
Supplementary Materials for
QGym: Scalable Simulation and Benchmarking of

Queuing Network Controllers

Anonymous Author(s)
Affiliation
Address
email

1 Code release1

Our code is available at: https://github.com/namkoong-lab/QGym2

2 Additional Benchmark Result3

We provide the benchmark results for reentrant-2 [exponential] and reentrant-2 [hyperexpenential]4

queuing systems in Table 1 and 2.5

Table 1: Reentrant-2[Exp]

Network cµ MW MP FP PPO PPO BC PPO WC
2 26.01 ± 0.00 17.45 ± 0.00 24.5 ± 0.00 16.7 ± 0.00 9.04E+3 ± 41.13 39.16 ± 0.37 13.72 ± 0.22
3 26.27 ± 0.00 26.65 ± 0.00 30.0 ± 0.00 61.7 ± 0.00 1.82E+4 ± 37.23 48.59 ± 0.56 22.09 ± 0.29
4 27.62 ± 0.00 34.10 ± 0.00 41.3 ± 0.00 74.6 ± 0.00 1.77E+4 ± 52.30 79.20 ± 1.06 29.90 ± 0.47
5 44.82 ± 0.00 40.34 ± 0.00 49.0 ± 0.00 85.6 ± 0.00 2.58E+4 ± 63.54 91.65 ± 1.37 38.01 ± 0.52
6 54.48 ± 0.00 46.63 ± 0.00 58.8 ± 0.00 92.5 ± 0.00 4.02E+4 ± 349.64 526.57 ± 8.74 46.80 ± 0.47
7 70.25 ± 0.00 77.93 ± 0.00 68.0 ± 0.00 102.1 ± 0.00 5.78E+4 ± 116.92 352.02 ± 6.68 55.51 ± 0.57
8 70.32 ± 0.00 72.96 ± 0.00 77.7 ± 0.00 103.3 ± 0.00 4.79E+4 ± 208.70 1332.68 ± 7.82 63.15 ± 0.70
9 65.80 ± 0.00 77.34 ± 0.00 84.3 ± 0.00 106.7 ± 0.00 6.54E+4 ± 491.49 1574.86 ± 9.34 70.30 ± 0.86
10 81.35 ± 0.00 82.00 ± 0.00 92.7 ± 0.00 120.9 ± 0.00 8.11E+4 ± 355.34 1876.54 ± 89.20 80.36 ± 0.79

Table 2: Reentrant-2[Hyper]

Net cµ MW MP FP PPO PPO BC PPO WC
2 39.41 ± 1.37 39.06 ± 1.89 58.63 ± 2.26 39.75 ± 7.29 9.75E+3 ± 59.58 66.87 ± 1.11 30.67 ± 0.83
3 52.37 ± 2.14 57.89 ± 2.69 67.14 ± 2.94 55.52 ± 9.38 2.05E+4 ± 132.63 482.64 ± 17.98 45.66 ± 0.84
4 70.92 ± 2.68 76.80 ± 3.68 92.96 ± 4.01 72.09 ± 14.37 1.93E+4 ± 62.07 149.23 ± 3.17 61.09 ± 1.30
5 81.48 ± 2.66 90.45 ± 3.92 109.03 ± 5.35 84.17 ± 18.17 2.56E+4 ± 84.23 371.65 ± 10.81 77.98 ± 1.73
6 104.32 ± 5.07 103.80 ± 4.32 123.60 ± 5.25 99.51 ± 15.48 6.71E+4 ± 362.68 1363.93 ± 20.21 93.84 ± 1.26
7 116.61 ± 5.96 117.87 ± 5.06 135.58 ± 5.99 118.91 ± 15.67 6.54E+4 ± 214.22 2317.88 ± 15.54 110.48 ± 1.63

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

https://github.com/namkoong-lab/QGym


1 1 0

0 0 1

Network topology 
Which server can serve 
which queue

2.1 1.3 0

0 0 1.5

Service rate 
How fast a server can 
serve a queue

1 0 0

0 0 0

0 0 1

-1 1 0

0 -1 0

0 0 -1

Job transition 
Possible events and 
changes to queue 
lengths in each event

Arrival to 
queue 1

Arrival to 
queue 3

Exit from queue 1 
then join queue 2

Exit from 
queue 3

Arbitrary arrival 
Duration until next arrival 
for each queue as any 
function of time

1 2 1.5

Holding cost 
Holding cost for each 
queue

f1(t) f2(t) f3(t)

Exit from 
queue 2

Figure 1: Ingredients of defining a queuing system. Our framework provides intuitive and flexible
interface for users to define complex queuing systems.

3 Additional Simulator Design Details6

We present a queuing system testing framework. The main goals of the framework are: 1. Provide7

benchmarks for queuing algorithms 2. Easy to test and deploy with an OpenAI Gym Interface 3.8

Allow easy configuration of new custom queuing systems with a large degree of freedom9

Our testing framework allows the following user interactions with intuitive interface10

• Defining a new queueing system or using one provided by our benchmark.11

• Defining a policy that takes in observations and output queue priority prediction12

• Simulating queueing system trajectories with selected policies13

We will detail each of these components of our framework below14

3.1 Define queuing system15

Ingredients of a queueing system Our framework allows for flexible definition of queuing systems16

in a straightforward interface. A queuing system can be defined with the following descriptions:17

• Network matrix: a binary matrix that specifies which server can serve which queue18

• Network transition matrix: what happens when a server finishes serving a job19

• Service rate matrix: a matrix that specifies how fast a server can serve a queue. Time of20

service is drawn from a distribution specified by user using service rate matrix as parameter21

• Arrival rate of queues: User can define arbitrary arrival pattern for queues as a Python22

function that inputs time and outputs time until next arrival. This feature allows simulation23

of time-varying arrivals. User can define arrival rate as a random distribution24

• Queue holding cost: holding cost per unit of time for each job in each queue25

• Server pool: We also allow user to define each class of server as a pool of server. When26

having many servers with the same characteristics, instead of creating many separate servers27

and inflating the size of network matrix, we allow users to specify a server pool number for28

each server class. This mechanism allows simulation of large-scale system without slowing29

the simulation.30

Users can define these elements of a queuing sytems in a .yaml file and a .py file.31

2



3.2 Defining a policy32

User can define a policy as a function that takes in queue length as observation and output a matrix33

that represents the policy’s prediction of service priority. The matrix has the the same shape as34

network matrix (# server × #queues) that assigns priority to each server-queue pair. A policy can35

be either a static policy that decide priority based on observation with heuristics or contain a neural36

model to be trained.37

3.3 Simulator design38

The simulator environment is structured as OpenAI Gym environment. We follow the design of the39

OpenAI Gym so that users can easily train and test a variety of reinforcement learning algorithms.40

Each simulation trajectory consists of a sequence of steps (defined in OpenAI Gym step format).41

For each simulation trajectory, the simulator maintain a number of information as states.42

3.3.1 Simulator features43

We highlight some important features of our simulator below:44

• Job-level tracking The simulator tracks the states on the job level. We track service time45

for each job in a queue. At each step, we allocate to decide which job is being served on an46

individual job level. This mechanism makes it possible for multiple servers to serve a single47

queue and allows the modeling of parallel server systems.48

• Event-based simulation Our simulator is event-based. Each step corresponds to one event:49

arrival in a queue or one job finishes being served. Prior works designed simulators with50

fixed time-interval for each step. In comparison, we can simulate trajectories with more51

uneven event intervals with higher speed by reducing wasting steps on intervals without any52

event. We also allow more precise time keeping.53

• Batch simulation Our simulator allows simulation of multiple runs in parallel. Our par-54

allelization implementation allow users to leverage accelerators like GPUs to accelerate55

simulations.56

3.3.2 States57

In each trajectory, the simulator keeps track a number of variables as states58

Based on the elements of queue systems defined above, the simulator also has the capability of59

drawing a new service duration for a job and arrival duration for a queue. In addition, during a60

simulation run, the environment keeps track of61

• Service time Time until service finishes for a job62

• Arrival time Time until next arrival occurs for a queue63

• Queue length Length of each queue64

At each step, the simulator updates service time and arrival time based on the event duration of the65

step. The simulator also has the capability to generate service time and arrival time for new jobs66

based on user specification of the queuing system. The simulator also updates queue lengths at each67

step based on the event occurred during the step.68

3.3.3 An event-based simulation step69

At each step, the simulator takes in action represented by the service priority matrix and returns the70

updated states in OpenAI Gym step function format. To simulate a step and obtain the output of the71

step function, our simulator decides an event that occurs based on the following procedure72

• Converting service priority to action matrix The step function takes in service priority73

prediction from the policy. The priority matrix can be a float matrix. The step function74

converts this priority matrix into an action matrix that specifies which servers should serve75

which queues. Users can customize how the assignment is done. Default implementation76

provides linear assignment, softmax, and Sinkhorn assignment.77

3



• Job-server allocation The action matrix pairs server and queues. Our simulator then assigns78

each job in in a queue to servers that the action matrix decides to serve the queue through an79

allocator function. User can customized how the allocation is performed. The default80

allocator implementation selects the fastest serving servers and pair them with jobs with81

shortest service time remaining.82

• Select event Based on the remaining service time for each job and remaining arrival time83

for each queue, the simulator decides the closest next event to be either (1) a job finishes84

being served or (2) a new job arrives for a queue.85

• Update states Based on the event occurred, the simulator updates the states correspondingly.86

If a job finishes being served, the simulator removes the job from the queue. If the transition87

matrix specifies that the job in one queue goes to another queue after being served, an new88

job is created for the queue that the job transitions into. If a new arrival occurs, the simulator89

creates a new job for the queue and generate the new arrival time until next arrival in the90

queue. Finally, the simulator deducts the event duration from all service times and arrival91

times.92

4 Additional Experiment Details93

4.1 Computational Resources94

We run all our experments on an AMD EPYC 7513 32-Core Processor.95

4



Checklist96

The checklist follows the references. Please read the checklist guidelines carefully for information on97

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or98

[NA] . You are strongly encouraged to include a justification to your answer, either by referencing99

the appropriate section of your paper or providing a brief inline description. For example:100

• Did you include the license to the code and datasets? [Yes] See Section ??.101

• Did you include the license to the code and datasets? [No] The code and the data are102

proprietary.103

• Did you include the license to the code and datasets? [NA]104

Please do not modify the questions and only use the provided macros for your answers. Note that the105

Checklist section does not count towards the page limit. In your paper, please delete this instructions106

block and only keep the Checklist section heading above along with the questions/answers below.107

1. For all authors...108

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s109

contributions and scope? [Yes] We described our contribution of a new simulating and110

benchmarking framework for queuing systems, which we detailed in the paper.111

(b) Did you describe the limitations of your work? [Yes] We discussed the limitation of112

the policies benchmarked and stated that there are plenty of rooms for improvement in113

section 4.114

(c) Did you discuss any potential negative societal impacts of your work? [NA] Our115

queuing simulation framework doesn’t pose potential negative societal impact.116

(d) Have you read the ethics review guidelines and ensured that your paper conforms to117

them? [Yes] We have read and followed the guidelines.118

2. If you are including theoretical results...119

(a) Did you state the full set of assumptions of all theoretical results? [NA] We do not120

include any theoretical result.121

(b) Did you include complete proofs of all theoretical results? [NA] We do not include any122

theoretical result.123

3. If you ran experiments (e.g. for benchmarks)...124

(a) Did you include the code, data, and instructions needed to reproduce the main experi-125

mental results (either in the supplemental material or as a URL)? [Yes] We provide url126

to our code release in abstract, which readers can easily use our simulator to benchmark127

provided methods and additional methods.128

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they129

were chosen)? [Yes] We describe our experimental setting in Section 4 of our paper.130

(c) Did you report error bars (e.g., with respect to the random seed after running exper-131

iments multiple times)? [Yes] We provided standard deviation in all tables in our132

paper.133

(d) Did you include the total amount of compute and the type of resources used (e.g., type134

of GPUs, internal cluster, or cloud provider)? [Yes] We described computational setup135

in supplementary materials section 4.1136

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...137

(a) If your work uses existing assets, did you cite the creators? [NA] We do not use existing138

assets.139

(b) Did you mention the license of the assets? [NA] We do not use existing assets.140

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]141

We provide URL to our code release in abstract.142

(d) Did you discuss whether and how consent was obtained from people whose data you’re143

using/curating? [NA] We do not obtain data from other people.144

(e) Did you discuss whether the data you are using/curating contains personally identifiable145

information or offensive content? [NA] We do not collect these information.146

5



5. If you used crowdsourcing or conducted research with human subjects...147

(a) Did you include the full text of instructions given to participants and screenshots, if148

applicable? [NA] We do not use human subjects149

(b) Did you describe any potential participant risks, with links to Institutional Review150

Board (IRB) approvals, if applicable? [NA] We do not use human subjects151

(c) Did you include the estimated hourly wage paid to participants and the total amount152

spent on participant compensation? [NA] We do not use human subjects153

6


	Code release
	Additional Benchmark Result
	Additional Simulator Design Details
	Define queuing system
	Defining a policy
	Simulator design
	Simulator features
	States
	An event-based simulation step


	Additional Experiment Details
	Computational Resources


