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A APPENDIX

The statistics of datasets.

Table 1: The statistics of datasets.

Datasets Cora  Citeseer Pubmed DBLP  Texas Wisconsin Cornell Actor Chameleon Squirrel —cornell5
#Nodes 2,708 3,327 19,717 17,716 183 251 183 7,600 2,277 5,201 18,660
#Edges | 10,556 9,104 88,648 105,734 325 515 298 30,019 62,792 396,846  158,1554

#Features | 1,433 3,703 500 1,639 1,703 1,703 1,703 932 2,325 2,089 4,735
#Classes 7 6 3 4 5 5 5 5 5 5 5

Implementation details. For all methods, we set the learning rate to 0.01, the decaying weight for
the learning rate to 5¢~*, the number of training epochs to 500. The K largest/smallest eigenvalues
for RED-GCN-D is max{1000, 0.1n}, where n is the number of nodes in the input graph. For all
baselines, the parameters are set according to their original papers. All experiments are run on a
Tesla-V100 GPU.

Graph augmentation and geometric insights. The observations and analyses for the following
Figure[T] and Figure 2] are same with those in subsection 4.4.
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(a) Texas (d = —0.328) (b) Cornell (d = —0.362) (c) Wisconsin (d = —0.280)

Figure 1: The weights of eigengraphs w.r.t. eigenvalues on the augmented diffusion matrix S? and
original S.
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Figure 2: The difference between the augmented diffusion matrix and the original one S?—8.
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(a)d = —2,ACC=29.5% (b)d=0,ACC=46.6% (c)d=5,ACC=82.4% (d) GCN, ACC=81.0%

Figure 3: Visualization of node embeddings by t-SNE on Cora (homophilic)
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(a) d = —0.35, ACC=80.0% (b)d =2, ACC=59.0% (c)d =4, ACC=50.0% (d) GCN, ACC=55.0%

Figure 4: Visualization of node embeddings by t-SNE on Texas (heterophilic).

We conduct a visualization of node embedding generated by RED-GCN under different depths for
homophilic (Cora) and heterophilic (Texas) graphs. As shown in Figure 3] for Cora, when d = 5,
the nodes in different classes form clearly distinguishable clusters (ACC=82.4%). When the depth
decreases from a positive value d = 5 (ACC=82.4%) to a negative value d = —2 (ACC=29.5%), the
nodes belonged to different classes/colors mix with each other, and the clearly clustered structure
does not exist anymore. However, for Texas shown in Figure [d] when decreasing the depth from

d =4 (ACC=50%) to d = —0.35 (ACC=80%), the clusters of different classes/colors become well-

separated. Especially, the purple nodes spread randomly all over the embedding space when d = 4
but concentrate in one cluster when d = —0.35. The spatial distribution of the node embeddings
reveals that ReD-GCN with positive and negative depths respectively models graph homophily and
heterophily in a proper way.
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