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ABSTRACT

Diffusion bridge models effectively facilitate image-to-image (I2I) translation by
connecting two distributions. However, existing methods overlook the impact
of noise in sampling SDEs, transition kernel, and the base distribution on sam-
pling efficiency, image quality and diversity. To address this gap, we propose the
Stochasticity-controlled Diffusion Bridge (SDB), a novel theoretical framework
that extends the design space of diffusion bridges, and provides strategies to miti-
gate singularities during both training and sampling. By controlling stochasticity
in the sampling SDEs, our sampler achieves speeds up to 5× faster than the base-
line, while also producing lower FID scores. After training, SDB sets new bench-
marks in image quality and sampling efficiency via managing stochasticity within
the transition kernel. Furthermore, introducing stochasticity into the base distri-
bution significantly improves image diversity, as quantified by a newly introduced
metric. Code would be available on Github repo.

1 INTRODUCTION

Denoising Diffusion Models (DDMs) create a stochastic process to transition Gaussian noise into
a target distribution (Song & Ermon, 2019; Ho et al., 2020; Song et al., 2020). Building upon
this, diffusion bridge-based models (DBMs) have been developed to transport between two arbitrary
distributions, πT and π0, including Bridge Matching (Peluchetti, 2023), Flow Matching (Lipman
et al., 2022), and Stochastic Interpolants (Albergo et al., 2023). Compared to DDMs, DBMs offer
greater versatility for tasks such as I2I translation (Linqi Zhou et al., 2023; Liu et al., 2023). This
advantage arises because using a Gaussian prior often fails to incorporate sufficient knowledge about
the target distribution.

In general, there are two primary design philosophies for DBMs. The first involves deriving a
pinned process (Yifeng Shi et al., 2023) from a given reference process (e.g., Brownian motion)
via Doob’s h-transform, and then constructing a bridge to approach it (Linqi Zhou et al., 2023;
Peluchetti, 2023). The second regime aims to directly design a bridge based on a specified transition
kernel (Lipman et al., 2022; Albergo et al., 2023). While the former also results in a transition kernel,
the mean and variance in the kernel are coupled, which limits the design flexibility for possible
bridges. In this work, we follow the second fashion and further propose the Stochasticity Control
(SC) mechanism, which facilitates easier tuning and leads to enhanced performance across a variety
of tasks. Our main contributions are as follows:

• We introduce the Stochasticity-controlled Diffusion Bridge (SDB), a generalized frame-
work that adopts a transition kernel-based design philosophy to elucidate the design space
of DBMs, shown in Fig. 10. Notably, this framework not only encompasses other main-
stream DBMs such as DDBM (Linqi Zhou et al., 2023) and I2SB (Liu et al., 2023), but
also DDMs like EDM (Karras et al., 2022), as detailed in Table 1.

• A Stochasticity Control (SC) mechanism is proposed by adding noise into the base dis-
tribution, designing a noise schedule for the transition kernel, and regulating the drift term
in the sampling SDEs. In addition, we explore score reparameterization and the dis-
cretization schemes of sampling SDEs to mitigate singularity during training and sam-
pling. These combined strategies lead to significant improvements in training stability,
sampling efficiency, output quality, and conditional diversity.
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Figure 1: An illustration of the framework for constructing diffusion bridge models. The parameters
b, γt, and ϵt govern the stochasticity introduced at three main stages: preprocessing, training, and
sampling. Specifically, b determines the noise added to the base distribution during preprocessing,
γt controls the noise introduced into the transition kernel, impacting both training and sampling, and
ϵt regulates the noise added to the sampling SDEs, affecting only the sampling stage.

• Experimental results show that our sampler operates 5× faster than the DDBM sampler and
achieves a lower FID score using the same pretrained models. When trained from scratch,
our model sets a new benchmark for image quality, requiring only 5 function evaluations
to reach an FID of 0.89 on Edges2handbags (64 × 64) and 4.16 on DIODE (256 × 256)
datasets. Furthermore, by introducing noise into the base distribution, we significantly en-
hance the diversity of synthetic images, resulting in a greater variety of colors and textures.

Notations Let πT , π0, and π0T represent the base distribution, the target distribution, and the joint
distribution of them respectively. πcond and πdata represent the distributions of the input and output
data. Let p be the distribution of a diffusion process; we denote its marginal distribution at time t by
pt, the conditional distribution at time t given the state at time s by pt|s, and the distribution at time
t given the states at times 0 and T by pt|0T , i.e., the transition kernel of a bridge.

2 BACKGROUND

2.1 DENOISING DIFFUSION MODELS

Denoising diffusion models map target distribution π0 into a base distribution πT by define a forward
process on the time-interval [0, T ]:

dXt = f̄tXtdt+ ḡtdWt, X0 ∼ π0, (1)

where f̄t, ḡt : [0, T ] → R is the scalar-valued drift and diffusion term, X0 ∈ Rd is drawn from the
target distribution π0, Wt is a d-dimensional Wiener process. To sample from the target distribution
π0, the generative model is given by the reverse SDE or ODE (Song et al., 2020):

dXt =
[
f̄tXt − ḡ2t∇Xt log qt(Xt)

]
dt+ ḡtdWt, XT ∼ πT , (2)

dXt =

[
f̄tXt −

1

2
ḡ2t∇Xt

log qt(Xt)

]
dt, XT ∼ πT , (3)

where qt denotes the marginal distribution of this process. The score function ∇xt log qt(xt) is
approximated using a neural network sθ(xt, t), which can be learned by the score-matching loss:

L(θ) = Ext∼pt|0(xt|x0),x0∼π0,t∼U(0,T )

[
ω(t)

∥∥sθ(xt, t)−∇xt
log qt|0(xt|x0)

∥∥2] , (4)

where qt|0 is the analytic forward transition kernel and ω(t) is a positive weighting function.
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2.2 DENOISING DIFFUSION BRIDGE MODELS

DDBMs (Linqi Zhou et al., 2023) extend diffusion models to translate between two arbitrary distri-
butions π0 and πT given samples from them. Consider a reference process in Eq. (1) with transition
kernel qt|0(xt|x0) = N (xt; atx0, σ

2
t I), this process can be pinned down at an initial and terminal

point x0,xT . Under mild assumptions, the pinned process is given by Doob’s h-transform (Rogers
& Williams, 2000):

dXt = {f̄tXt + ḡ2t∇Xt
log pT |t(xT |Xt)}dt+ ḡtdWt, X0 = x0, (5)

where ∇Xt
log pT |t(xT | Xt) =

(at/aT )xT−Xt

σ2
t (SNRt/SNRT−1)

and SNR := a2t/σ
2
t (Linqi Zhou et al., 2023).

The marginal density of process (5) serves as transition kernel and is given by p(xt|x0,xT ) =
N (xt;αtx0+βtxT , γ

2
t I), where αt = at(1−SNRT

SNRt
), βt =

at

aT

SNRT

SNRt
, γ2

t = σ2
t (1−SNRT

SNRt
).

To sample from the conditional distribution p(x0|xT ), we can solve the reverse SDE or probability
flow ODE from t = T to t = 0:

dXt = {f̄tXt + ḡ2t (∇Xt
log pT |t(xT |Xt)−∇Xt

log pt|T (Xt|xT ))}dt+ ḡtdWt,XT = xT (6)

dXt = {f̄tXt + ḡ2t (∇Xt
log pT |t(xT |Xt)−

1

2
∇Xt

log pt|T (Xt|xT ))}dt, XT = xT . (7)

Generally, the score ∇xt log pt|T (xt|xT ) in Eqs. (6) and (7) is intractable. However, it can be
effectively estimated by denoising bridge score matching. Let (x0,xT ) ∼ π0,T (x0,xT ), xt ∼
pt|0,T (xt|x0,xT ), t ∼ U(0, T ), and ω(t) be non-zero loss weighting term of any choice, then the
score ∇xt log pT |t(xT |xt) can be approximated by a neural network sθ(xt,xT , t) with denoising
bridge score matching objective:

L(θ) = Ext,x0,xT ,t

[
w(t)∥sθ(Xt,xT , t)−∇xt

log pt|0,T (Xt | x0,xT )∥2
]
. (8)

To sum up, DDBM starts with the forward SDE outlined in Eq. (1) with a marginal distribution of
qt|0(xt|x0) = N (xt; atx0, σ

2
t I). The pinned process is then built by applying Doob’s h-transform

as specified in Eq. (5), which is unnecessarily complicated and constraining. Additionally, the
transition kernel of the pinned process becomes complex and coupled, as αt, βt, and γt are all inter-
related through at and σt, increasing the design difficulty. In the next section, we will demonstrate
how αt and βt can be used to control interpolation, while γt is designed to regulate the stochasticity
introduced into the path.

3 STOCHASTICITY CONTROL

3.1 STOCHASTICITY CONTROL IN TRANSITION KERNEL

We are interested in building a diffusion process to transport from two arbitrary distributions πT and
π0. Suppose the transition kernel of this process is pt|0,T (xt|x0,xT ) = N (xt;αtx0+βtxT , γ

2
t I).

For diffusion models, we can simply let βt = 0 and α0 = 1 and γ0 = 0. For bridge models, to ensure
that the process originates from x0 and concludes at xT , we set α0 = βT = 1 and αT = β0 = 0. Ad-
ditionally, we require αt, βt, γt > 0 for t ∈ (0, T ). Let T = 1, one simple design example involves
defining αt and βt linearly, such that αt = 1−t and βt = t, with γt = 2γmax

√
t(1− t), where γmax

is a constant representing the maximum noise level. This configuration is referred to as the linear
path for transition kernel. Other designs such as αt = cos(πt/2), βt = sin(πt/2), and γt = sin(πt)
can also be employed. Notably, the DDBM-VP and DDBM-VE models presented in (Linqi Zhou
et al., 2023) can be considered as special cases within our framework, contingent upon the specific
choices of αt, βt, and γt, see Table 1 and Appendix C for more details. In this paper, we limit our
scope on Linear transition kernel, i.e., pt|0,T (xt|x0,xT ) = N (xt; (1− t)x0+tx0, 4γ

2
maxt(1− t)I) ,

A detailed discussion on the rationale behind the choices of αt, βt, and and an ablation study on the
shape of γt is provided in D.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Specify design choices for different model families. In the implementation, σt = t for
EDM, σt = t, at = 1 for DDBM-VE, σt =

√
e

1
2βdt2+βmint − 1 and at = 1/

√
e

1
2βdt2+βmint for

DDBM-VP, where βd and βmin are parameters. We include details and proofs in Appendix C.

I2SB DDBM EDM Ours

SC-transition kernel
Sec. 3.1

αt 1− σ2
t /σ

2
T at(1−a2

Tσ
2
t /(σ

2
t a

2
t )) 1 1− t

βt σ2
t /σ

2
T aTσ

2
t /(σ

2
t at) 0 t

γ2
t σ2

t (1− σ2
t /σ

2
T ) σ2

t (1−a2
Tσ

2
t /(σ

2
t a

2
t )) σ2

t
γ2
max
4

t(1− t)

SC-sampling SDEs
Sec. 3.2 ϵt

γ2
t−∆tβ

2
t −β2

t−∆tγ
2
t

2β2
t ∆t

η(γtγ̇t − α̇t
αt

γ2
t ) β̄tσ

2
t η(γtγ̇t − α̇t

αt
γ2
t )

η = 0 or η = 1 - η ∈ [0, 1]

SC-base distribution
Sec. 3.3 πT πcond πcond πcond πcond ∗ N (0, b2I)

Score reparameterization
Sec. 4.1 sθ

αt(xt−ϵ̂σt)+βtxT−xt

γ2
t

αtx̂0+βtxT−xt

γ2
t

αtx̂0+βtxT−xt

γ2
t

αtx̂0+βtxT−xt

γ2
t

Discretization
Sec. 4.2 -

Euler Euler Heun Euler

Eq. (17) Eq. (14) - Eqs. (14) and (16)

3.2 STOCHASTICITY CONTROL IN SAMPLING SDES

Stochasticity control (SC) during the sampling phase has been explored for diffusion models by
Karras et al. (2022), yet comprehensive studies on its application to diffusion bridge models remain
limited. Eqs. (19) and (20) offer sampling schemes that align with Eqs. (6) and (7) in the DDBM
framework. However, these methods do not guarantee optimal performance in terms of sampling
speed and image quality. To address this issue, Linqi Zhou et al. (2023) introduced a hybrid sampler
alternating between reversed ODE and SDE, and Zheng et al. (2024) accelerated sampling with an
improved algorithm using discretized timesteps. This section aims to explore how SC can be further
optimized in the sampling for DBMs, thereby addressing the current research gap. Given transition
kernel, we can identify the reverse sampling SDEs, as demonstrated in Theorem 1.
Theorem 1. Suppose the transition kernel of a diffusion process is given by pt|0,T (xt | x0,xT ) =

N (xt;αtx0 + βtxT , γ
2
t I), then the evolution of conditional probability q(Xt|xT ) has a class of

time reverse sampling SDEs of the form:

dXt =
[
α̇tx̂0 + β̇txT − (γ̇tγt + ϵt)∇Xt log pt(Xt|xT )

]
dt+

√
2ϵtdWt XT = xT . (9)

Remark 3.1. As ϵt = 0, Eq. (9) recovers the sampling ODE specified in Eq. (7). As ϵt = γtγ̇t −
α̇t

αt
γ2
t , Eq. (9) recovers the sampling SDE specified in Eq. (6). As ϵt = η(γtγ̇t − α̇t

αt
γ2
t ), η ∈ (0, 1),

the stochasticity is between the original sampling ODE in Eq. (7) and SDE. in Eq. (6).

There is no definitive principle for designing ϵt. For DDMs, Karras et al. (2022) suggest that the op-
timal level of stochasticity should be determined empirically. In the case of DBMs, however, certain
design guidelines can be followed to potentially enhance performance. Unlike DDMs, which typi-
cally start sampling from Gaussian noise, DBMs begin with a deterministic condition xT . Therefore,
setting ϵt = 0 results in no stochasticity for the sampling process and final sample x0, which may
partly explain the poor performance of ODE samplers in this context. However, it is advantageous
to set ϵt = 0 during the final steps of sampling. The rationale behind this approach is discussed in
detail in Section 4.2.

3.3 STOCHASTICITY CONTROL IN BASE DISTRIBUTION

Conditional diversity refers to the range of outputs that can be generated from specific conditions.
This is valuable in scenarios like image generation from edges, where one edge image may lead to
multiple valid images differing in color, texture, or detail. Conversely, in super-resolution, where
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Figure 2: The effect of stochasticity control on density and state spaces. Adding no stochasticity
(γt = 0, ϵt = 0, b = 0) leads to the optimal transport (OT) path. (a). In the density space, OT
path directly links πcond and πdata, while diffusion path transports from N (0, b2I) to πdata. When
γt > 0 (dash lines), it increases stochasticity in the middle of the transition, whereas b > 0 (green
lines), it directly adds stochasticity to the base distribution, leading to trade off between DDMs and
DBMs when b = 0. (b). In the state space, we use blue dots and red dots to represent input and
output data respectively. The OT path directly links two samples, it shows a detoured path when
γt > 0, introduces a zigzag pattern while ϵt > 0, and smooths the base distribution as b > 0.

a high-resolution image is created from a low-resolution one, output variability is limited by the
input’s structure, demanding consistency and fidelity to the original rather than diversity.

To control the conditional diversity of diffusion bridge models, we can trade off between DBMs
and DDMs by controlling the stochasticity in the base distribution. Bridge models transport the
base distribution πT to target distribution π0. Typically, most previous bridge models, such as those
discussed in (Linqi Zhou et al., 2023; Albergo et al., 2023), treat πT as the input data distribution,
πcond. However, it is flexible to design πT ; for instance, by choosing πT as a Gaussian distribution,
we recover DDMs. An intermediate approach involves the convolution of πcond with a Gaussian
distribution, πT = πcond ∗ N (0, b2I), where b is a constant that controls the strength of booting
noise we added to the input data distribution. We provide an illustration of the effect of SC in
transition kernel, sampling SDEs and distribution in Fig. 2.

We developed the Average Feature Distance (AFD) metric to quantify the conditional diversity
among generated images. Initially, we select a group of source images {x(i)

T }Mi=1. For each x
(i)
T ,

we then generate L distinct target samples. The j-th generated sample corresponding to the i-th
source image is denoted by yij . Then the AFD is calculated as follows:

AFD =
1

M

M∑
i=1

1

L2 − L

L∑
k,l=1,k ̸=l

∥F (yik)− F (yil)∥ (10)

where F (·) is a function that extracts the features of images, and ∥ · ∥ represents Euclidean norm.
Intuitively, a larger AFD indicates the better conditional diversity. Here, F (x) can be x to evaluate
the diversity directly in the pixel space. Alternatively, F (·) can be defined using the Inception-V3
model to assess the diversity in the latent space. In our experiments, we use AFD in latent space.

4 SCORE REPARAMETERIZATION AND ALGORITHM DESIGN

4.1 SCORE REPARAMETERIZATION

The log gradient of Gaussian transition kernel pt|0,T (xt|x0,xT ) = N (xt;αtx0+βtxT , γ
2
t I) has an

analytical form: ∇xt
log pt|0,T (Xt | x0,xT ) = (αtx0 + βtxT − xt)/γ

2
t . Therefore, the denoising

bridge score matching objective in Eq. (8) is tractable. However, the singular term 1/γ2
t at end-

points t = 0 and t = T can lead to highly unstable training, see Appendix D for more details.
Consequently, instead of directly parameterizing the score function ∇xT

log pt(xt|xT ) with a neu-
ral network, we opt to reparameterize the score as a function of x̂0(xt,xT , t), as demonstrated in
Theorem 2. This reparameterization strategy, initially introduced in EDM (Karras et al., 2022), is
particularly significant for enhancing the stability and performance of our bridge models.
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Theorem 2. Let (x0,xT ) ∼ π0(x0,xT ), xt ∼ pt|0,T (xt|x0,xT ), t ∼ U(0, T ). Given the transition
kernel: pt|0,T (xt | x0,xT ) = N

(
xt;αtx0 + βtxT , γ

2
t I
)
, if x̂0(xt,xT , t) is a denoiser function that

minimizes the expected L2 denoising error for samples drawn from π0(x0,xT ):

x̂0(xt,xT , t) = arg min
D(xt,xT ,t)

Ex0,xT ,xt

[
λ(t)∥D(xt,xT , t)− x0∥22

]
, (11)

then the score has the following relationship with x̂0(xt,xT , t):

∇xt log pt(x|xT ) =
αtx̂0(x,xT , t) + βtxT − xt

γ2
t

. (12)

The key observation is that x̂0(xt,xT , t) can be estimated by a neural network Dθ(xt,xT , t) trained
according to Eq. (11). In the implementation, we include additional pre- and post-processing steps:
scaling functions and loss weighting, see Appendix E for details.

4.2 ALGORITHM DESIGN

Let ẑt =: (xt−αtx̂0− βtxT )/γt, then the score∇xt
log pt(x|xT ) and ẑt has a linear relationship:

ẑt = −γt∇xt
log pt(x|xT ). An alternative formulation of the sampling SDEs (9) is presented as:

dXt =

[
α̇tx̂0 + β̇txT + (γ̇t +

ϵt
γt
)ẑt

]
dt+

√
2ϵtdWt. (13)

Instead of using the score directly, we apply Eq. (13) to reduce truncation error. Additionally, ẑ can
be seen as the estimated noise added to the interpolation (Albergo et al., 2023), the introduction of
ẑ brings more interpretability. One discretization scheme of sampling SDEs Eq. (13) is based on
Euler’s method:

xt−∆t ≈ xt −
[
α̇tx̂0 + β̇txT + (γ̇t +

ϵt
γt
)ẑ

]
∆t+

√
2ϵt∆tz̄t, z̄t ∼ N (0, I). (14)

Furthermore, for small enough ∆t the derivative term can be approximated by: α̇t ≈ (αt −
αt−∆t)/∆t, β̇t ≈ (βt − βt−∆t)/∆t, γ̇t ≈ (γt − γt−∆t)/∆t. Using the fact that xt =
αtx̂0 + βtxT + γtẑt, we can further simplify the iteration:

xt−∆t ≈ αt−∆tx̂0 + βt−∆txT + (γt−∆t −
ϵt∆t

γt
)ẑt +

√
2ϵt∆tz̄t. (15)

As γ2
t−∆t − 2ϵt∆t > 0, γt−∆t − ϵt∆t

γt
≈

√
γ2
t−∆t − 2ϵt∆t, which leads to another discretization

and recovers the sampler of DBIM (Zheng et al., 2024):

xt−∆t = αt−∆tx̂0 + βt−∆txT +
√
γ2
t−∆t − 2ϵt∆tẑt +

√
2ϵt∆tz̄t. (16)

Remark 4.1. Eq. (16) provides more insight about the noise and the design of ϵt. Here ẑt and
z̄t serve as predicted noise and added noise respectively. Generally, we assume the error ∥x0 −
x̂0(xt,xT , t)∥ decreses as we move xt from xT to x0. Therefore, a small ϵt was suggested as t
close to 0. Further, due to the singular term ϵt∆t/γt at t = 0, it’s better to set ϵt small enough to
avoid singularity.

Remark 4.2. Eq. (16) requires a constraint γ2
t−∆t − 2ϵt∆t > 0. Note that this limitation is

unnecessary and will limit the design of ϵt.
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As 2ϵt∆t = γ2
t−∆t−β2

t−∆tγ
2
t /β

2
t , the coefficient of xt in Eq. 16 is 0, thus Eq. 16 can be simplified

as:

xt−∆t = (αt−∆t − αt
βt−∆t

βt
)x̂0 +

βt−∆t

βt
xt +

√
γ2
t−∆t −

β2
t−∆tγ

2
t

β2
t

z̄t (17)

Remark 4.3. Eq. 17 is refered as Markovian bridge in Zheng et al. (2024), and this setting can be
used to reproduce the sampler in I2SB Liu et al. (2023), see Appendix C for more details.

In our implementation, when we make ϵt = 0 for the last two steps, Eq. (16) gets reduced to:
xt−∆t ≈ αt−∆tx̂0 +βt−∆txT + γt−∆tẑt. For other steps, we apply Eq. (14) and let ϵt = η(γtγ̇t−
α̇t

αt
γ2
t ), where η is a constant. Putting all ingredients together leads to our sampler outlined in

Algorithm 1.

Algorithm 1 Denoising Diffusion Bridge Stochastic Sampler

Require: model Dθ(xt,xT , t), time steps {tj}Nj=0, input data distribution πcond, scheduler
αt, βt, γt, ϵt, b.

1: Sample xT ∼ πcond, n0 ∼ N (0, b2I)
2: xN = xT + n0

3: for i = N, . . . , 1 do
4: x̂0 ← Dθ(xi,xT , ti)
5: ẑi ← (xi − αti x̂0 − βtixN )/γti
6: if N ≥ 2 then
7: Sample z̄i ∼ N (0, I)

8: di ← α̇ti x̂0 + β̇tixN + (γ̇ti + ϵti/γti)ẑi
9: xi−1 ← xi + di(ti − ti−1) +

√
2ϵti(ti − ti−1)z̄i

10: else
11: xi−1 ← αti−1

x̂0 + βti−1
x̂N + γti−1

ẑi
12: end if
13: end for

5 EXPERIMENTS

In this section, we demonstrate that SDBs achieve much better performance for I2I transition tasks,
in terms of sample efficiency, image quality and conditional diversity. We evaluate on I2I translation
tasks on Edges→Handbags (Isola et al., 2017) scaled to 64×64 pixels and DIODE-Outdoor scaled to
256× 256 (Vasiljevic et al., 2019). For evaluation metrics, we use Fréchet Inception Distance (FID)
(Heusel et al., 2017) for all experiments, and additionally measure Inception Scores (IS) (Barratt
& Sharma, 2018), Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018), Mean
Square Error (MSE), following previous works (Zheng et al., 2024; Linqi Zhou et al., 2023). In
addition, we use AFD, Eq. 10, to measure conditional diversity, as further validated in Appendix A.
Further details of the experiments and design guidelines are provided in Appendix E and D.

Stochasticity control in sampling SDEs. We evaluate different sampling algorithms in Fig. 3 (a),
the results demonstrate that setting ϵt = 0 and using Eq. (17) for the last 2 steps can significantly
improve sampled image quality compared with simple Euler discretization and DDBM sampler.
Furtheremore, By specifically designing stochasticity control during sampling, our sampler sur-
passes the sampling results by DDBM and DBIM with the same pretrained model. The results are
demonstrated in Table 2. We set the number of function evaluations (NFEs) from the set [5, 10, 20]
and select η from the set [0, 0.3, 0.5, 0.8, 1.0]. We observed that our sampler achieves much lower
FID compared to both DDBM sampler and DBIM sampler across all datasets and NFEs. Besides,
the best performance achieved around η = 0.3, which is align with the total stochasticity added
to the sampling process by original DDBM sampler (Linqi Zhou et al., 2023). The above results
demonstrate the significance of designing the stochasicity added to the sampling process.

Stochasticity control in transition kernel. Despite the extensive design space available for the
transition kernel, this paper focuses on Linear transition path with different strength of maximum
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Figure 3: Ablation studies on discretization, γmax and ϵt. (a). We evaluate different discretization
schemes on Edges2handbags (64 × 64) dataset using DDBM-VP pretrained model, A represents
simple Euler discretization in Eq. (14), B reprents setting ϵt = 0 for the last 2 steps, C represents
using Eq. (17) for ϵt = 0. (b). Ablation study on γmax evaluated by DIODE (64 × 64) dataset.
(c). Ablation study on ϵt through our SDB model with Linear path on Edges2handbags (64 × 64)
dataset, where ϵt = η(γtγ̇t − α̇t

αt
γ2
t ).

Table 2: Ablation Study of ϵt for DDBM-VP path via DDBM pretrained VP model (Evaluated by
FID), where ϵt = η(γtγ̇t − α̇t

αt
γ2
t ).

Sampler η
NFE

5 10 20 5 10 20
Edges→Handbags (64× 64) DIODE-Outdoor (256× 256)

DDBM (Linqi Zhou et al., 2023) - 317.22 137.15 46.74 328.33 151.93 41.03
DBIM (Zheng et al., 2024) - 3.60 2.46 1.74 14.25 7.98 4.99

SDB (Ours)

0 10.89 11.45 11.69 77.31 84.68 87.34
0.3 2.36 2.25 1.53 10.87 6.83 4.12
0.5 10.21 7.17 4.18 18.94 12.91 8.07
0.8 16.33 14.29 9.33 25.90 18.25 11.74
1.0 18.78 17.61 13.59 30.62 21.64 14.08

stochasticity, i.e., pt|0,T (xt|x0,xT ) = N (xt; (1 − t)x0+txT ,
1
4γ

2
maxt(1 − t)I). We conducted

detailed ablation studies on γmax and η for the Linear path on DIODE (64 × 64) dataset, as shown
in Fig. 3 (b) and (c). The optimal values for γmax were found to be 0.125 and 0.25, while the
best performance for η was achieved with η = 0.8 and η = 1.0. Performance deteriorates when
either parameter is too small or too large. Based on the results of these ablation studies, we further
trained SDB models on the Edges2handbags (64× 64) and DIODE (256× 256) datasets by taking
γmax ∈ {0.125, 0.5} and setting η = 1.0. The results are presented in Table 3. Our models establish
a new benchmark for image quality, as evaluated by FID, IS and LPIPS. Despite our models having
slightly higher MSEs compared to the baseline DDBM and DBIM, we believe that a larger MSE
indicates that the generated images are distinct from their references, suggesting a richer diversity.
We also provide the visualization of sampling process in Fig. 4.

Stochasticity control in base distribution. Through controlling stochasticity in the base distribu-
tion, we achieved a more diverse set of sample images, while this diversity comes at the cost of
slightly higher FID scores and slower sampling speed. We show generated images in Fig. 5. More
visualization can be found in Appendix F, which shows that by introducing booting noise to the in-
put data distribution, the model can generate samples with more diverse colors and textures. Further
quantitative results are presented in Table 4, confirming that our model surpasses the vanilla DDBM
in terms of image quality, sample efficiency, and conditional diversity.

6 RELATED WORK

Diffusion Bridge Models. Diffusion bridges are faster diffusion processes that could learn the map-
ping between two random target distributions (Yifeng Shi et al., 2023; Stefano Peluchetti, 2023),
demonstrating significant potential in various areas, such as protein docking (Somnath et al., 2023),
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Table 3: Quantitative results in the I2I translation task edges2handbags (64×64) and DIODE (256×
256) datasets. Our results were achieved by Linear transition kernel and setting η = 1.

Edges→handbags (64× 64) DIODE-Outdoor (256× 256)
Model NFE FID ↓ IS ↑ LPIPS ↓ MSE FID ↓ IS ↑ LPIPS ↓ MSE

Pix2Pix (Isola et al., 2017) 1 74.8 3.24 0.356 0.209 82.4 4.22 0.556 0.133
DDIB (Su et al., 2022) ≥ 40† 186.84 2.04 0.869 1.05 242.3 4.22 0.798 0.794

SDEdit (Meng et al., 2021) ≥ 40 26.5 3.58 0.271 0.510 31.14 5.70 0.714 0.534
Rectified Flow (Liu et al., 2022b) ≥ 40 25.3 2.80 0.241 0.088 77.18 5.87 0.534 0.157

I2SB (Liu et al., 2023) ≥ 40 7.43 3.40 0.244 0.191 9.34 5.77 0.373 0.145
DDBM (Linqi Zhou et al., 2023) 118 1.83 3.73 0.142 0.040 4.43 6.21 0.244 0.084

DBIM (Zheng et al., 2024) 20 1.74 3.64 0.095 0.005 4.99 6.10 0.201 0.017

SDB (γmax = 0.125)
5 0.89 4.10 0.049 0.024 12.97 5.49 0.269 0.074

10 0.67 4.11 0.045 0.024 10.12 5.56 0.255 0.076
20 0.56 4.11 0.044 0.024 8.62 5.62 0.248 0.078

SDB (γmax = 0.25)
5 1.46 4.21 0.040 0.016 4.16 5.83 0.104 0.029

10 1.38 4.22 0.038 0.017 3.44 5.86 0.098 0.029
20 1.40 4.20 0.038 0.017 3.27 5.85 0.094 0.029

Figure 4: Visualization of the sampling process. The trajectories of x̂0 suggest that in the initial
stage of the diffusion model, more general features such as shape and color are constructed. As the
process evolves, it progressively generates finer details and high-frequency elements like texture.

mean-field game (Liu et al., 2022a), I2I translation (Liu et al., 2023; Linqi Zhou et al., 2023). Ac-
cording to different design philosophies, DBMs can be divided into two groups: bridge matching
and stochastic interpolants. The idea of bridge matching was first proposed by Peluchetti (2023),
and can be viewed as a generalization of score matching (Song et al., 2020). Based on this, dif-
fusion Schrödinger bridge matching (DSBM) has been developed for solving Schrödinger bridge
problems Stefano Peluchetti (2023); Yifeng Shi et al. (2023). In addition, Liu et al. (2023) utilize
bridge matching to perform image restoration tasks and noted benefits of stochasticity empirically,
the experiments shows the new model is more efficient and interpretable than score-based generative
models (Liu et al., 2023). Furthermore, our benchmark DDBM (Linqi Zhou et al., 2023) achieve
significant improvement for various I2I translation tasks, DBIM (Zheng et al., 2024) improved the
sampling algorithm for DDBM, significantly reducing sampling time while maintaining the same
image quality. Flow Matching and Rectified Flow learn ODE models to facilitate transport between
two empirically observed distributions (Lipman et al., 2022; Liu et al., 2022b). Stochastic inter-
polants further couple the base and target densities through SDEs (Albergo et al., 2023). Although
our approach aligns with these methods, it diverges in various aspects. Unlike stochastic interpo-
lation which models the data distribution p0, our framework specifically targets sampling from the
conditional distribution p0|T , significantly simplifying both training and inference.

Image-to-Image Translations. Diffusion models have shown extraordinary performance in image
synthesis. However, enhancing their capability in I2I translation presents several challenges, primar-
ily the reduction of artifacts in translated images. To address this, DiffI2I mitigates misalignment and
reduces artifacts in I2I translation tasks with fewer diffusion steps (Bin Xia et al., 2023). In the latent
space, I2I translation is also achieved more quickly by S2ST (Or Greenberg et al., 2023), which con-
sumes less memory. Various methods leverage different forms of guidance (Narek Tumanyan et al.,
2023; Hyunsoo Lee et al., 2023), such as frequency control (Xiang Gao et al., 2024), to tackle these
challenges. Another significant challenge is that I2I translation methods typically require joint train-
ing on both source and target domains, posing privacy concerns. Injecting-diffusion addresses this
issue in unpaired I2I translation by extracting domain-independent content from the source image
and fusing it into the target domain (Luying Li & Lizhuang Ma, 2023). To improve interpretability
in unpaired translation, SDDM separates intermediate tangled generative distributions by decom-
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Table 4: Quantitative results for sample efficiency, image quality, and conditional diversity. By
adding stochasticity to the base distribution (b > 0), we achieved much better conditional diversity,
evaluated by AFD. While the introduction of b > 0 results in a slight increase in FID and NFE, we
believe this trade-off is advantageous in certain scenarios.

(a). DDBM-VP model + different samplers.

Sampler NFEs ↓ FID ↓ AFD ↑
DDBM 118 1.83 6.99
DBIM 5 3.60 5.63
DBIM 10 2.46 5.20
DBIM 20 1.74 5.84
SDB 5 2.36 5.11
SDB 10 2.25 5.70
SDB 20 1.53 6.04

(b). Our SDB models and samplers with dif-
ferent choices of b.

b NFEs ↓ FID ↓ AFD ↑
0 5 0.89 6.00
0 10 0.67 6.05
0 20 0.56 6.25

0.5 5 3.31 8.53
0.5 10 2.07 9.35
0.5 20 1.74 9.65

Figure 5: Visualization of conditional diversity via sampled images. While FID measures diversity
within columns, AFD evaluates diversity across rows. The visualization further proved the effec-
tiveness of AFD. More sampled images can be found in Appendix F.

posing the score function (Shurong Sun et al., 2023). Diffusion bridges are also popular due to their
interpretability and ability to map between arbitrary distributions. DDIB employs an encoder trained
on the source domain and a decoder trained on the target domain to establish Schrödinger Bridges
(SBs) (Xu Su et al., 2022). Beomsu Kim et al. (2023) incorporates discriminators and regularization
to learn an SB between unpaired data.

7 CONCLUSION

In this study, we introduced the Stochasticity-controlled Diffusion Bridge (SDB), a framework
designed to facilitate translation between two arbitrary distributions. By strategically managing
stochasticity in the base distribution, transition kernel, and sampling SDEs, our approach improves
image quality, sampling efficiency, and conditional diversity, allowing for the tailored design of dif-
fusion bridge models across a range of tasks. This work is the first to derive sampling SDEs of
q(Xt | xT ) for arbitrary Gaussian transition kernels of the form N (xt;αtx0 + βtxT , γ

2
t I). Addi-

tionally, our approach is the first to highlight the issue of lacking conditional diversity in diffusion
bridge models and to resolve it by introducing stochasticity into the base distribution. We high-
lighted the importance of stochasticity control (SC) and addressed challenges associated with sin-
gularity through score reparameterization and specially designed discretization. Our results demon-
strate that a simple linear bridge configuration can set new benchmarks in image quality, sampling
efficiency and conditional diversity, as evidenced by our experiments with 64× 64 edges2handbags
and 256× 256 DIODE-outdoor I2I translation tasks. Despite these advancements, we acknowledge
that the optimal stochasticity may vary from one scenario to another, indicating a rich avenue for
further exploration and refinement in future work.
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Table 5: Evaluation for generative models: ImageNet-1-mode, ImageNet-2-modes, ImageNet-5-
modes, and ImageNet-10-modes.

Model ImageNet-1-mode ImageNet-2-modes ImageNet-5-modes ImageNet-10-modes
FID 58.30 57.34 57.78 57.26
AFD 0 8.14 12.84 14.47

A AFD VALIDATION

In this section, we thoroughly validate the effectiveness of our proposed metric, AFD, for measuring
conditional diversity and demonstrate its role as a complementary metric to FID. In unconditional
generation scenarios, the FID is widely used to evaluate the diversity of generated images. While low
FID scores generally indicate high diversity across the entire dataset, they do not necessarily imply
high conditional diversity. For instance, we observed that samples generated by the DDBM model
often lack diversity when conditioned on edge images, despite achieving very low FID scores. To ad-
dress this limitation, we introduce the concept of conditional diversity and propose a corresponding
metric to quantify it.

The first question is why FID failed to measure the conditional diversity. To illustrate the limitations
of FID in capturing conditional diversity, consider an extreme case: if the images generated by a
generative model are identical to a set of baseline images, the FID score can be very low since the
two distributions are indistinguishable. However, this scenario does not reflect diversity within the
conditional outputs.

To further support our point, we designed two classes of pseudo-generative models capable of con-
trolling the diversity of the generated images, which are further validated by FID and AFD. The
experiments are evaluated on Imagenet dataset (Deng et al., 2009).

A.1 PSEUDO-GENERATIVE MODELS BY RANDOM SELECTION

We designed four pseudo-generative models: ImageNet-1-mode, ImageNet-2-modes, ImageNet-5-
modes, and ImageNet-10-modes. The experimental setup is as follows:

• We selected 11,000 samples from the ImageNet validation dataset, randomly choosing 11
images per class.

• From these, we designated 1,000 images as the ”real” set, while the remaining images
served as the source pool for the generative models.

• Each ImageNet-k-modes model simulates a generative process by randomly sampling im-
ages from a pool of k distinct images within a given class.

We present sampled images in Fig. 6, where it is evident that the ImageNet-10-modes model gen-
erates images with the highest conditional diversity. To quantify this, we conducted experiments to
calculate both FID and AFD for the four generative models. The results are summarized in Table
5. While the FID scores are nearly identical across all models, the AFD values increase as the con-
ditional diversity of the generative models improves. This highlights that AFD is a more effective
metric for capturing conditional diversity than FID.

A.2 PSEUDO-GENERATIVE MODELS BY STRONG AUGMENTATION

Strong augmentation has been widely used in computer vision to generate synthetic data while pre-
serving its underlying semantics (Chen et al., 2020; Zbontar et al., 2021; Sohn et al., 2020; Berthelot
et al., 2019). The intensity of augmentation can be adjusted, with higher intensities producing more
diverse images. To further validate our proposed metric, AFD, as a measure of diversity, we con-
struct pseudo-generative models using strong augmentation.

We selected 1,000 images from the ImageNet-1k dataset, one from each category. These images
were subjected to data augmentation, specifically using ColorJitter, with varying magnitudes to en-
hance diversity. For each image, the augmentation was applied 16 times, creating an augmented
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Figure 6: Sampled images from 4 generative models: ImageNet-1-mode, ImageNet-2-modes,
ImageNet-5-modes, ImageNet-10-modes.

Table 6: AFD results across different augmentation magnitudes

Augmentation magnitude 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
AFD 2.16 3.77 5.13 6.16 6.98 7.63 8.22 9.01
FID 0.20 2.95 7.02 11.62 16.33 20.84 25.12 28.89

dataset for each magnitude setting. We then calculated the AFD for these augmented datasets to
evaluate the relationship between dataset diversity (as influenced by augmentation magnitude) and
the AFD value.

Table 6 summarizes the AFD results across various augmentation magnitude settings. The results
show that as diversity increases, AFD values also rise, further confirming that the proposed AFD
metric is a reliable indicator of image diversity.
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B PROOFS

There are infinitely many pinned processes characterized by the Gaussian transition kernel
pt|0,T (xt | x0,xT ) = N (xt;αtx0 + βtxT , γ

2
t I). Specifically, we formalize the pinned process

as a linear Itô SDE, as presented in Lemma 3.
Lemma 3. There exist a linear Itô SDE

dXt = [ftXt + stxT ]dt+ gtdWt, X0 = x0, (18)

where ft = α̇t

αt
, st = β̇t − α̇t

αt
βt, gt =

√
2(γtγ̇t − α̇t

αt
γ2
t ), that has a Gaussian marginal

distribution N
(
xt;αtx0 + βtxT , γ

2
t I
)
.

Given the pinned process (18), we can sample from the conditional distribution p0|T (x0|xT ) by
solving the reverse SDE or ODE from t = T to t = 0:

dXt =
[
ftXt + stxT − g2t∇Xt log pt(Xt|xT )

]
dt+ gtdWt, XT = xT , (19)

dXt =

[
ftXt + stxT −

1

2
g2t∇Xt

log pt(Xt|xT )

]
dt XT = xT , (20)

where the score ∇Xt log pt(Xt|xT ) can be estimated by score matching objective (8). To improve
training stability, we introduced score reparameterization in Sec. 4.1.
Lemma 1. There exist a linear Itô SDE

dXt = [ftXt + stxT ]dt+ gtdWt, X0 = x0, (21)

where ft = α̇t

αt
, st = β̇t − α̇t

αt
βt, gt =

√
2(γtγ̇t − α̇t

αt
γ2
t ), that has a Gaussian marginal

distribution N
(
xt;αtx0 + βtxT , γ

2
t I
)
.

Proof. Let mt denote the mean function of the given Itô SDE, then we have dmt

dt = ftmt + stxT .
Given the transition kernel, the mean function mt = αtx0 + βtxT , therefore,

α̇tx0 + β̇txT = ft(αtx0 + βtxT ) + stxT . (22)

Matching the above equation:

ft =
α̇t

αt
, st = β̇t − βt

α̇t

αt
. (23)

Further, For the variance γ2
t of the process, the dynamics are given by:

dγ2
t

dt
= 2ftγ

2
t + g2t . (24)

Solving for g2t , we substitute ft =
α̇t

αt
:

g2t =
dγ2

t

dt
− 2

α̇t

αt
γ2
t (25)

Therefore,

gt =

√
2(γtγ̇t −

α̇t

αt
γ2
t ). (26)
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For dynamics described by ODE dXt = utdt, we can identify the entire class of SDEs that maintain
the same marginal distributions, as detailed in Lemma 2. This enables us to control the stochasticity
during sampling by appropriately designing ϵt.
Lemma 2. Consider a continuous dynamics given by ODE of the form: dXt = utdt, with the den-
sity evolution pt(Xt). Then there exists forward SDEs and backward SDEs that match the marginal
distribution pt. The forward SDEs are given by: dXt = (ut + ϵt∇ log pt)dt +

√
2ϵtdWt, ϵt > 0.

The backward SDEs are given by: dXt = (ut − ϵt∇ log pt)dt+
√
2ϵtdWt, ϵt > 0.

Proof. For the forward SDEs, the Fokker-Planck equations are given by:

∂pt(Xt)

∂t
= −∇ · [(ut + ϵt∇ log pt) pt(Xt)] + ϵt∇2pt(Xt) (27)

= −∇ · [utpt(Xt)]−∇ · [ϵt(∇ log pt)pt(Xt)] + ϵt∇2pt(Xt) (28)

= −∇ · [utpt(Xt)]− ϵt∇ · [∇pt(Xt)] + ϵt∇2pt(Xt) (29)
= −∇ · [utpt(Xt)] . (30)

This is exactly the Fokker-Planck equation for the original deterministic ODE dXt = ut dt. There-
fore, the forward SDE maintains the same marginal distribution pt(Xt) as the original ODE.

Now consider the backward SDEs, the Fokker-Planck equations become:

∂pt(Xt)

∂t
= −∇ · [(ut − ϵt∇ log pt) pt(Xt)]− ϵt∇2pt(Xt) (31)

= −∇ · [utpt(Xt)] +∇ · [ϵt(∇ log pt)pt(Xt)]− ϵt∇2pt(Xt) (32)
= −∇ · [utpt(Xt)] . (33)

This is again the Fokker-Planck equation corresponding to the original deterministic ODE dXt =
ut dt. Therefore, the backward SDE also maintains the same marginal distribution pt(Xt).

Theorem 3. Suppose the transition kernel of a diffusion process is given by pt|0,T (xt | x0,xT ) =

N (xt;αtx0 + βtxT , γ
2
t I), then the evolution of conditional probability q(Xt|xT ) has a class of

time reverse sampling SDEs of the form:

dXt =
[
α̇tx̂0 + β̇txT − (γ̇tγt + ϵt)∇Xt

log pt(Xt|xT )
]
dt+

√
2ϵtdWt XT = xT . (34)

Proof. Recall Eqs. (19) 20 and Lemma 2,

dXt =

[
α̇t

αt
xt + (β̇t −

α̇t

αt
βt)xT − (γtγ̇t −

α̇t

αt
γ2
t + ϵt)∇xt

log pt(xt|xT )

]
dt+

√
2ϵtdwt. (35)

Next we take the reparameterized score 12 into 35:

dXt =

[
α̇t

αt
Xt + (β̇t −

α̇t

αt
βt)xT − (γtγ̇t −

α̇t

αt
γ2
t + ϵt)

αtx̂0 + βtxT −Xt

γ2
t

]
dt+

√
2ϵtdwt

(36)

=

[
α̇tx̂0 + β̇txT − (γtγ̇t + ϵt)

αtx̂0 + βtxT −Xt

γ2
t

]
dt+

√
2ϵtdwt (37)

=

[
α̇tx̂0 + β̇txT − (γ̇t +

ϵt
γt
)
αtx̂0 + βtxT −Xt

γt

]
dt+

√
2ϵtdwt (38)

=

[
α̇tx̂0 + β̇txT − (γ̇t +

ϵt
γt
)ẑ

]
dt+

√
2ϵtdwt. (39)
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Theorem 4. Let (x0,xT ) ∼ π0(x0,xT ), xt ∼ pt(x|x0,xT ), Given the transition kernel: p(xt |
x0,xT ) = N

(
xt;αtx0 + βtxT , γ

2
t I
)
, if x̂0(xt,xT , t) is a denoiser function that minimizes the

expected L2 denoising error for samples drawn from π0(x0,xT ):

x̂0(xt,xT , t) = arg min
D(xt,xT ,t)

Ex0,xT ,xt

[
λ(t)∥D(xt,xT , t)− x0∥22

]
, (40)

then the score has the following relationship with x̂0(xt,xT , t):

∇xt
log pt(xt|xT ) =

αtx̂0(xt,xT , t) + βtxT − xt

γ2
t

. (41)

Proof.

L(D) = E(x0,xT )∼π0(x0,xT )Ext∼pt(xt|x0,xT )∥D(xt)− x0∥22 (42)

=

∫
Rd

∫
Rd

∫
Rd

pt(xt|x0,xT )π0(x0,xT )∥D(xt)− x0∥22 dx0︸ ︷︷ ︸
=:L(D;xt,xT )

dxTdxt, (43)

L(D;xt,xT ) =

∫
Rd

pt(xt|x0,xT )π0(x0,xT )∥D(xt)− x0∥22 dx0, (44)

we can minimize L(D) by minimizing L(D;xt,xT )independently for each {xt,xT } pair.

D∗(xt,xT ) = arg min
D(xt)

L(D;xt,xT ) (45)

0 = ∇D(xt,xT )[L(D;xt,xT )] (46)

=

∫
Rd

pt(xt|x0,xT )π0(x0,xT )2[D(x,xT )− x0] dx0 (47)

= 2[D(xt,xT )

∫
Rd

pt(xt|x0,xT )π0(x0,xT ) dx0 −
∫
Rd

pt(xt|x0,xT )π0(x0,xT )x0 dx0] (48)

= 2[D(x)pt(xt,xT )−
∫
Rd

pt(xt|x0,xT )π0(x0,xT )x0 dx0], (49)

D∗(xt,xT ) =

∫
Rd

pt(xt|x0,xT )π0(x0,xT )x0

pt(xt,xT )
dx0, (50)

∇xt
log pt(xt|xT ) =

∇xtpt(xt,xT )

pt(xt,xT )
(51)

=

∫
∇xtpt(xt|xT ,x0)π0(x0,xT )dx0

pt(xt,xT )
(52)

= −
∫

xt − αtx0 − βtxT

γ2

pt(xt|x0,xT )π0(x0,xT )

pt(xt,xT )
dx0 (53)

=
αtD

∗(xt,xT ) + βtxT − xt

γ2
. (54)

Thus we conclude the proof.
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C REFRAMING PREVIOUS METHODS IN OUR FRAMEWORK

We draw a link between our framework and the diffusion bridge models used in DDBM.

C.1 DDBM-VE

DDBM-VE can be reformulated in our framework as we set :

αt = st(1−
σ2
t

σ2
T

), βt =
stσ

2
t

s1σ2
T

, γt = σtst

√
(1− σ2

t

σ2
T

) (55)

Proof. In the origin DDBM paper, the evolution of conditional probability q(xt|xT ) has a time
reversed SDE of the form:

dXt =
[
f̄t(Xt)− ḡ2t h̄t(Xt)− ḡ2t st(Xt)

]
dt+ ḡtdŴt, (56)

and an associated probability flow ODE

dXt =

[
f̄t(Xt)− ḡ2t h̄t(Xt)−

1

2
ḡ2t st(Xt)

]
dt. (57)

Compare Eqs. (56) and 57 with Lemma 3. We only need to prove:

f̄t(Xt)− ḡ2t h̄t(Xt) = ftXt + stxT , ḡt = gt. (58)

In the original paper,

f̄t(Xt) = 0, ḡ2t =
d

dt
σ2
t , h̄t(Xt) =

xT − xt

σ2
T − σ2

t

. (59)

Therefore,

f̄t(Xt)− ḡ2t h̄t(Xt) =
2σtσ̇t(xT − xt)

σ2
T − σ2

t

, ḡ2t = 2σ̇tσt. (60)

In our framework, ft, st, g2t can be calculated:

ft =
α̇t

αt
=

d

dt
logαt =

d

dt
log

σ2
T − σ2

t

σ2
T

=
−2σtσ̇t

σ2
T − σ2

t

, (61)

st = β̇t −
α̇t

αt
βt =

2σtσ̇t

σ2
T

+
2σtσ̇t

σ2
T − σ2

t

· σ
2
t

σ2
T

=
2σtσ̇t

σ2
T − σ2

t

. (62)

g2t = 2(γtγ̇t −
α̇t

αt
γ2
t ) = 2γ2

t

(
γ̇t
γt
− α̇t

αt

)
= γ2

t

(
(σ2

T − 2σ2
t )σ̇t

(σ2
T − σ2

t )σt
+

2σ̇tσt

σ2
T − σ2

t

)
= 2σtσ̇t. (63)

Therefore,

ftXt + stxT =
2σtσ̇t(xT − xt)

σ2
T − σ2

t

= f̄t(Xt)− ḡ2t h̄t(Xt), ḡt = gt, (64)

which matches the formulation in DDBM.
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C.2 DDBM-VP

DDBM-VP can be reformulated in our framework as we set :

αt = at(1−
σ2
t a

2
1

σ2
1a

2
t

), βt =
σ2
t a1

σ2
1at

, γt =

√
σ2
t (1−

σ2
t a

2
1

σ2
1a

2
t

). (65)

Proof. In the original DDBM-VP setting,

f̄t(Xt) =
d log at

dt
xt, (66)

ḡ2t = 2σtσ̇t − 2
ȧt
at

σ2
t =

2σtσ̇tat − 2σ2
t ȧt

at
, (67)

h̄t(Xt) =
(at/a1)xT − xt

σ2
t (SNRt/SNR1 − 1)

=
a1atxT − a21xt

σ2
1a

2
t − σ2

t a
2
1

. (68)

Therefore,

f̄t(Xt)− ḡ2t h̄t(Xt) =

[
ȧt
at
− 2σta

2
1(σ̇tat − σtȧt)

at(σ2
1a

2
t − σ2

t a
2
1)

]
xt +

2σta1(σ̇tat − σtȧt)

σ2
1a

2
t − σ2

t a
2
1

xT . (69)

In our framework, ft, st, g2t can be calculated:

ft =
α̇t

αt
=

d

dt
logαt (70)

=
d

dt
log

σ2
1a

2
t − σ2

t a
2
1

σ2
1at

(71)

=
2σ2

1atȧt − 2a21σtσ̇t

σ2
1a

2
t − σ2

t a
2
1

− ȧt
at

(72)

=
ȧt
at
− 2a21σt(atσ̇t − ȧtσt)

at(σ2
1a

2
t − σ2

t a
2
1)

, (73)

st = β̇t −
α̇t

αt
βt = βt(

β̇t

βt
− α̇t

αt
) (74)

=
σ2
t a1

σ2
1at

(
2σ̇t

σt
− 2σ2

1atȧt − 2a21σtσ̇t

σ2
1a

2
t − σ2

t a
2
1

)
(75)

=
2σta1(σ̇tat − σtȧt)

σ2
1a

2
t − σ2

t a
2
1

, (76)

g2t = γtγ̇t −
α̇t

αt
γ2
t = γ2

t

(
γ̇t
γt
− α̇t

αt

)
(77)

= γ2 d

dt
log

γt
αt

(78)

= γ2 d

dt
(
1

2
log

σ2
t σ

2
1

σ2
1a

2
t − σ2

t a
2
1

) (79)

= σ2
t

(
1− σ2

t a
2
1

σ2
1a

2
t

)(
σ̇t

σt
− σ2

1atȧt − a21σtσ̇t

σ2
1a

2
t − σ2

t a
2
1

)
(80)

=
σ̇tσtat − σ2

t ȧt
at

. (81)
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Therefore,

ftXt + stxT == f̄t(Xt)− ḡ2t h̄t(Xt), ḡt = gt, (82)

which matches the formulation in DDBM.

C.3 EDM

ODE formulation. The ODE formulation in EDM can be formlated in our framework as we set
αt = 1, βt = 0, γt = σt.

Proof. Recall 20, the ODE formulation is given by:

dXt =

[
ftXt + stxT −

1

2
g2t∇Xt

log pt(Xt|xT )

]
dt XT = xT (83)

where ft = α̇t

αt
, st = β̇t − α̇t

αt
βt, gt =

√
2(γtγ̇t − α̇t

αt
γ2
t ). As αt = 1, βt = 0, γt = σt, The

sampling ODE is given by:

dXt = −σtσ̇t∇xt
log pt(Xt)dt (84)

Denoising score matching. The score remarameterization in EDM is the same as ours in Eq. 12.
Let αt = 1, βt = 0, γt = σt, then the score reparameterization in Eq. 12 is given by:

∇xt
log pt(Xt) ≈

x̂0 − xt

σ2
t

. (85)

Sampling SDEs with stochasticity added. Recall Theorem 1, as αt = 1, βt = 0, γt = σt, then the
SDE has the form:

dXt = (−σtσ̇t + ϵt)∇xt
log pt(Xt)dt+

√
2ϵtdWt. (86)

Now we recover the stochastic sampling SDE in original EDM paper.

C.4 I2SB

I2SB can be reformulated in our framework as we let:

αt = 1− σ2
t

σ2
1

, βt =
σ2
t

σ2
1

, γt =

√
σ2
t (1−

σ2
t

σ2
1

) (87)

where σ2
t :=

∫ t

0
βτdτ .

Using discretization 17:
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Figure 7: MSEs during training, where MSE = 1
B

∑B
i=1 ∥x̂0 − x0∥2.

Figure 8: Ablation study on the shape of γt.

xt−∆t = (αt−∆t − αt
βt−∆t

βt
)x̂0 +

βt−∆t

βt
xt +

√
γ2
t−∆t −

β2
t−∆tγ

2
t

β2
t

z̄t (88)

= (1− βt−∆t

βt
)x̂0 +

βt−∆t

βt
xt +

√
γ2
t−∆t −

β2
t−∆tγ

2
t

β2
t

z̄t (89)

= (1−
σ2
t−∆t

σ2
t

)x̂0 +
σ2
t−∆t

σ2
t

xt +

√√√√√σ2
t−∆t(1−

σ2
t−∆t

σ2
1

)
σ4
t

σ4
1
− σ4

t−∆t

σ4
1

σ2
t (1−

σ2
t

σ2
1
)

σ4
t

σ4
1

z̄t (90)

= (1−
σ2
t−∆t

σ2
t

)x̂0 +
σ2
t−∆t

σ2
t

xt +

√
σ2
t−∆t(σ

2
t − σ2

t−∆t)

σ2
t

z̄t (91)

In the I2SB paper, define a2n :=
∫ tn+1

tn
βτdτ , σ2

n :=
∫ tn
0

βτdτ . Therefore,

xn =
a2n

a2n + σ2
n

x̂0 +
σ2
n

a2n + σ2
n

xn+1 +

√
σ2
na

2
n

α2
n + σ2

n

z̄t (92)

Thus, we reproduce the sampler of I2SB.

D ADDITIONAL DESIGN GUIDELINE

Score reparameterization. We compared the training stability with and without score reparameter-
ization using the DIODE (64× 64) dataset, and the results are shown in Fig. 7. For training without
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Figure 9: Sampling paths with dfferent choices of γt. As γt extreamly low, e.g, γmax = 0.025, the
model will be failed to construct details of images.

score reparameterization, the score function sθ(x,xT , t) is parameterized by a neural network, and
x̂0(x,xT , t) is computed as: x̂0(x,xT , t) = 1

αt

(
γ2
t sθ(x,xT , t) + xt − βxT

)
. For training with

score reparameterization, x̂0(x,xT , t) is directly parameterized as a neural network. We then com-
pared the mean squared error (MSE) between x̂0 and x0 during training. The results in Fig. 7
indicate that score reparameterization helps reduce training instability.

αt and βt. Theoretically, αt and βt can be freely designed, and future work may explore alternative
design choices. However, in this paper, we focus on the simple case where αt = 1 − t and βt =
t. The rationale is as follows: consider the scenario where αt = 1 − βt, which represents an
interpolation along the line segment between x0 and x1. For the path p

(1)
t (x) = N ((1 − βt)x0 +

βtx1, γ
2
t I), where βt is invertible, it is straightforward to construct another path p

(2)
t (x) = N ((1−

t)x0 + tx1, γ
2
β−1
t

I), which achieves the same objective function but uses a different distribution of t
during training. Based on this equivalence, setting αt = 1− t and βt = t is a reasonable choice.

The shape of γt. We conducted an ablation study on γt with different shapes. Specifically, we
assumed γt has the form γt = 2γmax

√
tk(1− tk), as shown in Fig. 8, γt will have different shape

as we set different k. The results indicate that the best performance is achieved when k = 1, which
is the exact setting used in this paper.

γmax. Our ablation studies on γmax demonstrate that the optimal values of γmax are approximately
0.125 or 0.25. Furthermore, the sampling paths corresponding to different choices of γt are shown
in Fig. 9. Adding an appropriate amount of noise to the transition kernel helps in constructing finer
details.

ϵt. We use the setting ϵt = η
(
γtγ̇t − α̇t

αt
γ2
t

)
. The ablation studies on ϵt demonstrate that the

optimal choice of η for the DDBM-VP model is approximately 0.3, while the best choice for the
SDB model with a Linear Path is around 1.0. Additionally, we present sample paths and generated
images under different η settings to illustrate heuristic parameter tuning techniques. The results
are shown in Figures 11, 12, and 13. Too small a value of η results in the loss of high-frequency
information, while too large a value of η produces over-sharpened and potentially noisy sampled
images.

E EXPERIMENT DETAILS

Architecture. We maintain the architecture and parameter settings consistent with (Linqi Zhou
et al., 2023), utilizing the ADM model (Dhariwal & Nichol, 2021) for 64×64 resolution, modifying
the channel dimensions from 192 to 256 and reducing the number of residual blocks from three
to two. Apart from these changes, all other settings remain identical to those used for 64 × 64
resolution.
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Figure 10: An illustration of design choices of transition kernels and how they affect the I2I trans-
lation process. αt and βt define the interpolation between two images, while γt controls the noise
added to the process. ntuitively, the DDBM-VE model introduces excessive noise in the middle
stages, which is unnecessary for effective image translation and may explain its poor performance.
In contrast, our Linear path results in a symmetrical noise schedule, ensuring a more balanced pro-
cess. On the other hand, the DDBM-VP path adds more noise near xT , , indicating that during
training, more computational resources are focused around x0.

Figure 11: Sampling path with dfferent choices of ϵt. As ϵt = 0, the generated images lack details,
as ϵt too large, the sampled images are over-sharpening. The best choices of ϵt are around ϵt = 0.8
and ϵt = 1.0.
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Training. We include additional pre- and post-processing steps: scaling functions and
loss weighting, the same ingredient as (Karras et al., 2022). Let Dθ(xt,xT , t) =
cskip(t)xt + cout(t)(t)Fθ(cin(t)xt, cnoise(t)), where Fθ is a neural network with pa-
rameter θ, the effective training target with respect to the raw network Fθ is:
Ext,x0,xT ,t

[
λ∥cskip(xt + coutFθ(cinxt, cnoise)− x0∥2

]
. Scaling scheme are chosen by re-

quiring network inputs and training targets to have unit variance (cin, cout), and amplifying errors
in Fθ as little as possible. Following reasoning in (Linqi Zhou et al., 2023),

cin(t) =
1√

α2
tσ

2
0 + β2

t σ
2
T + 2αtβtσ0T + γ2

t

, cskip(t) = (αtσ
2
0 + βtσ0T ) ∗ c2in, (93)

cout(t) =
√
β2
t σ

2
0σ

2
1 − β2

t σ
2
0T + γ2

t σ
2
0cin, λ =

1

c2out
, cnoise(t) =

1

4
log (t), (94)

where σ2
0 , σ

2
T , and σ0T denote the variance of x0, variance of xT and the covariance of the two,

respectively.

We note that TrigFlow (Lu & Song, 2024), a contemporaneous work, adopts the same score reparam-
eterization and pre-conditioning techniques. It can be considered a special case of our framework
by setting αt = cos(t), βt = 0, γt = σ0 sin(t), t ∈ [0, π

2 ]. In this case, σT = 0, σ0T = 0,

cin(t) =
1√

α2
tσ

2
0 + γ2

t

=
1√

sin2(t)σ2
0 + cos2(t)σ2

0

=
1

σ0
, (95)

cskip(t) = (αtσ
2
0)c

2
in = cos(t) · σ2

0 ·
1

σ2
0

= cos(t), (96)

cout(t) =
√

γ2
t σ

2
0 · cin = sin(t)σ0, (97)

Dθ(xt, t) = cskipxt + coutFθ(cinxt, cnoise) = cos(t)xt + sin(t)σ0Fθ(
1

σ0
, cnoise). (98)

Then we recover TrigFlow.

In our implementation, we set σ0 = σT = 0.5, σ0T = σ2
0/2 for all training sessions. Other setting

are shown in Table 7.

Table 7: Training settings

Model
Dataset edges→handbags edges→handbags edges→handbags

η 0 0 0.5
γmax 0.125 0.25 0.125

Setting

GPU 1 A6000 48G 1 H100 96G 1 H100 96G
Batch size 32 128 200

Learning rate 1× 10−5 5× 10−5 1× 10−4

epochs 2078 2106 1443
Training time 42 days 8 days 11 days

Model
Dataset DIODE (256× 256) DOIDE (256× 256)

η 0 0
γmax 0.125 0.25

Setting

GPU 1 H100 96G 1 H100 96G
Batch size 16 16

Learning rate 2× 10−5 2× 10−5

epochs 2617 1745
Training time 17 days 25 days

Sampling. We use the same timesteps distributed according to EDM (Karras et al., 2022): (t1/ρmax +
i
N (t

1/ρ
min − t

1/ρ
max))ρ, where tmin = 0.001 and tmax = 1 − 10−4. The best performance achieved by

setting ρ = 0.6 for Edges2handbags and ρ = 0.8 for DIODE datasets.
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Licenses

• Edges→Handbags Isola et al. (2017): BSD license.
• DIODE-Outdoor Vasiljevic et al. (2019): MIT license.
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Figure 12: Comparison of sampled images with different ϵt for SDB model, where ϵt = η(γtγ̇t −
α̇t

αt
γ2
t ), γmax = 0.25, b = 0.
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Figure 13: Comparison of sampled images with different ϵt for DDBM-VP pretrained model, where
ϵt = η(γtγ̇t − α̇t

αt
γ2
t ).
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Figure 14: SDB model and sampler ( γmax = 0.125, η = 1, b = 0, NFE=5, FID=0.89).
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F ADDITIONAL VISUALIZATIONS

Figure 15: DDBM model and Our sampler (NFE=20, FID=1.53).
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Figure 16: DDBM model and SDB sampler (η = 0.3, NFE=20, FID=4.12). Samples for DIODE
dataset (conditoned on depth images).
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Figure 17: SDB model and sampler (γmax = 0.25, η = 1.0, b = 0, NFE=5, FID = 4.16).
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Figure 18: SDB model and sampler (γmax = 0.25, η = 1.0, b = 0, NFE=20, FID = 3.27).
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Figure 19: DDBM model and DBIM sampler (NFE=10, FID = 2.46, AFD=5.20).
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Figure 20: DDBM model and sampler (NFE=118, FID = 1.83, AFD=6.99).

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Figure 21: SDB model and sampler (γmax = 0.125, b = 1.0, NFE=10, FID = 2.07, AFD=9.35).
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