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ABSTRACT

Diffusion bridge models effectively facilitate image-to-image (I2I) translation by
connecting two distributions. However, existing methods overlook the impact
of noise in sampling SDEs, transition kernel, and the base distribution on sam-
pling efficiency, image quality and diversity. To address this gap, we propose the
Stochasticity-controlled Diffusion Bridge (SDB), a novel theoretical framework
that extends the design space of diffusion bridges, and provides strategies to miti-
gate singularities during both training and sampling. By controlling stochasticity
in the sampling SDEs, our sampler achieves speeds up to 5x faster than the base-
line, while also producing lower FID scores. After training, SDB sets new bench-
marks in image quality and sampling efficiency via managing stochasticity within
the transition kernel. Furthermore, introducing stochasticity into the base distri-
bution significantly improves image diversity, as quantified by a newly introduced
metric. Code would be available on Github repo.

1 INTRODUCTION

Denoising Diffusion Models (DDMs) create a stochastic process to transition Gaussian noise into
a target distribution (Song & Ermonl 2019; Ho et al., |2020; Song et al., |2020). Building upon
this, diffusion bridge-based models (DBMs) have been developed to transport between two arbitrary
distributions, 7 and 7, including Bridge Matching (Peluchettil, 2023), Flow Matching (Lipman
et al., |2022)), and Stochastic Interpolants (Albergo et al., [2023). Compared to DDMs, DBMs offer
greater versatility for tasks such as I2I translation (Lingi Zhou et al.} |2023} [Liu et al., 2023). This
advantage arises because using a Gaussian prior often fails to incorporate sufficient knowledge about
the target distribution.

In general, there are two primary design philosophies for DBMs. The first involves deriving a
pinned process (Yifeng Shi et al.| 2023) from a given reference process (e.g., Brownian motion)
via Doob’s h-transform, and then constructing a bridge to approach it (Lingi Zhou et al., 2023}
Peluchetti,|2023). The second regime aims to directly design a bridge based on a specified transition
kernel (Lipman et al.}|[2022;|Albergo et al.,2023)). While the former also results in a transition kernel,
the mean and variance in the kernel are coupled, which limits the design flexibility for possible
bridges. In this work, we follow the second fashion and further propose the Stochasticity Control
(SC) mechanism, which facilitates easier tuning and leads to enhanced performance across a variety
of tasks. Our main contributions are as follows:

* We introduce the Stochasticity-controlled Diffusion Bridge (SDB), a generalized frame-
work that adopts a transition kernel-based design philosophy to elucidate the design space
of DBMs, shown in Fig. [I0] Notably, this framework not only encompasses other main-
stream DBMs such as DDBM (Lingi Zhou et al.l 2023) and I2SB (Liu et al., 2023), but
also DDMs like EDM (Karras et al., 2022), as detailed in Table

* A Stochasticity Control (SC) mechanism is proposed by adding noise into the base dis-
tribution, designing a noise schedule for the transition kernel, and regulating the drift term
in the sampling SDEs. In addition, we explore score reparameterization and the dis-
cretization schemes of sampling SDEs to mitigate singularity during training and sam-
pling. These combined strategies lead to significant improvements in training stability,
sampling efficiency, output quality, and conditional diversity.



Under review as a conference paper at ICLR 2025

(a). Preprocessing: :> (c). Training:  Xo(x¢, X7,t) = arg D()gl"ixnﬂ) [[Ep—— [/\(t)HD(xt,xT,t) = X[)“%]

Add noise to the base
distribution
Ty = Tcond N (0, b°T)

(d). Sampling: select €, and discretization scheme

Figure 1: An illustration of the framework for constructing diffusion bridge models. The parameters
b, v, and €; govern the stochasticity introduced at three main stages: preprocessing, training, and
sampling. Specifically, b determines the noise added to the base distribution during preprocessing,
~¢ controls the noise introduced into the transition kernel, impacting both training and sampling, and
€, regulates the noise added to the sampling SDEs, affecting only the sampling stage.

» Experimental results show that our sampler operates 5x faster than the DDBM sampler and
achieves a lower FID score using the same pretrained models. When trained from scratch,
our model sets a new benchmark for image quality, requiring only 5 function evaluations
to reach an FID of 0.89 on Edges2handbags (64 x 64) and 4.16 on DIODE (256 x 256)
datasets. Furthermore, by introducing noise into the base distribution, we significantly en-
hance the diversity of synthetic images, resulting in a greater variety of colors and textures.

Notations Let 77, g, and myr represent the base distribution, the target distribution, and the joint
distribution of them respectively. 7onq and myata represent the distributions of the input and output
data. Let p be the distribution of a diffusion process; we denote its marginal distribution at time ¢ by

pt, the conditional distribution at time ¢ given the state at time s by py|,, and the distribution at time
t given the states at times 0 and 7" by py|gr, i.€., the transition kernel of a bridge.

2 BACKGROUND

2.1 DENOISING DIFFUSION MODELS

Denoising diffusion models map target distribution 7 into a base distribution 77 by define a forward
process on the time-interval [0, T'):

dX; = fiXydt + g1 dWy,  Xo ~ 7o, ey

where f;, ¢ : [0,T] — R is the scalar-valued drift and diffusion term, Xo € R? is drawn from the
target distribution my, W, is a d-dimensional Wiener process. To sample from the target distribution
7o, the generative model is given by the reverse SDE or ODE (Song et al., [2020):

dX; = [fiX: — 57 Vx, log ¢:(Xy)] dt + g:dWy,  Xp ~ 7, 2)

- 1
dX; = [ftXt - igfvxt log Qt(xt)] dt, Xg ~mr, 3)

where ¢; denotes the marginal distribution of this process. The score function Vy, log g;(x;) is
approximated using a neural network sy (x¢, t), which can be learned by the score-matching loss:

2
‘6(9) = Ex,,wptm(xt\xo),xowﬂ'o,tNU(O,T) |:w(t) HSO(Xt7t) - VXf, log Qt|0(xt|X0)|| ] ) (4)

where gy is the analytic forward transition kernel and w(t) is a positive weighting function.
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2.2 DENOISING DIFFUSION BRIDGE MODELS

DDBMs (Lingi Zhou et al.| [2023) extend diffusion models to translate between two arbitrary distri-
butions 7o and 77 given samples from them. Consider a reference process in Eq. (I)) with transition
kernel gyo(x¢|x0) = N (x¢; as%0,071), this process can be pinned down at an initial and terminal
point xg, x7. Under mild assumptions, the pinned process is given by Doob’s h-transform (Rogers
& Williams), [2000):

dX, = {fiX¢ + §; Vx, log pry¢(x7|X) }dt + gedW,,  Xo = xo, &)
where Vx, log pri(xr | X;) = te/er)xrXi 4 SNR := a?/o? (Lingi Zhou et al., 2023).

o2(SNR;/SNR7—1)
The marginal density of process serves as transmon kernel and is given by p(x¢|xg,x7) =

N N
N(Xt; OétX0+5tXT7’YtQI), where oy = at( SNR ) By = g; SSNII{J’% = (I_SSNIIE)

To sample from the conditional distribution p(x¢|x7), we can solve the reverse SDE or probability
flow ODE from¢ =T tot = 0:

dX, = {fiXs + g7 (Vx, log pre(x7|Xs) — Vx, log pyr(Xe|x7)) }dt + 5:dWy, X7 = x7 (6)

- 1
dX, = {fiX; + g7 (Vx, log prye (x7|Xy) — §th log pyr (X¢|xr))tdt, Xp = x7. (7N

Generally, the score Vy, log pt\T(thxT) in Egs. @) and H is intractable. However, it can be
effectively estimated by denoising bridge score matching. Let (x¢,x7) ~ o1 (X0,XT), X ~
Prjo,7(X¢[X0,x7), t ~ U(0,T), and w(t) be non-zero loss weighting term of any choice, then the
score Vy, log prj¢(X7|X;) can be approximated by a neural network sg(x;, xr,t) with denoising
bridge score matching objective:

5(9) = Ext,xo,xT,t [w(t)HSO(XtvxTvt) — Vi, IOgPt\O,T(Xt | x07xT)H2] . ®)

To sum up, DDBM starts with the forward SDE outlined in Eq. (I)) with a marginal distribution of
@jo(X¢|x0) = N(x4; arxo, 07I). The pinned process is then built by applying Doob’s h-transform
as specified in Eq. (), which is unnecessarily complicated and constraining. Additionally, the
transition kernel of the pinned process becomes complex and coupled, as «, B;, and -, are all inter-
related through a; and oy, increasing the design difficulty. In the next section, we will demonstrate
how a; and f3; can be used to control interpolation, while ; is designed to regulate the stochasticity
introduced into the path.

3 STOCHASTICITY CONTROL

3.1 STOCHASTICITY CONTROL IN TRANSITION KERNEL

We are interested in building a diffusion process to transport from two arbitrary distributions 7 and
mo. Suppose the transition kernel of this process is pyjo 7 (X¢|x0, X1) = N (x¢; uXo+Bixr, Y21).
For diffusion models, we can simply let 5; = 0 and cvg = 1 and ¢ = 0. For bridge models, to ensure
that the process originates from x and concludes at x1, we set o = S = 1 and ar = [y = 0. Ad-
ditionally, we require o, B¢,y > 0 for ¢t € (0,7). Let T = 1, one simple design example involves
defining «; and f3; linearly, such that a, = 1—¢ and 8; = ¢, with vy = 2vmax/t(1 — t), where Yax
is a constant representing the maximum noise level. This configuration is referred to as the linear
path for transition kernel. Other designs such as «; = cos(7t/2), 8 = sin(nt/2), and v; = sin(7t)
can also be employed. Notably, the DDBM-VP and DDBM-VE models presented in (Lingi Zhou
et al.} |2023) can be considered as special cases within our framework, contingent upon the specific
choices of ay, (B, and ¢, see Table|]] l and Appendix . (C] for more details. In this paper we limit our
scope on Linear transition kernel, i.e., pyo, 7 (X¢ X0, X7) = N (x4; (1 — ¢)xo+tx0, 472 t(1 = 1)),
A detailed discussion on the rationale behind the choices of a4, 5;, and and an ablation study on the
shape of ; is provided in[D]
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Table 1: Specify design choices for different model families. In the implementation, o, = ¢ for

EDM, 0; = t,a; = 1 for DDBM-VE, o; = \/e2Pat*+hmint _ 1 and q; = 1/V/ ezPat*+Bmint for

DDBM-VP, where 34 and (3,3, are parameters. We include details and proofs in Appendix

12SB DDBM EDM Ours
SC-transition kernel at o U?/U% at(l—aQTUf/(Otgaf)) ! e
Sec. Bt oi/ck aro?/(cia;) 0 . t
v oi(l—ai/or) oi(l—aroi/(ofa})) ot Tmet(l - t)
SC-sampling SDEs BpiBi B an? MO0 — S5 Bio?  m(whe — &497)
Sec' COTTWAT gorg=1 - n € [0,1]
SC—ba;eegibution T Tlcond Tcond Tcond Tcond * N(07 b2I)

Score reparameterization S at(Ti—Eop)+LexT—Xt  uXo+LliXxT—X¢  uXo+Bixr—Xe iXo+BiXT—X¢
6 2 2 2
Sec. 72 Vi Mt Tt

Discretization Euler Euler Heun Euler

Sec. ) Eq. Eq. - Egs. and

3.2 STOCHASTICITY CONTROL IN SAMPLING SDES

Stochasticity control (SC) during the sampling phase has been explored for diffusion models by
Karras et al.| (2022), yet comprehensive studies on its application to diffusion bridge models remain
limited. Eqs. (I9) and (20) offer sampling schemes that align with Eqs. (6) and (7) in the DDBM
framework. However, these methods do not guarantee optimal performance in terms of sampling
speed and image quality. To address this issue, |Lingi Zhou et al.[(2023) introduced a hybrid sampler
alternating between reversed ODE and SDE, and [Zheng et al.|(2024) accelerated sampling with an
improved algorithm using discretized timesteps. This section aims to explore how SC can be further
optimized in the sampling for DBMs, thereby addressing the current research gap. Given transition
kernel, we can identify the reverse sampling SDEs, as demonstrated in Theorem [T}

Theorem 1. Suppose the transition kernel of a diffusion process is given by pyjo7(X: | X0, X1) =
N (x5 cuxg + Bixr,V21), then the evolution of conditional probability q(X;|xr) has a class of
time reverse sampling SDEs of the form:

dX; = [dtfio + Bixr — (v + €)Vx, Ingt(Xt|XT)} dt +v2¢,dWy; Xp=x7. (9)

Remark 3.1. As ¢, = 0, Eq. ([9) recovers the sampling ODE specified in Eq. (7). As €; = vy —
3—2%2, Eq. @) recovers the sampling SDE specified in Eq. (@) As et = n(yey: — %’yf), n € (0,1),
the stochasticity is between the original sampling ODE in Eq. (7) and SDE. in Eq. ().

There is no definitive principle for designing €;. For DDMs, [Karras et al.|(2022) suggest that the op-
timal level of stochasticity should be determined empirically. In the case of DBMs, however, certain
design guidelines can be followed to potentially enhance performance. Unlike DDMs, which typi-
cally start sampling from Gaussian noise, DBMs begin with a deterministic condition x7. Therefore,
setting €; = O results in no stochasticity for the sampling process and final sample x(, which may
partly explain the poor performance of ODE samplers in this context. However, it is advantageous
to set ¢, = 0 during the final steps of sampling. The rationale behind this approach is discussed in
detail in Section 4.2

3.3 STOCHASTICITY CONTROL IN BASE DISTRIBUTION

Conditional diversity refers to the range of outputs that can be generated from specific conditions.
This is valuable in scenarios like image generation from edges, where one edge image may lead to
multiple valid images differing in color, texture, or detail. Conversely, in super-resolution, where



Under review as a conference paper at ICLR 2025

NPT — OT path
) : ——¥%:>0b=0
Tcond * N (0,6°T) ¥:=0,b>0
——%,>0,b>0
—— Diffusion path
Teond Tdata
(a) Density space (b) State space

Figure 2: The effect of stochasticity control on density and state spaces. Adding no stochasticity
(7t = 0,¢4 = 0,b = 0) leads to the optimal transport (OT) path. (a). In the density space, OT
path directly links 7eonq and mgata, while diffusion path transports from N (0, bQI) t0 Taata. When
¢ > 0 (dash lines), it increases stochasticity in the middle of the transition, whereas b > 0 (green
lines), it directly adds stochasticity to the base distribution, leading to trade off between DDMs and
DBMs when b = 0. (b). In the state space, we use blue dots and red dots to represent input and
output data respectively. The OT path directly links two samples, it shows a detoured path when
¢ > 0, introduces a zigzag pattern while €, > 0, and smooths the base distribution as b > 0.

a high-resolution image is created from a low-resolution one, output variability is limited by the
input’s structure, demanding consistency and fidelity to the original rather than diversity.

To control the conditional diversity of diffusion bridge models, we can trade off between DBMs
and DDMs by controlling the stochasticity in the base distribution. Bridge models transport the
base distribution 7 to target distribution 7. Typically, most previous bridge models, such as those
discussed in (Lingi Zhou et al.| 2023} |Albergo et al. [2023), treat 77 as the input data distribution,
Teond. HOWever, it is flexible to design mp; for instance, by choosing 71 as a Gaussian distribution,
we recover DDMs. An intermediate approach involves the convolution of 7m.onq With a Gaussian
distribution, 77 = Teona * N (0, bQI), where b is a constant that controls the strength of booting
noise we added to the input data distribution. We provide an illustration of the effect of SC in
transition kernel, sampling SDEs and distribution in Fig. [2]

We developed the Average Feature Distance (AFD) metric to quantify the conditional diversity
among generated images. Initially, we select a group of source images {xg)}ij‘il. For each ng),
we then generate L distinct target samples. The j-th generated sample corresponding to the ¢-th

source image is denoted by y;;. Then the AFD is calculated as follows:

M L
1 1
AFD = 2> 7 2. IIF(vie) = Flya)l (10)
i=1 kel =1,k
where F'(-) is a function that extracts the features of images, and || - || represents Euclidean norm.

Intuitively, a larger AFD indicates the better conditional diversity. Here, F'(x) can be x to evaluate
the diversity directly in the pixel space. Alternatively, F(-) can be defined using the Inception-V3
model to assess the diversity in the latent space. In our experiments, we use AFD in latent space.

4  SCORE REPARAMETERIZATION AND ALGORITHM DESIGN

4.1 SCORE REPARAMETERIZATION

The log gradient of Gaussian transition kernel py o 7(X¢|X0, X1) = N (x¢; ayxo+Bixr, v2I) has an
analytical form: Vi, log pjo. 7 (X | X0, %7) = (avxo + Bexp — X¢)/~7. Therefore, the denoising
bridge score matching objective in Eq. is tractable. However, the singular term 1/~2 at end-
points £ = 0 and ¢ = T can lead to highly unstable training, see Appendix [D| for more details.
Consequently, instead of directly parameterizing the score function Vy,. log p:(x:|xr) with a neu-
ral network, we opt to reparameterize the score as a function of X (x;, X7, t), as demonstrated in
Theorem |Z[ This reparameterization strategy, initially introduced in EDM (Karras et al. [2022), is
particularly significant for enhancing the stability and performance of our bridge models.
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Theorem 2. Let (xo,XT) ~ 7o (X0, XT), Xt ~ Pyjo,7(X¢|X0,XT), t ~ U(0,T). Given the transition
kernel: pyo (% | X0, x7) =N (xt; aXg + PexT, fyfI), if Xo(x¢, X7, t) is a denoiser function that
minimizes the expected Lo denoising error for samples drawn from mo(Xg, XT):

Xo(x¢, X7,1) = arg D(min t)IEmeT}xt [)\(t)”D(Xt,xT,t) — X()H%} , (11)
Xt,XT,

then the score has the following relationship with Xo (X, X7, t):

atf(o (X, XT, t) + ﬁtXT — Xt
5 .
Vi

Vi, log pi(x[x7) = (12)

The key observation is that Xq(x;, X7, t) can be estimated by a neural network Dy (x;, X7, t) trained
according to Eq. (IT)). In the implementation, we include additional pre- and post-processing steps:
scaling functions and loss weighting, see Appendix [E|for details.

4.2 ALGORITHM DESIGN

Let z; =: (x; — ayXo — B¢Xr1) /71, then the score Vy, log py(x|x) and Z; has a linear relationship:
Z: = —¥:Vx, log p:(x|x7). An alternative formulation of the sampling SDEs @) is presented as:

dX, = |éuko + Bixr + (5 + fyi)zt dt + /26,dW. (13)
t

Instead of using the score directly, we apply Eq. to reduce truncation error. Additionally, z can
be seen as the estimated noise added to the interpolation (Albergo et al.,|2023), the introduction of
z brings more interpretability. One discretization scheme of sampling SDEs Eq. is based on
Euler’s method:

JN ; . €t \ A _ _
Xt At XXy — |yXg + BtXT + (’}/t + ’yft)Z At + 2€tAtZt, Zy ~ N(O, I) (14)
t

Furthermore, for small enough At the derivative term can be approximated by: & =~ (ay —

ar_at)/At, By &~ (B — Bi—at)/At, % ~ (% — Y-ae)/At. Using the fact that x, =
X + BiXr + 12+, we can further simplify the iteration:

. €At _
Xi—At = 0 ArXo + Br—aXr + (Ve—ar — t,y )2t + /26, AtZy. (15)
t
As %27 Ar — 266 > 0, vt — % S /737 A — 2€;At, which leads to another discretization

and recovers the sampler of DBIM (Zheng et al., [2024):

Xi- At = Ao + Bi-AeXT + [V ar — 260087, + \/ 26, Atz (16)

Remark 4.1. Eq. (I6) provides more insight about the noise and the design of €,. Here z, and
Z; serve as predicted noise and added noise respectively. Generally, we assume the error ||xg —
Xo(x¢, x7,t)|| decreses as we move x; from xp to xo. Therefore, a small €, was suggested as t
close to 0. Further, due to the singular term ¢, Ay /v, at t = 0, it’s better to set €, small enough to
avoid singularity.

Remark 4.2. Egq. requires a constraint v}, — 26;At > 0. Note that this limitation is
unnecessary and will limit the design of €.
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As 26, At =~} n, — BE a7/ 57 the coefficient of x, in Eq. [16]is 0, thus Eq. [16[can be simplified
as:

2 2
“At L N Bi_atVi -
Xi—at = (Qp—ar — oy Beae )Xo + b tXt + ’Yf_m — L;tzt (17
Bt B By
Remark 4.3. Eq. |I/|is refered as Markovian bridge in Zheng et al.|(2024)), and this setting can be
used to reproduce the sampler in I12SB|Liu et al.|(2023), see Appendix|C|for more details.

In our implementation, when we make ¢; = 0 for the last two steps, Eq. gets reduced to:
Xt At & Qe AtXo + Br—AXT + Vi—AtZe. For other steps, we apply Eq. and let ¢; = n(v —

3—2%2), where 7) is a constant. Putting all ingredients together leads to our sampler outlined in

Algorithm

Algorithm 1 Denoising Diffusion Bridge Stochastic Sampler

Require: model Dy (x¢,x7,t), time steps {tj}g-vzo, input data distribution mcong, scheduler
Oétwé)h%’ftab'

1: Sample X7 ~ Teond, Do ~ N(0, b%T)

2: Xy = X7 +1ng

3: fori=N,...,1do

4: )ACQ — DQ(XZ‘,XT7tZ‘)

5 2; < (x; — a, X0 — B, XN) /1,

6: if N > 2 then

7: Sample z; ~ N(0,1)

8: di < &y, X0 + B, XN + (Y2, + €1, /7,) 2
9: X1 X; + dl(tZ — tifl) + /2¢y, (ti — ti,l)zi
10: else
11: Xij—1 < ati_lio + ﬁti_1f{N + ’)%‘,—121’
12: end if

13: end for

5 EXPERIMENTS

In this section, we demonstrate that SDBs achieve much better performance for 121 transition tasks,
in terms of sample efficiency, image quality and conditional diversity. We evaluate on I2I translation
tasks on Edges—Handbags (Isola et al.,2017)) scaled to 64 x 64 pixels and DIODE-Outdoor scaled to
256 x 256 (Vasiljevic et al.,[2019). For evaluation metrics, we use Fréchet Inception Distance (FID)
(Heusel et al., 2017) for all experiments, and additionally measure Inception Scores (IS) (Barratt
& Sharmal 2018)), Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al.l [2018), Mean
Square Error (MSE), following previous works (Zheng et al., 2024} [Lingi Zhou et al., [2023)). In
addition, we use AFD, Eq. to measure conditional diversity, as further validated in Appendix
Further details of the experiments and design guidelines are provided in Appendix [E]and

Stochasticity control in sampling SDEs. We evaluate different sampling algorithms in Fig. [3|(a),
the results demonstrate that setting ¢, = 0 and using Eq. for the last 2 steps can significantly
improve sampled image quality compared with simple Euler discretization and DDBM sampler.
Furtheremore, By specifically designing stochasticity control during sampling, our sampler sur-
passes the sampling results by DDBM and DBIM with the same pretrained model. The results are
demonstrated in Table [2} We set the number of function evaluations (NFEs) from the set [5, 10, 20]
and select 7 from the set [0, 0.3,0.5,0.8,1.0]. We observed that our sampler achieves much lower
FID compared to both DDBM sampler and DBIM sampler across all datasets and NFEs. Besides,
the best performance achieved around n = 0.3, which is align with the total stochasticity added
to the sampling process by original DDBM sampler (Lingi Zhou et al., |2023). The above results
demonstrate the significance of designing the stochasicity added to the sampling process.

Stochasticity control in transition kernel. Despite the extensive design space available for the
transition kernel, this paper focuses on Linear transition path with different strength of maximum
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(a). Ablation study on discretization (b). Ablation study on ymay for (c). Ablation §tudy' on € for
SDB model with Linear path. SDB model with Linear path.

Figure 3: Ablation studies on discretization, v,.x and €,. (a). We evaluate different discretization
schemes on Edges2handbags (64 x 64) dataset using DDBM-VP pretrained model, A represents
simple Euler discretization in Eq. (T4), B reprents setting ¢; = 0 for the last 2 steps, C represents
using Eq. (I7) for ¢, = 0. (b). Ablation study on ~ax evaluated by DIODE (64 x 64) dataset.
(c). Ablation study on ¢; through our SDB model with Linear path on Edges2handbags (64 x 64)
dataset, where €; = 1(y19: — 5477)-

Table 2: Ablation Study of €¢; for DDBM-VP path via DDBM pretrained VP model (Evaluated by
FID), where ¢, = n(vy:9: — g—:'yt?)

NFE
Sampler n 5 10 20 5 10 20
Edges—Handbags (64 x 64) DIODE-Outdoor (256 x 256)
DDBM (Lingi Zhou et al.;[2023) - 317.22  137.15 46.74 328.33  151.93 41.03
DBIM (Zheng et al.|[2024) - 3.60 2.46 1.74 14.25 7.98 4.99
B 0 10.89 11.45 11.69 77.31 84.68 87.34
0.3 2.36 2.25 1.53 10.87 6.83 4.12
SDB (Ours) 0.5 10.21 7.17 4.18 18.94 12.91 8.07

0.8 1633 14.29 9.33 25.90 18.25 11.74
1.0 18.78 17.61 13.59 30.62  21.64 14.08

stochasticity, i.e., pyjo,r(x¢|x0,x7) = N(x; (1 — t)xo+txr, 172, t(1 — t)I). We conducted
detailed ablation studies on 7. and n for the Linear path on DIODE (64 x 64) dataset, as shown
in Fig. E| (b) and (c). The optimal values for v,.x Were found to be 0.125 and 0.25, while the
best performance for 77 was achieved with = 0.8 and n = 1.0. Performance deteriorates when
either parameter is too small or too large. Based on the results of these ablation studies, we further
trained SDB models on the Edges2handbags (64 x 64) and DIODE (256 x 256) datasets by taking
Ymax € {0.125,0.5} and setting n = 1.0. The results are presented in Table Our models establish
a new benchmark for image quality, as evaluated by FID, IS and LPIPS. Despite our models having
slightly higher MSEs compared to the baseline DDBM and DBIM, we believe that a larger MSE
indicates that the generated images are distinct from their references, suggesting a richer diversity.
We also provide the visualization of sampling process in Fig. [4]

Stochasticity control in base distribution. Through controlling stochasticity in the base distribu-
tion, we achieved a more diverse set of sample images, while this diversity comes at the cost of
slightly higher FID scores and slower sampling speed. We show generated images in Fig. [5} More
visualization can be found in Appendix [F| which shows that by introducing booting noise to the in-
put data distribution, the model can generate samples with more diverse colors and textures. Further
quantitative results are presented in Table[d] confirming that our model surpasses the vanilla DDBM
in terms of image quality, sample efficiency, and conditional diversity.

6 RELATED WORK

Diffusion Bridge Models. Diffusion bridges are faster diffusion processes that could learn the map-
ping between two random target distributions (Yifeng Shi et al., 2023} |Stefano Peluchettil [2023),
demonstrating significant potential in various areas, such as protein docking (Somnath et al.||2023),
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Table 3: Quantitative results in the 12 translation task edges2handbags (64 x 64) and DIODE (256 x
256) datasets. Our results were achieved by Linear transition kernel and setting = 1.

Edges—handbags (64 x 64) DIODE-Outdoor (256 x 256)

Model NFE FID| ISt LPIPS| MSE FID | ISt LPIPS| MSE

Pix2Pix (Isola et al[2017) T 748 324 0356 0209 824 422 0556 0.133
DDIB (Su et al.} 2022 > 40" 186.84 2.04 0.869 1.05 2423 422 0.798 0.794
sman&ﬁ& 172021 >40 265 3.58 0271 0510 31.14 570 0714 0534

RectiﬁedFlow(]Lluetal.[|2022b|) >40 253 280 0241 0.088 77.18 5.87 0.534 0.157

I1?SB (Liu et al.;[2023) >40 743 340 0244 0.191 934 577 0373 0.145
DDBM (Lingi Zhou et al.[2023) 118 1.83 373 0.142 0.040 443 6.21 0.244 0.084
DBIM (Zheng et al.}|2024) 20 1.74 3.64 0.095 0.005 4.99 6.10 0.201 0.017

5 0.89 410 0.049 0.024 1297 549 0.269 0.074

SDB (Ymax = 0.125) 10 0.67 4.11 0.045 0.024 10.12 556 0.255 0.076

20 0.56 4.11 0.044 0.024 8.62 5.62 0.248 0.078
5 146 421 0.040 0016 416 5.83 0.104 0.029
SDB (Vmax = 0.25) 10 1.38 422 0.038 0.017 344 586 0.098 0.029
20 140 420 0.038 0.017 3.27 585 0.094 0.029

= = s 4R LA o

Figure 4: Visualization of the sampling process. The trajectories of X suggest that in the initial
stage of the diffusion model, more general features such as shape and color are constructed. As the
process evolves, it progressively generates finer details and high-frequency elements like texture.

mean-field game 2022al), 121 translation (Liu et al.| 2023} [Lingi Zhou et al| [2023). Ac-
cording to different design philosophies, DBMs can be divided into two groups: bridge matching
and stochastic interpolants. The idea of bridge matching was first proposed by (2023),
and can be viewed as a generalization of score matching 2020). Based on this, dif-
fusion Schrodinger bridge matching (DSBM) has been developed for solving Schrédinger bridge
problems [Stefano Peluchetti (2023); [Yifeng Shi et al|(2023). In addition, utilize
bridge matching to perform image restoration tasks and noted benefits of stochasticity empirically,
the experiments shows the new model is more efficient and interpretable than score-based generative
models 2023). Furthermore, our benchmark DDBM (Lingi Zhou et al., [2023)) achieve
significant improvement for various I2I translation tasks, DBIM (Zheng et al., [2024) improved the
sampling algorithm for DDBM, significantly reducing sampling time while maintaining the same
image quality. Flow Matching and Rectified Flow learn ODE models to facilitate transport between
two empirically observed distributions (Lipman et al.} 2022} [Liu et al}, 2022b). Stochastic inter-
polants further couple the base and target densities through SDEs (Albergo et all[2023). Although
our approach aligns with these methods, it diverges in various aspects. Unlike stochastic interpo-
lation which models the data distribution pg, our framework specifically targets sampling from the
conditional distribution pyr, significantly simplifying both training and inference.

Image-to-Image Translations. Diffusion models have shown extraordinary performance in image
synthesis. However, enhancing their capability in I2I translation presents several challenges, primar-
ily the reduction of artifacts in translated images. To address this, DiffI2I mitigates misalignment and
reduces artifacts in I2I translation tasks with fewer diffusion steps (Bin Xia et al.,[2023)). In the latent
space, 121 translation is also achieved more quickly by S2ST (Or Greenberg et al., 2023)), which con-
sumes less memory. Various methods leverage different forms of guidance (Narek Tumanyan et al.}
2023} [Hyunsoo Lee et al., [2023)), such as frequency control (Xiang Gao et al.,[2024), to tackle these
challenges. Another significant challenge is that 121 translation methods typically require joint train-
ing on both source and target domains, posing privacy concerns. Injecting-diffusion addresses this
issue in unpaired 121 translation by extracting domain-independent content from the source image
and fusing it into the target domain (Cuying Li & Lizhuang Ma| [2023)). To improve interpretability
in unpaired translation, SDDM separates intermediate tangled generative distributions by decom-
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Table 4: Quantitative results for sample efficiency, image quality, and conditional diversity. By
adding stochasticity to the base distribution (b > 0), we achieved much better conditional diversity,
evaluated by AFD. While the introduction of b > 0 results in a slight increase in FID and NFE, we
believe this trade-off is advantageous in certain scenarios.

(a). DDBM-VP model + different samplers. (b). Our SDB models and samplers with dif-
ferent choices of b.

Sampler NFEs| FID] AFD?T

DDBM 118 1.83 6.99 b NFEs| FID| AFD?Y
DBIM 5 3.60 5.63 0 5 0.89 6.00
DBIM 10 2.46 5.20 0 10 0.67 6.05
DBIM 20 1.74 5.84 0 20 0.56 6.25
SDB 5 2.36 5.11 0.5 5 3.31 8.53
SDB 10 2.25 5.70 0.5 10 2.07 9.35
SDB 20 1.53 6.04 0.5 20 1.74 9.65
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DBIM DDBM Linear (b = 0.5)
NFE=10, FID=2.46, AFD=5.20 NFE=118, FID=1.83 , AFD=6.99  NFE=10, FID=2.07, AFD=9.35

Figure 5: Visualization of conditional diversity via sampled images. While FID measures diversity
within columns, AFD evaluates diversity across rows. The visualization further proved the effec-
tiveness of AFD. More sampled images can be found in Appendix@

posing the score function (Shurong Sun et al.,[2023)). Diffusion bridges are also popular due to their
interpretability and ability to map between arbitrary distributions. DDIB employs an encoder trained
on the source domain and a decoder trained on the target domain to establish Schrodinger Bridges
(SBs) (Xu Su et al.|[2022). Beomsu Kim et al.| (2023) incorporates discriminators and regularization
to learn an SB between unpaired data.

7 CONCLUSION

In this study, we introduced the Stochasticity-controlled Diffusion Bridge (SDB), a framework
designed to facilitate translation between two arbitrary distributions. By strategically managing
stochasticity in the base distribution, transition kernel, and sampling SDEs, our approach improves
image quality, sampling efficiency, and conditional diversity, allowing for the tailored design of dif-
fusion bridge models across a range of tasks. This work is the first to derive sampling SDEs of
q(X; | xr) for arbitrary Gaussian transition kernels of the form N (x; ayxo + Bix7, 7). Addi-
tionally, our approach is the first to highlight the issue of lacking conditional diversity in diffusion
bridge models and to resolve it by introducing stochasticity into the base distribution. We high-
lighted the importance of stochasticity control (SC) and addressed challenges associated with sin-
gularity through score reparameterization and specially designed discretization. Our results demon-
strate that a simple linear bridge configuration can set new benchmarks in image quality, sampling
efficiency and conditional diversity, as evidenced by our experiments with 64 x 64 edges2handbags
and 256 x 256 DIODE-outdoor 121 translation tasks. Despite these advancements, we acknowledge
that the optimal stochasticity may vary from one scenario to another, indicating a rich avenue for
further exploration and refinement in future work.
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Table 5: Evaluation for generative models: ImageNet-1-mode, ImageNet-2-modes, ImageNet-5-
modes, and ImageNet-10-modes.

Model ImageNet-1-mode ImageNet-2-modes ImageNet-5-modes ImageNet-10-modes
FID 58.30 57.34 57.78 57.26
AFD 0 8.14 12.84 14.47

A AFD VALIDATION

In this section, we thoroughly validate the effectiveness of our proposed metric, AFD, for measuring
conditional diversity and demonstrate its role as a complementary metric to FID. In unconditional
generation scenarios, the FID is widely used to evaluate the diversity of generated images. While low
FID scores generally indicate high diversity across the entire dataset, they do not necessarily imply
high conditional diversity. For instance, we observed that samples generated by the DDBM model
often lack diversity when conditioned on edge images, despite achieving very low FID scores. To ad-
dress this limitation, we introduce the concept of conditional diversity and propose a corresponding
metric to quantify it.

The first question is why FID failed to measure the conditional diversity. To illustrate the limitations
of FID in capturing conditional diversity, consider an extreme case: if the images generated by a
generative model are identical to a set of baseline images, the FID score can be very low since the
two distributions are indistinguishable. However, this scenario does not reflect diversity within the
conditional outputs.

To further support our point, we designed two classes of pseudo-generative models capable of con-
trolling the diversity of the generated images, which are further validated by FID and AFD. The

experiments are evaluated on Imagenet dataset (Deng et al., [ 2009).

A.1 PSEUDO-GENERATIVE MODELS BY RANDOM SELECTION

We designed four pseudo-generative models: ImageNet-1-mode, ImageNet-2-modes, ImageNet-5-
modes, and ImageNet-10-modes. The experimental setup is as follows:

* We selected 11,000 samples from the ImageNet validation dataset, randomly choosing 11
images per class.

* From these, we designated 1,000 images as the “real” set, while the remaining images
served as the source pool for the generative models.

» Each ImageNet-k-modes model simulates a generative process by randomly sampling im-
ages from a pool of k distinct images within a given class.

We present sampled images in Fig. [6l where it is evident that the ImageNet-10-modes model gen-
erates images with the highest conditional diversity. To quantify this, we conducted experiments to
calculate both FID and AFD for the four generative models. The results are summarized in Table
El While the FID scores are nearly identical across all models, the AFD values increase as the con-
ditional diversity of the generative models improves. This highlights that AFD is a more effective
metric for capturing conditional diversity than FID.

A.2 PSEUDO-GENERATIVE MODELS BY STRONG AUGMENTATION

Strong augmentation has been widely used in computer vision to generate synthetic data while pre-
serving its underlying semantics (Chen et al.} 2020; [Zbontar et al., 2021} [Sohn et al.| 2020}, Berthelot]
2019). The intensity of augmentation can be adjusted, with higher intensities producing more
diverse images. To further validate our proposed metric, AFD, as a measure of diversity, we con-
struct pseudo-generative models using strong augmentation.

We selected 1,000 images from the ImageNet-1k dataset, one from each category. These images
were subjected to data augmentation, specifically using ColorJitter, with varying magnitudes to en-
hance diversity. For each image, the augmentation was applied 16 times, creating an augmented

14
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ImageNet-1-mode: FID=58.30, AFD=0
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Figure 6: Sampled images from 4 generative models: ImageNet-1-mode, ImageNet-2-modes,
ImageNet-5-modes, ImageNet-10-modes.

Table 6: AFD results across different augmentation magnitudes

Augmentation magnitude 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8
AFD 216 377 513 6.16 698 7.63 822 9.01
FID 020 295 7.02 11.62 1633 2084 2512 28.89

dataset for each magnitude setting. We then calculated the AFD for these augmented datasets to
evaluate the relationship between dataset diversity (as influenced by augmentation magnitude) and
the AFD value.

Table [0 summarizes the AFD results across various augmentation magnitude settings. The results
show that as diversity increases, AFD values also rise, further confirming that the proposed AFD
metric is a reliable indicator of image diversity.
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B PROOFS

There are infinitely many pinned processes characterized by the Gaussian transition kernel
Pro,r(Xe | Xo,%x7) = N (%45 00%X0 + Bixr,v2). Specifically, we formalize the pinned process
as a linear It6 SDE, as presented in LemmaE}

Lemma 3. There exist a linear Ito6 SDE

dX; = [fiXs + sexpldt + g:dWy,  Xo = Xo, (18)

Ay ay

where f; = S = Bt - z—:ﬂt, gt = /2wy — a—tﬁ), that has a Gaussian marginal

oy’
distribution N' (x¢; ayxo + Bexr,771).

Given the pinned process (18], we can sample from the conditional distribution po7(xo|xT) by
solving the reverse SDE or ODE fromt =T tot = 0:

dXy = [[iX¢ + sexp — g7 Vx, log pr(Xe|x7)] dt + g:dWy, Xp =x7, (19)
1
dX; = {ftxt + siX7 — igfvxt log py(X¢|xr)| dt X7 =x7, (20)

where the score Vx, log p:(X:|x7) can be estimated by score matching objective . To improve
training stability, we introduced score reparameterization in Sec. [4.1]

Lemma 1. There exist a linear It6 SDE

dX¢ = [fi Xt + sexr]dt + g dWy,  Xo = xo, (21)
where f; = %’ si = B — g—:ﬁt, gt = /2(wYe — g—:’yf) that has a Gaussian marginal
distribution N' (Xt; X + Bexr, %21).

Proof. Let m, denote the mean function of the given It6 SDE, then we have dm; fimy + sixr.

dt
Given the transition kernel, the mean function m; = a;x¢ + S:x, therefore,

arXo + Bixr = filouxo + Bixr) + sex7. (22)
Matching the above equation: ) .
& . &
fr=—"s0= B — Bi—. (23)
(67 (673

t

Further, For the variance 72 of the process, the dynamics are given by:

d 2
L = 2fi? + g7 24)
t
Solving for g2, we substitute f; = Z—:
v} Gy
2 i 2
=——-2— 25
t dt (67 ¢ ( )
Therefore,
: &
gt = 1/ 2005 — —A7)- (26)
Qi
O
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For dynamics described by ODE dX; = u.dt, we can identify the entire class of SDEs that maintain
the same marginal distributions, as detailed in Lemmal[2] This enables us to control the stochasticity
during sampling by appropriately designing ;.

Lemma 2. Consider a continuous dynamics given by ODE of the form: dX; = u.dt, with the den-
sity evolution py(Xy). Then there exists forward SDEs and backward SDEs that match the marginal
distribution p;. The forward SDEs are given by: dX; = (u; + €V log p;)dt + V2e,dWy, e > 0.
The backward SDEs are given by: dX; = (u; — €;V log p;)dt + /2¢;,dW, €; > 0.

Proof. For the forward SDEs, the Fokker-Planck equations are given by:

Opy (Xt)

ot =V - [(ug + e Vlog ps) pe(Xe)] + €V pe(Xe) (27)
=-V. [utp ( )] V- [Gt(v logpt)pt(Xt)] + €tV2pt(Xt) (28)
==V [wpe(Xe)] — &V - [Vpe(Xe)] + € V2pe(Xe) (29)
= =V - [up(Xy)] - (30)

This is exactly the Fokker-Planck equation for the original deterministic ODE dX; = u; dt. There-
fore, the forward SDE maintains the same marginal distribution p;(X;) as the original ODE.

Now consider the backward SDEs, the Fokker-Planck equations become:

X
o ta(t ) _ (- @V logp) pi(X)] — € Vp(X,) 31
—V - [wpe(Xe)] + V- [er(Vlog p)pe (Xe)] — € Ve (Xy) (32)
==V [wp(Xy)]. (33)

This is again the Fokker-Planck equation corresponding to the original deterministic ODE dX; =
u; dt. Therefore, the backward SDE also maintains the same marginal distribution p;(X).

O

Theorem 3. Suppose the transition kernel of a diffusion process is given by pyjo 7 (X: | X0, X71) =
N (x¢; X + Bixr,V21), then the evolution of conditional probability q(X;|x7) has a class of
time reverse sampling SDEs of the form:

dX; = [O'étfio + Bixr — (3w + €)Vx, log py(Xe|x7) | dt + V26, dW, X =x7.  (34)

Proof. Recall Egs. . 20]and Lemma 2]

dXt = |:O[Xt + (Bt - *Bt)XT - (’yt’yt - 77}& + et)VXt logpt(xt|XT):| dt + \/Edwt (35)
t

O]
Next we take the reparameterized score [12]into[35}
[ . & . & X + Bexy — X
dX, = | =X, + (Bt — *tﬂt)XT — (veye — *t%? +€) =0 Btg L t] dt + 2¢;dw
L Ot Qg Vi
(36)
[ . ) X + Byxp — X
= |duko + Bixr — (W + €) ——2 %2 L t} dt + v 2e;dw, (37)
L i
M. . . € ayXg + Bexr — X
= |duXo + Bixp — (3¢ + —) =22 bixr t] dt + /2e;dw, (38)
L Yt Vi
[ . €
= |cuko + Bexr — (G + ,Y—t)z dt + /2¢,dw,. (39)
L t
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Theorem 4. Let (xo,x7) ~ mo(X0,X71), Xt ~ pt(X|X0,X7), Given the transition kernel: p(x; |
x0,x7) = N (xt; aXo + BeXT, %21), if Xo(X¢,XT,t) is a denoiser function that minimizes the
expected Ly denoising error for samples drawn from mo(Xo, XT):

Xo(x¢, x7,t) =arg  min = Eyx) x,x, [A(t)HD(Xt,xT,t) — X0||§} , (40)

D(x¢,x7,t)

then the score has the following relationship with Xo(X¢, X1, t):

X (X, X7, t) + BiXr — X4

Vi, log pi(x¢|x7) = 2 (41)
Vi
Proof.
E(D) = ]E(XO»xT)NTrO(XOJKT)ExtNPt(xt|x(J’xT) ||D(Xt) - XO”% (42)
= [ [ oo, xar)moloa.xa) | Do) = ol o cere, @3
Rd Rd Rd
=:L(D;x¢,xT1)

L(D;x¢,xr) :/

dpt(Xt|XoaXT)WO(X(),XT)HD(X:&) — Xol[3 dxo, (44)
R

we can minimize £(D) by minimizing £(D;x;, xr)independently for each {x;,xr} pair.

D*<Xt7XT) = arg[I)r(lin) E(D;Xt,XT) 45)

0= vD(xt,xT)[‘C(D;XtaXT)] (46)

= [ peoxlxo, ) oo, 21D, 1) ] @)
R

= 2[D(XtaXT)/dpt(xt|XOaXT)7TO(X07XT) dxo — /dpt(xt|X07XT)7TO(x07XT)XO dxg] (48)
R R

— 2D o) xr) — [ o o o “9)
R
D*(Xt,XT):/ pt(xt|X07XT)7r0(XO7XT)XO dX07 (50)
R4 pt(xtaxT>

Vi, Dt (X¢, XT)

V. logpt(xt|XT) = (5D
pt(Xt, XT)

_ [ Vs pi (e[, %0) 70 (%0, X7)dX0 52)

Dt (Xt7 XT)
_ / Xy — uXo — BiXr pt(Xt\Xo,XT)WO(XmXT)dXO (53)

72 Pe(Xe, X7)
arD* (x4, X7) + BeXr — X4
= 5 . (54)
Y
Thus we conclude the proof.

O
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C REFRAMING PREVIOUS METHODS IN OUR FRAMEWORK

We draw a link between our framework and the diffusion bridge models used in DDBM.

C.1 DDBM-VE

DDBM-VE can be reformulated in our framework as we set :

2 2 2

(o St0; (o
o =s5(1——5). 8=, m =0y [(1- ) (55)
T 197 T

Proof. In the origin DDBM paper, the evolution of conditional probability ¢(x¢|x7) has a time
reversed SDE of the form:

dX, = [£.(Xs) — §7he(Xs) — g75:(Xy)] dt + Ged W, (56)
and an associated probability flow ODE
- — 1
dX; = |£,(Xs) — g7he(Xy) — igfst(xt) dt. (57

Compare Eqs. (56) and[57]with Lemma[3] We only need to prove:

£,(X,) — E?Et(xt) = f[iX¢ + 5¢XT, Gt = Gt (58)
In the original paper,

- _ d _ XT — X4

£,(Xs) =0,9; = @vaht(xt) T2l (59)

Therefore,

= — 2000¢(X7 — X .
£.(Xe) - g7 he(Xy) = %,gtz = 2040 (60)

o — 0}

In our framework, f;, s¢, g7 can be calculated:

O.[t d d 0'% *O'tz *QO'tO.'t
_ 4y -2 - 1
fi a dt BT g %8 o2, o2 — o}’ D)
. dt QO'tC'Tt 2Utd't O'? 20’t0:t
— _ — — = —, 62
st =Py oy p o2, * 0% —o0} 0% 0%—o} 62)

2 . dt 2 2 ﬁt dt 2 (O'% — 20}2)0} Q(j'tO't .
-9 _ —9 ATl =2 . 63
9; =2(vn at%) Vi ( ) Vi < (02— oP)o; + p oot (63)

Therefore,

2000¢(x7 — X - -~
FiXo+ sixr = % = (X)) - gh(X0), G = g1, (64)
T t

which matches the formulation in DDBM.
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C.2 DDBM-VP

DDBM-VP can be reformulated in our framework as we set :

o2a? o2aq o2a?
— 1— 2t71 — Zt7r - 2(1 — 271y 65
Qi at( O'%ll% )a Bt O'%at y Yt Ut ( O'%a% ) ( )
Proof. In the original DDBM-VP setting,
- dloga
B(X) = =i, (66)
t
. 2 . _ 2 2 .
R (67)
Q¢ Qg
_ (a¢/ar)xr — X4 a1a Xt — a3%y
h,(X;) = = . 68
tXe) = 5 SNR, /SNR, = 1) 0%l —o%ad (68)
Therefore,
f (X ) _ 721& (X ) _ % _ QUtG%(é’tat — O'tdt) % + 2Uta1((j'tat — Utdt)x (69)
AROTRER T o T Taotar —afad) |7 ofai — ot
In our framework, f;, s¢, g7 can be calculated:
y d
=—=—1 70
ft o dt 0g (vt (70)
d o2a? — o2a?
-4 144 t 41 71
it ® olay D
oia; —ofay ag
. 2 2 . .
b 2aqodas g a3)
ar  ai(ofai — ojay)
.G B @
0= B — — B = Be(ZE — =) (74)
Qi B Qg
Ufal 20 QU%atdt — 2a§at{7t
=32 = 2 2 2 2 (75)
o1a¢ Ot o1a;y —oyay

2Jta1(dtat — O'tdt)
= 2 2 22 (76)

o1ay — opay

. Oy Yo Gy
9 =W — —% = ( - ) (77)
(677 Ve e77
— g2t (78)
7 dt Qi
d 1 o?o?
2 tY1
=122 (Zlog ot 79
Y a8 e ) (79)
o oZa? or  ofaiay — aloy0y
=0 \l- ms )\ T T e (80)
oja; o oja; —o;ay

dtotat—at?dt (8])

Qg
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Therefore,

i Xy + sixr == £(Xs) — 570e(X4), Gt = g1 (82)

which matches the formulation in DDBM.

C.3 EDM

ODE formulation. The ODE formulation in EDM can be formlated in our framework as we set
Qr = ].,ﬁt = 0,"}/15 = O0¢.

Proof. Recall 20} the ODE formulation is given by:

1
dXy = | fiXe + sixp — ig?vXt Ingt(Xt|XT)] dt Xp=xr (83)

where f; = St s = Be — B g =\ 200 — S497). As oy = 1,8, = 0,7 = oy, The
sampling ODE is given by:

dX; = =06V, log p;(X;)dt (84)

Denoising score matching. The score remarameterization in EDM is the same as ours in Eq.
Let oy = 1, 8y = 0,7, = 0y, then the score reparameterization in Eq. [12]is given by:

X0 — X
Vi, logps(Xy) =~ g 5 . (85)

O

Sampling SDEs with stochasticity added. Recall Theorem[T} as oy, = 1, 8; = 0,y = 0%, then the
SDE has the form:

dXt = (—Utd't —+ et)th 1ngt(Xt)dt —+ \/gdwt (86)

Now we recover the stochastic sampling SDE in original EDM paper.

C.4 1I2SB

12SB can be reformulated in our framework as we let:

0'2 O'2 (‘)’2
atzl—a—%,ﬂt:;%m: o?( —;%) (87)

where 07 = f(f Brdr.

Using discretization
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——— With score remarameterization

0.6 . o
——— Without score remarameterization

0.4 v
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Iterations (X10%)

Figure 7: MSEs during training, where MSE = L "7 | [l35 — 2o]|.
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Figure 8: Ablation study on the shape of ;.

2 2
Bi—At . Br—n¢ Bi—atVt -
Xi—at = (Q—ar — oy )Xo + Xt + ’Yf_At — 05 %t

Bt Br B
Be—at\ Be—nt 5752—&%2 _
=(1- 3, )Xo + 3, Xt + [ VA — 2 Zt
t
2 o (1 _ ”t—At)U? _ Ti_ae 2(1 _ U?)
_ Ot Aty O At t—At o7 /oi of Tt %/
— (1 — 02 ) 0 —|— 0_2 Xt g YA
t t —+

In the 12SB paper, define a2 := f:"“ Brdr, 02 = fg " B,dr. Therefore,

2 2 2,2
a g, gza
n 2 n n-n =
Xn = XO+ Xn 1+ Zy
aZ+o2 " a2 t+o2 " a2 + o2

Thus, we reproduce the sampler of 12SB.

D ADDITIONAL DESIGN GUIDELINE

(88)

(89)

(90)

oD

92)

Score reparameterization. We compared the training stability with and without score reparameter-
ization using the DIODE (64 x 64) dataset, and the results are shown in Fig.[/| For training without
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Ymax = 0.025
Ymax = 0.125
Ymax = 0.25
Ymax = 0.5
Ymax = 1

Figure 9: Sampling paths with dfferent choices of ;. As 7y, extreamly low, e.g, Vmax = 0.025, the
model will be failed to construct details of images.

score reparameterization, the score function sy (x, X7, t) is parameterized by a neural network, and
Xo(x,X7,t) is computed as: Xo(x,X7,t) = a% (v2so(x,xr,t) + x; — Bxr) . For training with
score reparameterization, Xo(x, xr, t) is directly parameterized as a neural network. We then com-
pared the mean squared error (MSE) between X and xo during training. The results in Fig. [7]
indicate that score reparameterization helps reduce training instability.

oy and f3;. Theoretically, oy and [ can be freely designed, and future work may explore alternative
design choices. However, in this paper, we focus on the simple case where ay = 1 — ¢ and f3; =
t. The rationale is as follows: consider the scenario where oy = 1 — [3;, which represents an

interpolation along the line segment between z and z1. For the path pgl) () = N((1 = Be)zo +

Brx1,771), where j3; is invertible, it is straightforward to construct another path pgz)(sc) =N((1-
t)zo + txq, *y;,l I), which achieves the same objective function but uses a different distribution of ¢
t

during training. Based on this equivalence, setting a; = 1 — ¢ and 8; = ¢ is a reasonable choice.

The shape of v,. We conducted an ablation study on ~, with different shapes. Specifically, we
assumed ; has the form v = 2yax\/t¥(1 — t¥), as shown in Fig. [8] ~; will have different shape
as we set different k. The results indicate that the best performance is achieved when & = 1, which
is the exact setting used in this paper.

Ymax- Our ablation studies on 7, demonstrate that the optimal values of y,,.x are approximately
0.125 or 0.25. Furthermore, the sampling paths corresponding to different choices of +, are shown
in Fig. 0] Adding an appropriate amount of noise to the transition kernel helps in constructing finer
details.

€. We use the setting ¢, = 7 (%% - g—:ﬁ) . The ablation studies on ¢; demonstrate that the

optimal choice of 1 for the DDBM-VP model is approximately 0.3, while the best choice for the
SDB model with a Linear Path is around 1.0. Additionally, we present sample paths and generated
images under different 7 settings to illustrate heuristic parameter tuning techniques. The results
are shown in Figures [T1] [T2} and[I3] Too small a value of 7 results in the loss of high-frequency
information, while too large a value of 1 produces over-sharpened and potentially noisy sampled
images.

E EXPERIMENT DETAILS

Architecture. We maintain the architecture and parameter settings consistent with
2023), utilizing the ADM model (Dhariwal & Nichol, [2021) for 64 x 64 resolution, modifying
the channel dimensions from 192 to 256 and reducing the number of residual blocks from three
to two. Apart from these changes, all other settings remain identical to those used for 64 x 64
resolution.
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lation process. o and [3; define the interpolation between two images, while +; controls the noise
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cess. On the other hand, the DDBM-VP path adds more noise near X7, , indicating that during
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Training. @ We include additional pre- and post-processing steps: scaling functions and
loss weighting, the same ingredient as (Karras et al.,, 2022). Let Dg(x¢,x7,t) =
Cskip(t)Xt + Cout(t) (1) Fo(cin(t)X¢, Cnoise(t)), where Fp is a neural network with pa-
rameter 6, the effective training target with respect to the raw network Fy is:
B, xo.xz,t [AllCskip (Xt + Cout Fo (CinXe, Cnoise) — Xo||?]. Scaling scheme are chosen by re-
quiring network inputs and training targets to have unit variance (¢in, Cout ), and amplifying errors
in Fj as little as possible. Following reasoning in (Lingi Zhou et al., 2023)),

1
\/04308 + B0 + 204 Broor + 737
1

1
Cout (t) = \/5152080% - ﬂ?agT + Vztzggcin; A= —5 5 Cnoise (t) = i IOg (t)a (94)

Cout

Cin(t) Cskip(t) = (o + Broor) * ¢y (93)

where 03, a%, and ogr denote the variance of xq, variance of x7 and the covariance of the two,
respectively.

‘We note that TrigFlow (Lu & Song}|2024)), a contemporaneous work, adopts the same score reparam-
eterization and pre-conditioning techniques. It can be considered a special case of our framework
by setting a; = cos(t), By = 0,y = ogsin(t), t € [0, 5. In this case, o7 = 0, oo = 0,

1 1 1
Cin(t) - D) 3 = = (95)
Vaiod +7; \/sinz(t)ag + cos?(t)g2 70
1
Cskip(t) = (og)cl, = cos(t) - of - == cos(t), (96)
0
Cout (t) Y, 71620-8 " Cin = Sin(t)a()v o7

, 1
Dy(x¢,t) = CskipTt + Cout Fo(CinTt, Cnoise) = cos(t)xy + sm(t)aoFe(;, Croise)-  (98)
0

Then we recover TrigFlow.

In our implementation, we set oo = o7 = 0.5, 007 = 03 /2 for all training sessions. Other setting
are shown in Table[7]

Table 7: Training settings

Dataset edges—handbags edges—handbags edges—handbags
Model n 0 0 0.5
Ymax 0.125 0.25 0.125
GPU 1 A6000 48G 1 H100 96G 1 H100 96G
Batch size 32 128 200
Setting  Learning rate 1x107° 5x107° 1x10*
epochs 2078 2106 1443
Training time 42 days 8 days 11 days
Dataset DIODE (256 x 256) DOIDE (256 x 256)
Model n 0 0
Ymax 0.125 0.25
GPU 1 H100 96G 1 H100 96G
Batch size 16 16
Setting  Learning rate 2x107° 2x 1075
epochs 2617 1745
Training time 17 days 25 days
Sampling. We use the same timesteps distributed according to EDM (Karras et al., [2022): (tin/zfx

%(tlln/ifl - }Il/;fx))p, where ¢, = 0.001 and ¢, = 1 — 1074, The best performance achieved by

setting p = 0.6 for Edges2handbags and p = 0.8 for DIODE datasets.
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Licenses

» Edges—Handbags|[[sola et al.|(2017): BSD license.
* DIODE-Outdoor |Vasiljevic et al.| (2019): MIT license.
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n=12

Figure 12: Comparison of sampled images with different ¢; for SDB model, where ¢, = n(v: —
Gt A2 o -
a_t7t )’ Ymax — 0.25,b=0.
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\\

\\\\

Figure 13: Companson of sampled images with different ¢, for DDBM-VP pretrained model, where
e = n(nde — 57)-
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Figure 14: SDB model and sampler ( ypax = 0.125, n = 1, b = 0, NFE=5, FID=0.89).
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F ADDITIONAL VISUALIZATIONS

Figure 15: DDBM model and Our sampler (NFE=20, FID=1.53).
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Figure 16: DDBM model and SDB sampler (n = 0.3, NFE=20, FID=4.12). Samples for DIODE
dataset (conditoned on depth images).
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Figure 17: SDB model and sampler (vyy,ax = 0.25, 7 = 1.0, b = 0, NFE=5, FID =4.16).
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Figure 18: SDB model and sampler (7y,ax = 0.25, n = 1.0, b = 0, NFE=20, FID = 3.27).
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