categorical, and shape — we construct a
dataset that is not only varied but also highly detailed. This enriched dataset allows us to fine-tune
our model more effectively, optimizing its performance across a wide array of scenarios.

1.3 TRAINING DETAILS

For training, we use the default training parameters as ControlNet. Detailed hyperparameters are
listed below in Table[2]

Hyperparameter Name Value
batch size 8
learning rate le-5
sd locked True
only mid control False
Fourier Embedding Dim 16
Object Embedding Dim 768

Table 2: Control-GPT hyperparameters



Under review as a conference paper at ICLR 2024

A bear to the
right of a

A bear above a
bench

bench

A bird to the

A bottle above
left of a bag

a bench

A bird to the
right of a
bottle

A bird above a
tottle

A bird to the
right of a

e
1
A bird to the \4

left of a

microwave camera

A bread above a N
i A bicycle to
microwave
the left of a —
snowboard %

TikZ Sketch

Control-GPT TikZ Sketch

Control-GPT

Figure 1: More sketch examples Control-GPT in the spatial relation dataset. Control-GPT is being
able to generate images very precisely without any missing objects. It also balances the visual quality
and layout following to make the image look vivid.

1.4 MORE EXAMPLES FOR CONTROL-GPT

To further illustrate our points, we present additional examples derived from Control-GPT, a modifi-
cation of GPT-4 designed to enhance precision in control. These examples are visually depicted in
Figure[T] and Figure 2| for your perusal.

Interestingly, the TikZ sketch associated with the GPT-4 model doesn’t necessarily offer comprehen-
sive control over the output. This presents a unique opportunity for Control-GPT. In response to this
gap, Control-GPT has been devised to strike a fine balance between two pivotal factors: the quality
of the generated image and the adherence to the prescribed layout.

By navigating this delicate balance, Control-GPT excels at generating high-quality images that closely
follow the given layout specifications. In essence, Control-GPT augments the core functionality
of GPT-4, enhancing control without compromising image quality, thereby offering an upgraded
solution for more precise and aesthetically pleasing outputs.



Under review as a conference paper at ICLR 2024

A mouse below

an umbrella A

A surfboard
below an
umbrella

A horse to the

A dog to the
left of a left of a
sportsball Laptop
A dog to the
A dog above left of a
a bench remote
control

A dog to the
left of a
keyboard

A dog above

a remote

control A
A dog to the

A dog above i left of a

a laptop keyboard

TikZ Sketch Control-GPT TikZ Sketch Control-GPT

Figure 2: Control-GPT is able to generate images very precisely without any missing objects in the

spatial relation dataset. It also balances the visual quality and layout following to make the image
look vivid.



Under review as a conference paper at ICLR 2024

1.5 TiKZ CODE SNIPPETS

We also show some code snippets in Figure 3] which are entirely generated by GPT-4. We see that the
code structure is almost correct with proper comments. The code compiles without any error. This is
quite impressive. In addition to that, it captures all the necessary components. This demonstrates
GPT-4’s strong capability of drawing TikZ code.

1.6 VANILLA CONTROLNET EXAMPLES

In addition, we have conducted an experiment on directly passing the TikZ images to the vanilla
ControlNet trained on segmentation maps. We found that the Vanilla ControlNet is being able to
follow the outline of the sketch very well. This is not surprising as it is trained to do this. However, it
doesn’t understand the concept of the image well as it almost fails to generate all the objects specified
in the prompt. The results in Figure f] demonstrate some examples. ControlNet rarely generates the
correct objects.

1.7 MORE TIKZ EXAMPLES

We also plot more examples from different LLMs we tested in Figure[5] GPT-4 demonstrates strong
capability in plotting more details in the figure, including all the objects, and getting their spatial
location correct. Compared to that, GPT-3.5 and Chat-GPT tend to either miss some objects or don’t
use enough details in the figure.

REFERENCES



Under review as a conference paper at ICLR 2024

\begin{tikzpicture}

\path[use as bounding box] (0,0) rectangle (5.12,5.12);
% Draw the person

\fill[red] (1,1) circle (0.5);

\fill[red] (1,0.5) rectangle (1.1,1.5);

\fill[red] (1.1,1.5) — (1.5,2.5) — (1.7,1.5) — cycle;
\fill[red] (1.1,0.5) — (1.5,-0.5) — (1.7,0.5) — cycle;
% Draw the bus

\fill[red] (3,1) rectangle (4.5,2.5);

\fill[red] (3.25,1.25) circle (0.25);

\fill[red] (4.25,1.25) circle (0.25);
\end{tikzpicture}

\begin{tikzpicture }

\path[use as bounding box] (0,0) rectangle (5.12,5.12);
% Truck

\fill[red] (0.5,1) rectangle (3,2.5);

% Truck body

\fill[red] (2.5,2.5) rectangle (3.5,3.5);

% Truck cabin

\fill[red] (1,1) circle (0.5);

% Wheel 1

\fill[red] (2.5,1) circle (0.5);

% Wheel 2

\fill[red] (3.5,1) circle (0.5);

% Person

\fill[red] (4,3) circle (0.5);

% Head

\fill[red] (3.75,1.5) rectangle (4.25,2.5);

9% Body

\draw[red, line width=2pt] (4,2.5) — (3.5,1);

% Leg 1

\draw[red, line width=2pt] (4,2.5) — (4.5,1);

% Leg 2

\draw[red, line width=2pt] (4,3) — (3.5,3.5);

% Arm 1

\draw[red, line width=2pt] (4,3) — (4.5,3.5);

% Arm 2

\end{tikzpicture}

\begin{tikzpicture}

\draw[red, fill=red] (1,2) circle (0.25);

% head

\draw([red] (1,2) — (1,1);

% body

\draw([red] (1,1.5) — (0.5,1.5);

% left arm

\draw([red] (1,1.5) — (1.5,1.5);

% right arm

\draw([red] (1,1) - (0.5,0.5);

% left leg

\draw([red] (1,1) - (1.5,0.5);

% right leg

\draw[red, fill=red] (3.5,0.5) — (4.5,0.5) — (4.12,1) — (3.88,1) — cycle;
% boat

\useasboundingbox (0,0) rectangle (5.12,5.12);
\end{tikzpicture}

Figure 3: Examples of TikZ code GPT-4 generates. It almost gets all the syntax correct: the code
compiles without any error in LateX.



Under review as a conference paper at ICLR 2024

An airplane to
the right of a
clock

A backpack
below a tie

A book below a
train

A boat below a
lizza

A sheep to the
right of a
snowboard

‘+

—
™

TikZ Sketch

ControNet

A giraffe below

an orange

A cow to the
right of an
umbrella

A bus above a
book

A remote to the
left of a boat

A sandwich to
the left of a
horse

TikZ Sketch

ControNet

Figure 4: More examples from the vanilla ControlNet trained on segmentation maps. It hardly
generates the correct objects, as we see in the figure. Despite that, its ability to follow the outline
sketch is pretty good.



Under review as a conference paper at ICLR 2024

a frisbee to
the left of a
tie

a car above a
suitcase

a skis to the
right of a
vase

a kite below
a book

a tv above a
surfboard

a carrot to
the right of a
pizza

Figure 5: More sketch examples from GPT-4, GPT-3.5, and ChatGPT. GPT-4 consistently outperforms

GPT-4

A

O

Y
-

GPT-3.5

¢

O«

Chat-GPT

other models in following text instructions and understanding the spatial relations



	Appendix
	Network Architecture
	Bounding Box Embedding
	Object Name Embedding
	Token Fusion

	Dataset Details
	Training Details
	More Examples for Control-GPT
	TikZ Code Snippets
	Vanilla ControlNet Examples
	More TikZ Examples


