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Table 5: Evaluation for generative models: ImageNet-1-mode, ImageNet-2-modes, ImageNet-5-
modes, and ImageNet-10-modes.

Model ImageNet-1-mode ImageNet-2-modes ImageNet-5-modes ImageNet-10-modes
FID 58.30 57.34 57.78 57.26
AFD 0 8.14 12.84 14.47

A AFD VALIDATION

In this section, we thoroughly validate the effectiveness of our proposed metric, AFD, for measuring
conditional diversity and demonstrate its role as a complementary metric to FID. In unconditional
generation scenarios, the FID is widely used to evaluate the diversity of generated images. While low
FID scores generally indicate high diversity across the entire dataset, they do not necessarily imply
high conditional diversity. For instance, we observed that samples generated by the DDBM model
often lack diversity when conditioned on edge images, despite achieving very low FID scores. To ad-
dress this limitation, we introduce the concept of conditional diversity and propose a corresponding
metric to quantify it.

The first question is why FID failed to measure the conditional diversity. To illustrate the limitations
of FID in capturing conditional diversity, consider an extreme case: if the images generated by a
generative model are identical to a set of baseline images, the FID score can be very low since the
two distributions are indistinguishable. However, this scenario does not reflect diversity within the
conditional outputs.

To further support our point, we designed two classes of pseudo-generative models capable of con-
trolling the diversity of the generated images, which are further validated by FID and AFD. The

experiments are evaluated on Imagenet dataset (Deng et al., [ 2009).

A.1 PSEUDO-GENERATIVE MODELS BY RANDOM SELECTION

We designed four pseudo-generative models: ImageNet-1-mode, ImageNet-2-modes, ImageNet-5-
modes, and ImageNet-10-modes. The experimental setup is as follows:

* We selected 11,000 samples from the ImageNet validation dataset, randomly choosing 11
images per class.

* From these, we designated 1,000 images as the “real” set, while the remaining images
served as the source pool for the generative models.

» Each ImageNet-k-modes model simulates a generative process by randomly sampling im-
ages from a pool of k distinct images within a given class.

We present sampled images in Fig. [6l where it is evident that the ImageNet-10-modes model gen-
erates images with the highest conditional diversity. To quantify this, we conducted experiments to
calculate both FID and AFD for the four generative models. The results are summarized in Table
El While the FID scores are nearly identical across all models, the AFD values increase as the con-
ditional diversity of the generative models improves. This highlights that AFD is a more effective
metric for capturing conditional diversity than FID.

A.2 PSEUDO-GENERATIVE MODELS BY STRONG AUGMENTATION

Strong augmentation has been widely used in computer vision to generate synthetic data while pre-
serving its underlying semantics (Chen et al.} 2020; [Zbontar et al., 2021} [Sohn et al.| 2020}, Berthelot]
2019). The intensity of augmentation can be adjusted, with higher intensities producing more
diverse images. To further validate our proposed metric, AFD, as a measure of diversity, we con-
struct pseudo-generative models using strong augmentation.

We selected 1,000 images from the ImageNet-1k dataset, one from each category. These images
were subjected to data augmentation, specifically using ColorJitter, with varying magnitudes to en-
hance diversity. For each image, the augmentation was applied 16 times, creating an augmented
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ImageNet-1-mode: FID=58.30, AFD=0
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Figure 6: Sampled images from 4 generative models: ImageNet-1-mode, ImageNet-2-modes,
ImageNet-5-modes, ImageNet-10-modes.

Table 6: AFD results across different augmentation magnitudes

Augmentation magnitude 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8
AFD 216 377 513 6.16 698 7.63 822 9.01
FID 020 295 7.02 11.62 1633 2084 2512 28.89

dataset for each magnitude setting. We then calculated the AFD for these augmented datasets to
evaluate the relationship between dataset diversity (as influenced by augmentation magnitude) and
the AFD value.

Table [0 summarizes the AFD results across various augmentation magnitude settings. The results
show that as diversity increases, AFD values also rise, further confirming that the proposed AFD
metric is a reliable indicator of image diversity.
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B PROOFS

There are infinitely many pinned processes characterized by the Gaussian transition kernel
Pro,r(Xe | Xo,%x7) = N (%45 00%X0 + Bixr,v2). Specifically, we formalize the pinned process
as a linear It6 SDE, as presented in LemmaE}

Lemma 3. There exist a linear Ito6 SDE

dX; = [fiXs + sexpldt + g:dWy,  Xo = Xo, (18)

Ay ay

where f; = S = Bt - z—:ﬂt, gt = /2wy — a—tﬁ), that has a Gaussian marginal

oy’
distribution N' (x¢; ayxo + Bexr,771).

Given the pinned process (18], we can sample from the conditional distribution po7(xo|xT) by
solving the reverse SDE or ODE fromt =T tot = 0:

dXy = [[iX¢ + sexp — g7 Vx, log pr(Xe|x7)] dt + g:dWy, Xp =x7, (19)
1
dX; = {ftxt + siX7 — igfvxt log py(X¢|xr)| dt X7 =x7, (20)

where the score Vx, log p:(X:|x7) can be estimated by score matching objective . To improve
training stability, we introduced score reparameterization in Sec. [4.1]

Lemma 1. There exist a linear It6 SDE

dX¢ = [fi Xt + sexr]dt + g dWy,  Xo = xo, (21)
where f; = %’ si = B — g—:ﬁt, gt = /2(wYe — g—:’yf) that has a Gaussian marginal
distribution N' (Xt; X + Bexr, %21).

Proof. Let m, denote the mean function of the given It6 SDE, then we have dm; fimy + sixr.

dt
Given the transition kernel, the mean function m; = a;x¢ + S:x, therefore,

arXo + Bixr = filouxo + Bixr) + sex7. (22)
Matching the above equation: ) .
& . &
fr=—"s0= B — Bi—. (23)
(67 (673

t

Further, For the variance 72 of the process, the dynamics are given by:

d 2
L = 2fi? + g7 24)
t
Solving for g2, we substitute f; = Z—:
v} Gy
2 i 2
=——-2— 25
t dt (67 ¢ ( )
Therefore,
: &
gt = 1/ 2005 — —A7)- (26)
Qi
O
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For dynamics described by ODE dX; = u.dt, we can identify the entire class of SDEs that maintain
the same marginal distributions, as detailed in Lemmal[2] This enables us to control the stochasticity
during sampling by appropriately designing ;.

Lemma 2. Consider a continuous dynamics given by ODE of the form: dX; = u.dt, with the den-
sity evolution py(Xy). Then there exists forward SDEs and backward SDEs that match the marginal
distribution p;. The forward SDEs are given by: dX; = (u; + €V log p;)dt + V2e,dWy, e > 0.
The backward SDEs are given by: dX; = (u; — €;V log p;)dt + /2¢;,dW, €; > 0.

Proof. For the forward SDEs, the Fokker-Planck equations are given by:

Opy (Xt)

ot =V - [(ug + e Vlog ps) pe(Xe)] + €V pe(Xe) (27)
=-V. [utp ( )] V- [Gt(v logpt)pt(Xt)] + €tV2pt(Xt) (28)
==V [wpe(Xe)] — &V - [Vpe(Xe)] + € V2pe(Xe) (29)
= =V - [up(Xy)] - (30)

This is exactly the Fokker-Planck equation for the original deterministic ODE dX; = u; dt. There-
fore, the forward SDE maintains the same marginal distribution p;(X;) as the original ODE.

Now consider the backward SDEs, the Fokker-Planck equations become:

X
o ta(t ) _ (- @V logp) pi(X)] — € Vp(X,) 31
—V - [wpe(Xe)] + V- [er(Vlog p)pe (Xe)] — € Ve (Xy) (32)
==V [wp(Xy)]. (33)

This is again the Fokker-Planck equation corresponding to the original deterministic ODE dX; =
u; dt. Therefore, the backward SDE also maintains the same marginal distribution p;(X).

O

Theorem 3. Suppose the transition kernel of a diffusion process is given by pyjo 7 (X: | X0, X71) =
N (x¢; X + Bixr,V21), then the evolution of conditional probability q(X;|x7) has a class of
time reverse sampling SDEs of the form:

dX; = [O'étfio + Bixr — (3w + €)Vx, log py(Xe|x7) | dt + V26, dW, X =x7.  (34)

Proof. Recall Egs. . 20]and Lemma 2]

dXt = |:O[Xt + (Bt - *Bt)XT - (’yt’yt - 77}& + et)VXt logpt(xt|XT):| dt + \/Edwt (35)
t

O]
Next we take the reparameterized score [12]into[35}
[ . & . & X + Bexy — X
dX, = | =X, + (Bt — *tﬂt)XT — (veye — *t%? +€) =0 Btg L t] dt + 2¢;dw
L Ot Qg Vi
(36)
[ . ) X + Byxp — X
= |duko + Bixr — (W + €) ——2 %2 L t} dt + v 2e;dw, (37)
L i
M. . . € ayXg + Bexr — X
= |duXo + Bixp — (3¢ + —) =22 bixr t] dt + /2e;dw, (38)
L Yt Vi
[ . €
= |cuko + Bexr — (G + ,Y—t)z dt + /2¢,dw,. (39)
L t
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Theorem 4. Let (xo,x7) ~ mo(X0,X71), Xt ~ pt(X|X0,X7), Given the transition kernel: p(x; |
x0,x7) = N (xt; aXo + BeXT, %21), if Xo(X¢,XT,t) is a denoiser function that minimizes the
expected Ly denoising error for samples drawn from mo(Xo, XT):

Xo(x¢, x7,t) =arg  min = Eyx) x,x, [A(t)HD(Xt,xT,t) — X0||§} , (40)

D(x¢,x7,t)

then the score has the following relationship with Xo(X¢, X1, t):

X (X, X7, t) + BiXr — X4

Vi, log pi(x¢|x7) = 2 (41)
Vi
Proof.
E(D) = ]E(XO»xT)NTrO(XOJKT)ExtNPt(xt|x(J’xT) ||D(Xt) - XO”% (42)
= [ [ oo, xar)moloa.xa) | Do) = ol o cere, @3
Rd Rd Rd
=:L(D;x¢,xT1)

L(D;x¢,xr) :/

dpt(Xt|XoaXT)WO(X(),XT)HD(X:&) — Xol[3 dxo, (44)
R

we can minimize £(D) by minimizing £(D;x;, xr)independently for each {x;,xr} pair.

D*<Xt7XT) = arg[I)r(lin) E(D;Xt,XT) 45)

0= vD(xt,xT)[‘C(D;XtaXT)] (46)

= [ peoxlxo, ) oo, 21D, 1) ] @)
R

= 2[D(XtaXT)/dpt(xt|XOaXT)7TO(X07XT) dxo — /dpt(xt|X07XT)7TO(x07XT)XO dxg] (48)
R R

— 2D o) xr) — [ o o o “9)
R
D*(Xt,XT):/ pt(xt|X07XT)7r0(XO7XT)XO dX07 (50)
R4 pt(xtaxT>

Vi, Dt (X¢, XT)

V. logpt(xt|XT) = (5D
pt(Xt, XT)

_ [ Vs pi (e[, %0) 70 (%0, X7)dX0 52)

Dt (Xt7 XT)
_ / Xy — uXo — BiXr pt(Xt\Xo,XT)WO(XmXT)dXO (53)

72 Pe(Xe, X7)
arD* (x4, X7) + BeXr — X4
= 5 . (54)
Y
Thus we conclude the proof.

O
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C REFRAMING PREVIOUS METHODS IN OUR FRAMEWORK

We draw a link between our framework and the diffusion bridge models used in DDBM.

C.1 DDBM-VE

DDBM-VE can be reformulated in our framework as we set :

2 2 2

(o St0; (o
o =s5(1——5). 8=, m =0y [(1- ) (55)
T 197 T

Proof. In the origin DDBM paper, the evolution of conditional probability ¢(x¢|x7) has a time
reversed SDE of the form:

dX, = [£.(Xs) — §7he(Xs) — g75:(Xy)] dt + Ged W, (56)
and an associated probability flow ODE
- — 1
dX; = |£,(Xs) — g7he(Xy) — igfst(xt) dt. (57

Compare Eqs. (56) and[57]with Lemma[3] We only need to prove:

£,(X,) — E?Et(xt) = f[iX¢ + 5¢XT, Gt = Gt (58)
In the original paper,

- _ d _ XT — X4

£,(Xs) =0,9; = @vaht(xt) T2l (59)

Therefore,

= — 2000¢(X7 — X .
£.(Xe) - g7 he(Xy) = %,gtz = 2040 (60)

o — 0}

In our framework, f;, s¢, g7 can be calculated:

O.[t d d 0'% *O'tz *QO'tO.'t
_ 4y -2 - 1
fi a dt BT g %8 o2, o2 — o}’ D)
. dt QO'tC'Tt 2Utd't O'? 20’t0:t
— _ — — = —, 62
st =Py oy p o2, * 0% —o0} 0% 0%—o} 62)

2 . dt 2 2 ﬁt dt 2 (O'% — 20}2)0} Q(j'tO't .
-9 _ —9 ATl =2 . 63
9; =2(vn at%) Vi ( ) Vi < (02— oP)o; + p oot (63)

Therefore,

2000¢(x7 — X - -~
FiXo+ sixr = % = (X)) - gh(X0), G = g1, (64)
T t

which matches the formulation in DDBM.
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C.2 DDBM-VP

DDBM-VP can be reformulated in our framework as we set :

o2a? o2aq o2a?
— 1— 2t71 — Zt7r - 2(1 — 271y 65
Qi at( O'%ll% )a Bt O'%at y Yt Ut ( O'%a% ) ( )
Proof. In the original DDBM-VP setting,
- dloga
B(X) = =i, (66)
t
. 2 . _ 2 2 .
R (67)
Q¢ Qg
_ (a¢/ar)xr — X4 a1a Xt — a3%y
h,(X;) = = . 68
tXe) = 5 SNR, /SNR, = 1) 0%l —o%ad (68)
Therefore,
f (X ) _ 721& (X ) _ % _ QUtG%(é’tat — O'tdt) % + 2Uta1((j'tat — Utdt)x (69)
AROTRER T o T Taotar —afad) |7 ofai — ot
In our framework, f;, s¢, g7 can be calculated:
y d
=—=—1 70
ft o dt 0g (vt (70)
d o2a? — o2a?
-4 144 t 41 71
it ® olay D
oia; —ofay ag
. 2 2 . .
b 2aqodas g a3)
ar  ai(ofai — ojay)
.G B @
0= B — — B = Be(ZE — =) (74)
Qi B Qg
Ufal 20 QU%atdt — 2a§at{7t
=32 = 2 2 2 2 (75)
o1a¢ Ot o1a;y —oyay

2Jta1(dtat — O'tdt)
= 2 2 22 (76)

o1ay — opay

. Oy Yo Gy
9 =W — —% = ( - ) (77)
(677 Ve e77
— g2t (78)
7 dt Qi
d 1 o?o?
2 tY1
=122 (Zlog ot 79
Y a8 e ) (79)
o oZa? or  ofaiay — aloy0y
=0 \l- ms )\ T T e (80)
oja; o oja; —o;ay

dtotat—at?dt (8])

Qg
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Therefore,

i Xy + sixr == £(Xs) — 570e(X4), Gt = g1 (82)

which matches the formulation in DDBM.

C.3 EDM

ODE formulation. The ODE formulation in EDM can be formlated in our framework as we set
Qr = ].,ﬁt = 0,"}/15 = O0¢.

Proof. Recall 20} the ODE formulation is given by:

1
dXy = | fiXe + sixp — ig?vXt Ingt(Xt|XT)] dt Xp=xr (83)

where f; = St s = Be — B g =\ 200 — S497). As oy = 1,8, = 0,7 = oy, The
sampling ODE is given by:

dX; = =06V, log p;(X;)dt (84)

Denoising score matching. The score remarameterization in EDM is the same as ours in Eq.
Let oy = 1, 8y = 0,7, = 0y, then the score reparameterization in Eq. [12]is given by:

X0 — X
Vi, logps(Xy) =~ g 5 . (85)

O

Sampling SDEs with stochasticity added. Recall Theorem[T} as oy, = 1, 8; = 0,y = 0%, then the
SDE has the form:

dXt = (—Utd't —+ et)th 1ngt(Xt)dt —+ \/gdwt (86)

Now we recover the stochastic sampling SDE in original EDM paper.

C.4 1I2SB

12SB can be reformulated in our framework as we let:

0'2 O'2 (‘)’2
atzl—a—%,ﬂt:;%m: o?( —;%) (87)

where 07 = f(f Brdr.

Using discretization
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Figure 7: MSEs during training, where MSE = & Zf;l | &0 — o l|?.
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Figure 8: Ablation study on the shape of ;.
Bi—At Bi—nt ﬂtz_At’Ytz _
Xi—ar = (Qp—ar — g —=— )Xo + X¢ + ’YtQ_At Q2 %t (88)
B B It
2
—At ,3 A BEAYE
—(1- Bt )%o t— tXt T ’y . t— A2t i 7 (89)
Bt B
0_ Ut—At)Zé _ Ut—AtO_Q(l _ ﬁ)
_ (1 _ Ut—At)A Ut At t— At of ’of op 't ot/ (90)
- 2 o+ e Z¢
of af
o1
2
Oi—At\ oinilo Ut At)
= (1= =% + \/ Z 1)

In the 12SB paper, define a? := ftt:ﬂ Brdr, o := [;" Brdr. Therefore,

2 2 242
Qa g, 0,05
n S n
X, = X0 + Xptl + | 5%t 92)
" a2 402 a2 +o2 " o2 + o2

Thus, we reproduce the sampler of 12SB.

D ADDITIONAL DESIGN GUIDELINE

Score reparameterization. We compared the training stability with and without score reparameter-
ization using the DIODE (64 x 64) dataset, and the results are shown in Fig.[/| For training without
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Ymax = 0.025
Ymax = 0.125
Ymax = 0.25
Ymax = 0.5
Ymax = 1

Figure 9: Sampling paths with dfferent choices of ;. As 7y, extreamly low, e.g, Vmax = 0.025, the
model will be failed to construct details of images.

score reparameterization, the score function sy (x, X7, t) is parameterized by a neural network, and
Xo(x,X7,t) is computed as: Xo(x,X7,t) = a% (v2so(x,xr,t) + x; — Bxr) . For training with
score reparameterization, Xo(x, xr, t) is directly parameterized as a neural network. We then com-
pared the mean squared error (MSE) between X and xo during training. The results in Fig. [7]
indicate that score reparameterization helps reduce training instability.

oy and f3;. Theoretically, oy and [ can be freely designed, and future work may explore alternative
design choices. However, in this paper, we focus on the simple case where ay = 1 — ¢ and f3; =
t. The rationale is as follows: consider the scenario where oy = 1 — [3;, which represents an

interpolation along the line segment between z and z1. For the path pgl) () = N((1 = Be)zo +

Brx1,771), where j3; is invertible, it is straightforward to construct another path pgz)(sc) =N((1-
t)zo + txq, *y;,l I), which achieves the same objective function but uses a different distribution of ¢
t

during training. Based on this equivalence, setting a; = 1 — ¢ and 8; = ¢ is a reasonable choice.

The shape of v,. We conducted an ablation study on ~, with different shapes. Specifically, we
assumed ; has the form v = 2yax\/t¥(1 — t¥), as shown in Fig. [8] ~; will have different shape
as we set different k. The results indicate that the best performance is achieved when & = 1, which
is the exact setting used in this paper.

Ymax- Our ablation studies on 7, demonstrate that the optimal values of y,,.x are approximately
0.125 or 0.25. Furthermore, the sampling paths corresponding to different choices of +, are shown
in Fig. 0] Adding an appropriate amount of noise to the transition kernel helps in constructing finer
details.

€. We use the setting ¢, = 7 (%% - g—:ﬁ) . The ablation studies on ¢; demonstrate that the

optimal choice of 1 for the DDBM-VP model is approximately 0.3, while the best choice for the
SDB model with a Linear Path is around 1.0. Additionally, we present sample paths and generated
images under different 7 settings to illustrate heuristic parameter tuning techniques. The results
are shown in Figures [T1] [T2} and[I3] Too small a value of 7 results in the loss of high-frequency
information, while too large a value of 1 produces over-sharpened and potentially noisy sampled
images.

E EXPERIMENT DETAILS

Architecture. We maintain the architecture and parameter settings consistent with
2023), utilizing the ADM model (Dhariwal & Nichol, [2021) for 64 x 64 resolution, modifying
the channel dimensions from 192 to 256 and reducing the number of residual blocks from three
to two. Apart from these changes, all other settings remain identical to those used for 64 x 64
resolution.
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Training. @ We include additional pre- and post-processing steps: scaling functions and
loss weighting, the same ingredient as (Karras et al.,, 2022). Let Dg(x¢,x7,t) =
Cskip(t)Xt + Cout(t) (1) Fo(cin(t)X¢, Cnoise(t)), where Fp is a neural network with pa-
rameter 6, the effective training target with respect to the raw network Fy is:
B, xo.xz,t [AllCskip (Xt + Cout Fo (CinXe, Cnoise) — Xo||?]. Scaling scheme are chosen by re-
quiring network inputs and training targets to have unit variance (¢in, Cout ), and amplifying errors
in Fj as little as possible. Following reasoning in (Lingi Zhou et al., 2023)),

1
\/04308 + B0 + 204 Broor + 737
1

1
Cout (t) = \/5152080% - ﬂ?agT + Vztzggcin; A= —5 5 Cnoise (t) = i IOg (t)a (94)

Cout

Cin(t) Cskip(t) = (o + Broor) * ¢y (93)

where 03, a%, and ogr denote the variance of xq, variance of x7 and the covariance of the two,
respectively.

‘We note that TrigFlow (Lu & Song}|2024)), a contemporaneous work, adopts the same score reparam-
eterization and pre-conditioning techniques. It can be considered a special case of our framework
by setting a; = cos(t), By = 0,y = ogsin(t), t € [0, 5. In this case, o7 = 0, oo = 0,

1 1 1
Cin(t) - D) 3 = = (95)
Vaiod +7; \/sinz(t)ag + cos?(t)g2 70
1
Cskip(t) = (og)cl, = cos(t) - of - == cos(t), (96)
0
Cout (t) Y, 71620-8 " Cin = Sin(t)a()v o7

, 1
Dy(x¢,t) = CskipTt + Cout Fo(CinTt, Cnoise) = cos(t)xy + sm(t)aoFe(;, Croise)-  (98)
0

Then we recover TrigFlow.

In our implementation, we set oo = o7 = 0.5, 007 = 03 /2 for all training sessions. Other setting
are shown in Table[7]

Table 7: Training settings

Dataset edges—handbags edges—handbags edges—handbags
Model n 0 0 0.5
Ymax 0.125 0.25 0.125
GPU 1 A6000 48G 1 H100 96G 1 H100 96G
Batch size 32 128 200
Setting  Learning rate 1x107° 5x107° 1x10*
epochs 2078 2106 1443
Training time 42 days 8 days 11 days
Dataset DIODE (256 x 256) DOIDE (256 x 256)
Model n 0 0
Ymax 0.125 0.25
GPU 1 H100 96G 1 H100 96G
Batch size 16 16
Setting  Learning rate 2x107° 2x 1075
epochs 2617 1745
Training time 17 days 25 days
Sampling. We use the same timesteps distributed according to EDM (Karras et al., [2022): (tin/zfx

%(tlln/ifl - }Il/;fx))p, where ¢, = 0.001 and ¢, = 1 — 1074, The best performance achieved by

setting p = 0.6 for Edges2handbags and p = 0.8 for DIODE datasets.
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Licenses

» Edges—Handbags|[[sola et al.|(2017): BSD license.
* DIODE-Outdoor |Vasiljevic et al.| (2019): MIT license.
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n=12

Figure 12: Comparison of sampled images with different ¢; for SDB model, where ¢, = n(v: —
Gt A2 o -
a_t7t )’ Ymax — 0.25,b=0.

27



Under review as a conference paper at ICLR 2025

\\

\\\\

Figure 13: Companson of sampled images with different ¢, for DDBM-VP pretrained model, where
e = n(nde — 57)-
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Figure 14: SDB model and sampler ( ypax = 0.125, n = 1, b = 0, NFE=5, FID=0.89).
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F ADDITIONAL VISUALIZATIONS

Figure 15: DDBM model and Our sampler (NFE=20, FID=1.53).
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Figure 16: DDBM model and SDB sampler (n = 0.3, NFE=20, FID=4.12). Samples for DIODE
dataset (conditoned on depth images).
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Figure 17: SDB model and sampler (vyy,ax = 0.25, 7 = 1.0, b = 0, NFE=5, FID =4.16).
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Figure 18: SDB model and sampler (7y,ax = 0.25, n = 1.0, b = 0, NFE=20, FID = 3.27).
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Figure 19: DDBM model and DBIM s
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Figure 20: DDBM model and sampler
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Figure 21: SDB model and sampler (Yyax
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