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Figure 1: Schematic diagram of our recording studio.

A Recording MM-WLAuslan

In this section, we introduce our recording environment, interactive recording interface and Auslan
learning interface. Meanwhile, we detail the comparison between Kinect-V2 and RealSense.

A.1 Recording Studio

For recording a clean word-level Auslan dataset, as shown in Figure 1, our recording setup is situated
in a studio environment with a green screen. In the studio, we position Kinect-V2 cameras at left-
front, front, and right-front views, along with a centrally placed RealSense camera. The signer is
positioned in the centre, surrounded by various RGB-D cameras. Directly in front of the signer, the
“Front Kinect-V2” and “Front RealSense” are primarily used for recording the frontal aspects of the
signing actions. From the left and right of the signer, the “Left-Front Kinect-V2” and “Right-Front
Kinect-V2” are respectively placed to capture side movements and to enhance the depth of the signing
actions. The background features a green screen, enabling easy post-processing to remove or alter the
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Figure 2: Recording interactive interface for MM-WLAuslan.

Figure 3: Auslan learning interactive interface.

background, focusing attention on the sign language. Our setup meticulously captures all necessary
views and movements of the signer for accurate dataset collection.

A.2 MM-WLAuslan Recording Interface

The interactive interface of a software application designed for recording an Auslan (Australian Sign
Language) dataset, as shown in Figure 2. The interface displays multiple video feeds of a signer from
various views, captured by different RGB-D cameras: “Left-Front Kinect-V2”, “Front Kinect-V2”,
“Front RealSense”, and “Right-Front Kinect-V2”. It ensures coverage of the movement of the signer
from multiple perspectives to accurately capture the nuances of sign language. The interface also
includes several control options: “START” and “PAUSE” buttons under the Left-Front Kinect-V2
playback window, and a “RECORDING” status indicator next to the Right-Front Kinect-V2 playback
window, indicating that recording is in progress. Additionally, there are text fields for “Base path”,
“Gloss ID”, “Sign Word”, and “Signer ID”, allowing users input specific data related to the recording
session, such as the location of the saved data, identifiers for the signs, and the information of the
signer. Overall, our recording interactive interface is tailored to facilitate the efficient capturing,
labelling, and storage of sign language data. It is essential for creating a detailed and accessible
word-level Auslan dataset.
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Table 1: Comparison of Kinect-V2 and RealSense Cameras
Feature Kinect-V2 RealSense

Manufacturer Microsoft Intel
Depth Sensing Technology Time-of-Flight Stereo Vision
Depth Range 0.5 to 4.5 meters 0.2 to 10 meters
Resolution 1920 × 1080 1280 × 720
Frame Rate 30 FPS 60 FPS
Field of View Horizontal: 70°, Vertical: 60° Horizontal: 87°, Vertical: 58°
SDK Support Windows SDK, supports C# and C++ Intel RealSense SDK, supports multiple languages

A.3 Auslan Learning Interactive Interface

To facilitate the recording and learning process for volunteers without a background in Auslan,
inspired by [1], we design an interactive learning interface. As shown in Figure 3, our interface
displays the current sign being recorded, along with its primary meanings and a selection of synonyms
to provide a comprehensive understanding of the usage of the sign. For instance, the sign for “beautiful”
gloss is also related to words such as “excellent”, “splendid”, “magnificent” and “excellence”.

The interface features a video display of the signer performing the sign, with labels “Left Hand” and
“Right Hand” to guide viewers on the specific hand movements. Underneath the video, control buttons
labelled “NEXT”, “REPLAY” and “PREV” allow users to navigate through different signs easily.
Our Auslan learning interactive interface not only supports the recording process but also acts as an
educational tool. This promotes the learning and understanding of Auslan among the volunteers.

A.4 Comparison between Kinect-V2 and RealSense

In the MM-WLAuslan dataset, we utilize two distinct types of RGB-D cameras: the Kinect-V2
and the RealSense. As outlined in Table 1, these cameras differ primarily in their depth sensing
technologies and other key specifications.

The Kinect-V2, developed by Microsoft, uses Time-of-Flight (ToF) technology to capture depth
information. This method involves emitting infrared light pulses towards an object and then measuring
the return time of these pulses to the sensor. The distance to each point on the object is calculated
based on the time delay, using the constant speed of light. ToF technology is renowned for its
ability to produce high-resolution and high-accuracy depth maps that perform robustly across various
lighting conditions.

Conversely, the Intel RealSense cameras employ stereo vision, a technique that mimics human
binocular vision. Stereo vision uses two cameras to capture images from slightly different angles.
Depth is determined by identifying corresponding points between the two images and calculating
the disparity in their positions. This approach allows the algorithm to estimate the distance of these
points from the cameras, providing a versatile solution suitable for a broad range of applications.

Both Kinect-V2 and RealSense cameras offer substantial support through their respective SDKs,
with Kinect supporting C# and C++ through the Windows SDK, and RealSense offering support for
multiple languages through the Intel RealSense SDK.

In summary, while the Kinect-V2 excels in precision and is ideal for environments where accurate
depth perception is crucial, RealSense cameras adapt more broadly due to their stereo vision capabil-
ities. This makes each camera uniquely suited to different aspects of the MM-WLAuslan project,
depending on the specific requirements for depth accuracy and environmental adaptability.

B Processing MM-WLAuslan

In this section, we introduce the post-processing and storage of data collected during the project.

B.1 Pose Extraction and Clean

As mentioned in Section 3.2, followed by [2], we use Alphapose [3, 4, 5] to track people in each
word-level sign video and obtain the whole body keypoints. For each frame, we save 136 keypoints
for each person, including 26 pose landmarks from the body, 68 pose landmarks from the face and 21
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Figure 4: Data Post-Processing.

additional landmarks for each hand. Alphapose is an accurate multi-person pose estimator, which is
the first open-source system. To efficiently match poses of the same person across frames, it provides
an online pose tracker called Pose Flow. It is the first open-source online pose tracker.

We perform cleaning on the extracted pose sequences. The first row of Figure 4 shows the result
of Alphapose in a special frame. Due to the signer wearing clothing with a character pattern, the
pose estimation results mistakenly included keypoint sequences for two individuals. Thankfully,
AlphaPose provides tracking IDs for each detected frame, enabling us to easily remove the unrelated
pose sequence.

B.2 Sign Video Crop

After recording all the sign language videos, we notice that a significant portion of the footage
consists of a green screen background, as shown in the first row of Figure 4. This not only provides
unnecessary content but also poses a significant challenge in terms of video storage. Storing raw data
would occupy more than 5TB of memory. Therefore, we crop the videos based on a fixed-size box
that can cover every signer. We then proportionally resize the longest side to 512 pixels. In the last
row of Figure 4, we display samples of the processed data.

B.3 Final Dataset Storage

The final datasets are stored in a folder on Google Drive  MM-WLAuslan. As shown in Figure 5,
our MM-WLAuslan is organized into several main directories, each containing various types of data
essential for training, validating, and testing in multimedia and sign language analysis projects. The
detailed organization facilitates straightforward access to data types across different experimental
settings, as described below:

• Annotations
– Pose - The keypoint sequence of the signer in each sign language video.
– Split - File delineating the division of data into training, validation, and test sets.
– Labels - Gloss ID labels or annotations corresponding to the data samples.

• Train
– RGB - Contains RGB videos.
– Depth - Contains depth data, providing the distance of surfaces from a point of view.

• Valid
– RGB - RGB data for validation.
– Depth - Depth data for validation.

• Test
– Test-STU: consistent scene settings with the training set.
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Figure 5: Dataset Storage.

– Test-ITW: green screens are removed and replaced with dynamic or static backgrounds.
– Test-SYN: synthesize indoor and outdoor backgrounds.
– Test-TED: randomly adjusting video segments.

* RGB - RGB data for testing.
* Depth - Depth data for testing.

C Experimental Settings

C.1 Baseline Models

We mention that all models used in this work are publicly available. We express profound gratitude
to the aforementioned authors for their invaluable contributions. Each of the ISLR models we use is
linked below:

• RGB-based & RGB-D-based model: ResNet2+1D [6] �, TSN [7] �, I3D [8] �,
S3D [9] �, SlowFast [10] �, Timesformer [11] �, UMDR [12] � and KVNet-V [13] �.

• 2D pose-based & 3D pose-based model: TGCN [14] �, SL-GCN [15] �, STC-
SLR [16] �, DSTA-SLR [17] �, SPTOTER [18] � and KVNet-K [13] �.

• Multi-modal-based model: SAM-SLR [15] � and NLA-SLR [13] �.

C.2 Training Hardware

All experiments are conducted on a machine equipped with four NVIDIA A100 80GB GPUs, which
ensures robust computational capabilities for processing complex models and large datasets.

C.3 Hyperparameter Adjustment Formula

For different models, based on the available hardware configuration, we adjust the batch size and
learning rate to optimize training performance. The learning rate (lr) adjustment is computed using
the following formula:

lr[new] = lr[default] × batch_size[new] × gpu_number[new]
batch_size[default] × gpu_number[default]

,

where:

• lr[new] is the adjusted learning rate for the new model.
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Table 2: The baseline of Single-view ISLR on MM-WLAuslan with Front RealSense camera.
“STU”, “ITW”, “SYN”, “TED”, and “AVG.” represent the studio set, in-the-wild set, synthetic back-
ground set, temporal disturbance set and average performance across the four subsets, respectively.
Bold indicates the highest value within the same data type.

Model Data Type STU ITW SYN TED AVG.
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

UMDR [12] Pixel 87.40 97.60 15.06 34.75 43.29 65.69 84.66 96.21 57.60 73.56
KVNet-V [13] Pixel 66.41 89.58 26.82 52.05 41.70 68.52 56.52 82.35 47.86 73.12

SPOTER [18] 2D Pose 53.34 75.12 49.89 73.25 51.21 72.13 32.16 64.29 46.65 71.20
DSTA-SLR [17] 2D Pose 81.98 96.49 75.83 93.67 77.78 93.70 62.19 84.99 74.44 92.21
STC-SLR [16] 2D Pose 79.14 95.44 72.24 92.32 75.29 92.71 58.43 82.26 71.27 90.68
KVNet-K [13] 2D Pose 66.55 89.33 58.08 85.22 62.93 85.89 36.79 65.68 56.09 81.53

KVNet-V [13] Pixel + Depth 68.07 91.14 35.20 63.88 54.66 81.00 54.91 81.91 53.21 79.48
UMDR [12] Pixel + Depth 91.34 98.64 75.66 92.78 84.25 95.83 86.65 97.50 84.47 96.19

SPOTER [18] 3D Pose 57.19 80.05 53.81 78.85 56.24 77.26 37.47 70.65 51.17 76.70
SL-GCN [15] 3D Pose 73.02 88.69 59.28 81.72 68.15 84.50 46.81 73.68 61.82 82.15

SAM-SLR [15] Multi-Modal 78.02 94.69 64.28 87.72 73.15 91.50 53.81 80.68 67.31 88.65
NLA-SLR [13] Multi-Modal 83.65 96.96 68.30 90.40 76.70 93.15 67.15 89.25 73.95 92.44

Table 3: The baseline of Single-view ISLR on MM-WLAuslan with Left-Front Kinect-V2.
Model Data Type STU ITW SYN TED AVG.

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

UMDR [12] Pixel 85.67 97.15 13.72 29.61 15.58 32.06 83.05 95.75 49.51 63.64
KVNet-V [13] Pixel 80.59 95.74 45.17 71.29 57.93 82.92 64.73 86.86 62.11 84.20

SPOTER [18] 2D Pose 65.09 88.15 60.26 83.45 57.47 80.87 56.56 82.33 59.84 83.70
DSTA-SLR [17] 2D Pose 78.80 95.38 73.82 93.17 73.75 91.88 62.55 86.33 72.23 91.69
STC-SLR [16] 2D Pose 78.23 94.82 76.08 93.83 73.61 90.87 61.45 84.96 72.34 91.12
KVNet-K [13] 2D Pose 73.88 93.26 64.66 89.36 66.72 87.60 53.17 80.38 64.61 87.65

KVNet-V [13] Pixel + Depth 85.46 97.36 61.70 86.41 75.47 92.53 69.95 90.03 73.14 91.58
UMDR [12] Pixel + Depth 91.16 98.71 46.90 70.90 79.29 92.93 86.74 97.23 76.02 89.95

SPOTER [18] 3D Pose 66.10 87.46 62.43 83.60 61.21 84.07 55.24 79.62 61.24 83.69
SL-GCN [15] 3D Pose 74.08 90.75 70.87 86.42 71.19 85.94 60.78 84.28 69.23 86.85

SAM-SLR [15] Multi-Modal 88.55 98.06 76.77 94.35 79.41 93.56 73.57 91.91 79.57 94.47
NLA-SLR [13] Multi-Modal 89.51 98.41 78.72 95.15 82.91 94.90 75.69 93.06 81.71 95.38

Table 4: The baseline of Single-view ISLR on MM-WLAuslan with Right-Front Kinect-V2.
Model Data Type STU ITW SYN TED AVG.

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

UMDR [12] Pixel 88.27 97.77 2.55 8.62 1.51 4.84 83.22 95.54 43.89 51.69
KVNet-V [13] Pixel 80.82 95.68 37.97 65.94 37.62 64.82 62.80 85.85 54.80 78.07

SPOTER [18] 2D Pose 62.29 84.84 58.54 81.37 52.88 77.81 51.49 78.88 56.30 80.72
DSTA-SLR [17] 2D Pose 80.72 95.44 73.61 92.53 73.64 91.40 61.73 85.01 72.42 91.09
STC-SLR [16] 2D Pose 79.95 95.54 72.89 92.49 73.14 91.23 59.56 83.22 71.38 90.62
KVNet-K [13] 2D Pose 69.97 91.40 64.12 88.02 64.01 86.73 50.50 78.20 62.15 86.09

KVNet-V [13] Pixel + Depth 84.09 96.87 40.99 68.18 67.54 88.88 66.33 88.55 64.74 85.62
UMDR [12] Pixel + Depth 90.95 98.56 13.80 28.72 73.92 90.74 85.81 96.87 66.12 78.72

SPOTER [18] 3D Pose 64.98 87.76 60.53 83.37 55.99 79.11 52.49 80.44 58.50 82.67
SL-GCN [15] 3D Pose 72.99 85.40 63.21 86.82 70.54 84.12 59.17 87.44 66.48 85.95

SAM-SLR [15] Multi-Modal 88.49 97.90 76.65 94.50 74.54 91.95 72.34 91.81 78.00 94.04
NLA-SLR [13] Multi-Modal 88.95 98.13 70.49 91.86 80.00 94.12 74.12 92.24 78.39 94.09

• lr[default] is the default learning rate.

• batch_size[new] and batch_size[default] are the new and default batch sizes, respectively.

• gpu_number[new] and gpu_number[default] refer to the number of GPUs used in the new
and default setups, respectively.

For other hyperparameters, we utilize the default values to train the models. This approach helps in
maintaining consistency and reliability across different experimental runs.
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Table 5: The baseline of Cross-Camera ISLR on MM-WLAuslan. “K”, “RS” and “K+” represent
Front Kinect-v2, Front RealSence and Left-Front + Right-Front Kinect-v2, respectively. “STU”,
“ITW”, “SYN”, “TED”, and “AVG.” represent the studio set, in-the-wild set, synthetic background
set, temporal disturbance set and average performance across the four subsets, respectively.

Model Train Test Data Type STU ITW SYN TED AVG.
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

KVNet-K
[13]

K K 2D Pose 82.88 96.70 76.29 94.56 79.07 94.07 69.05 89.80 76.82 93.78
RS RS 2D Pose 66.55 89.33 58.08 85.22 62.93 85.89 36.79 65.68 56.09 81.53
K RS 2D Pose 58.23 85.42 56.89 84.46 54.42 81.46 46.60 71.43 54.04 80.69
RS K 2D Pose 55.36 82.72 36.10 65.90 48.95 76.00 40.61 68.41 45.26 73.26
RS K+ 2D Pose 19.87 40.32 15.82 36.25 16.10 35.02 13.67 29.35 16.36 35.23

NLA-SLR
[13]

K K Multi-Modal 86.32 97.79 79.05 94.91 84.26 96.16 77.98 91.76 81.90 95.16
RS RS Multi-Modal 83.65 96.96 68.30 90.40 76.70 93.15 67.15 89.25 73.95 92.44
K RS Multi-Modal 66.95 91.38 60.80 87.54 61.30 85.38 56.85 80.60 61.48 86.22
RS K Multi-Modal 57.34 83.12 47.37 78.05 50.02 78.85 46.58 72.35 50.33 78.09
RS K+ Multi-Modal 15.19 32.99 9.18 24.06 11.57 27.01 10.03 23.86 11.49 26.98

Table 6: The baseline of Cross-view ISLR on MM-WLAuslan. “L”, “F” and “R” represent
left-front, front and right-front Kinect-v2, respectively.

Model Train Test Data Type STU ITW SYN TED AVG.
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

KVNet-K
[13]

F F 2D Pose 82.88 96.70 76.29 94.56 79.07 94.07 69.05 89.80 76.82 93.78
L L 2D Pose 73.88 93.26 64.66 89.36 66.72 87.60 53.17 80.38 64.61 87.65
R R 2D Pose 69.97 91.40 64.12 88.02 64.01 86.73 50.50 78.20 62.15 86.09
F L+R 2D Pose 27.33 52.06 28.97 54.53 31.76 57.71 24.08 47.92 28.04 53.06
L F+R 2D Pose 21.57 41.05 15.69 33.29 18.32 37.16 13.63 29.23 17.30 35.18
R F+L 2D Pose 16.31 32.79 18.70 35.72 15.58 31.91 12.53 26.96 15.78 31.84

NLA-SLR
[13]

F F Multi-Modal 86.32 97.79 79.05 94.91 84.26 96.16 77.98 91.76 81.90 95.16
L L Multi-Modal 89.51 98.41 78.72 95.15 82.91 94.90 75.69 93.06 81.71 95.38
R R Multi-Modal 88.95 98.13 70.49 91.86 80.00 94.12 74.12 92.24 78.39 94.09
F L+R Multi-Modal 38.91 66.31 29.37 54.98 35.78 62.53 28.84 53.33 33.23 59.29
L F+R Multi-Modal 34.49 55.23 23.75 43.33 31.29 51.28 23.39 43.13 28.23 48.24
R F+L Multi-Modal 31.05 52.42 32.42 54.18 30.67 52.32 23.94 43.80 29.52 50.68

D Additional Experiments

D.1 More Baseline on MM-WLAuslan

In Table 3 of the main paper, we specifically highlight models that demonstrate superior performance
on “Front Kinect-V2” data across various modalities. Table 2, Table 3, and Table 4 present the
test results of these models when evaluated using “Front RealSense”, “Left-Front Kinect-V2” and
“Right-Front Kinect-V2” cameras, respectively. We observe that model performance improves with
the increase in modalities. These experiments demonstrate that pixel-based models excel in controlled
environments like STU, where conditions are stable and noise is minimal. Conversely, pose-based
models perform better in challenging environments such as ITW and SYN, leveraging structural
information over textural details. The NLA-SLR [13] model exemplifies the integration of these
modalities. As the state-of-the-art model for ISLR, NLA-SLR combines the high-performance KVNet-
V and KVNet-K models, which handle pixel and pose data, respectively. This model consistently
achieves high accuracy across all test subsets, demonstrating its robustness in varied settings. We
also include experiments on Cross-Camera and Cross-View ISLR with different modalities in Table 5
and Table 6, highlighting the complexity of this task. The NLA-SLR [13] model performs excellently
within its training configuration. However, when test across different cameras and views, there
is a noticeable drop in performance. This reveals the challenges in maintaining accuracy across
cross-camera and cross-view ISLR settings and suggests that further research is necessary to enhance
model robustness in these settings. It is crucial for developing reliable systems that operate effectively
in varied environments.

D.2 Evaluation on More Noisy Settings

The high quality of the data in MM-WLAuslan allows for the effective simulation of low-quality
datasets. For instance, we can add white noise to simulate noisy environments, compress videos to
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Table 7: Low-quality sign video test for KVnet-V model trained with MM-WLAuslan. “CRF”
represent constant rate factor. “STU”, “ITW”, “SYN”, “TED”, and “AVG.” represent the studio set,
in-the-wild set, synthetic background set, temporal disturbance set and average performance across
the four subsets, respectively.

Noise Addition Metho STU ITW SYN TED AVG.
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Original High Quality 84.51 97.57 39.88 68.00 56.56 82.18 70.31 90.86 62.82 84.65

Downsample (128x102) 81.54 96.92 31.87 57.82 52.88 79.92 65.83 89.05 58.03 80.93
Downsample (54x32) 50.53 76.14 4.84 13.89 16.02 35.79 35.27 60.81 26.67 46.66

White Noise (µ=0, σ=0.3) 71.10 89.74 12.21 27.66 26.16 45.43 53.41 77.22 40.72 60.01
White Noise (µ=0, σ=0.5) 13.75 30.22 3.19 8.99 7.50 16.77 13.16 27.47 9.40 20.86

Video Compression (CRF=38) 79.50 95.86 26.46 52.54 46.41 74.81 61.87 86.10 53.56 77.32
Video Compression (CRF=48) 36.35 66.30 2.75 10.17 10.17 24.84 27.59 52.63 19.21 38.48

Table 8: Signer-independent Testing Results.
Model Data Type Statistical Measures STU ITW SYN TED

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

KVNet-V
[13] RGB

Maximum 100.00 100.00 64.66 91.72 100.00 100.00 100.00 100.00
Minimum 56.37 83.33 25.06 49.50 0.00 12.60 23.81 67.74

Mean 80.75 95.27 39.27 67.10 51.00 79.81 66.06 88.83
Standard Deviation 2.21 0.35 1.10 1.41 4.40 2.92 2.01 0.84

DSTA-SLR
[17]

2D Pose

Maximum 100.00 100.00 82.20 96.50 100.00 100.00 85.00 100.00
Minimum 53.33 80.00 51.38 87.50 5.55 21.01 33.33 62.00

Mean 80.49 94.06 73.17 93.68 74.11 91.39 63.01 86.44
Standard Deviation 1.94 0.38 0.53 0.05 3.81 2.50 1.29 0.52

simulate compression artifacts and downsample data to simulate low-resolution footage. We apply
these methods to all test sets of MM-WLAuslan and use the KVnet-V [13] model for testing.

As shown in Table 7, the model’s performance remains unaffected under mild noise levels. However,
as the noise level increases, the model’s accuracy decreases. This indicates that recognising low-
quality sign videos is a challenging task. In the future, we will simulate a wider variety of low-quality
data, such as low bitrate, ill-illuminated conditions and motion blur, and enhance the model’s
robustness through fine-tuning methods.

Additionally, considering the complexity of real-world scenarios, we have synthesised complex
backgrounds (SYN) and recorded in-the-wild (ITW) data for further testing. As noted in the
Limitation Section, MM-WLAuslan still needs to collect more data captured in more complicated
real-world scenarios. In our future work, we plan to address this limitation by expanding our dataset.
This expansion will encompass videos captured by consumer-level cameras (e.g., mobile phones),
varying noise levels, and different camera angles.

D.3 Signer-independent Testing

We conduct signer-independent testing by evaluating each signer individually to measure Top-1 and
Top-5 accuracy. We evaluate using KVnet-V [13] and DSTA-SLR [17]. Since MM-Auslan contains
a large number of signers, we only provide the minimum, maximum, mean and standard deviation
across different signers in Table 8. The results indicate that DSTA-SLR outperforms KVnet-V, as it
not only achieves a higher mean accuracy but also exhibits a lower standard deviation. Based on the
signer-independent test, we can assess how well the models generalize to different signers, especially
those unseen during training.

E The usefulness of ISLR task and our MM-WLAuslan dataset

The ISLR task serves as a critical foundation for the development of practical applications and sign
language-related research. For practical applications, MM-WLAuslan offers higher-resolution videos
and multiple viewing angles. Compared to the official Auslan Bank (https://auslan.org.au/dictionary/),
it would be an ideal resource for an Auslan dictionary. Additionally, ISLR models have been used
in sign language teaching applications, similar to the [1]. From a research perspective, ISLR also
influences the development of sign language-related tasks. For instance, ISLR models can be used to
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extract video features for gloss-free sign language translation [19], recognise short segments in video
streams to achieve real-time continuous sign language recognition [20], and generate continuous
sign language with 3D Avatars using isolated signs [21]. It can even be used in ways similar to
spoken language conversations [22, 23, 24, 25, 26]. Moreover, MM-WLAuslan can be used to
research multi-view 3D sign language generation and cross-view ISLR. We believe that exploring
how MM-WLAuslan can be leveraged to improve the performance of other sign language-related
tasks is a valuable direction for future research. In conclusion, while our dataset currently focuses on
ISLR, it is designed with both practical applications and future research in mind. We are working
towards expanding its utility to support more complex tasks, such as continuous recognition and
translation, thereby enhancing its relevance and impact in sign language research and application.

F Consent Form for MM-Auslan Recording

Due to the inclusion of facial information in our dataset, we obtain consent from volunteers and have
them sign the consent form depicted in Figure 6 before recording data. We do not release personally
identifiable information such as names, ages, occupations, or indications of whether individuals are
deaf or hard of hearing. It is important to note that our dataset is strictly for academic use and can not
be used for commercial purposes.

Consent Form for Recording of the Australian Sign Language Dataset 

Dear Participant, 

Hello! We are a team dedicated to the research of sign language. We are conducting an academic project aimed at 
recording and analyzing Australian Sign Language (Auslan). We invite you to participate in this project. The purpose 
of this project is to facilitate the learning and dissemination of sign language and to enhance understanding and 
application of Auslan. 

Mode of Participation: 
You will be recorded while using Auslan for communication. These recordings may include your facial expressions 
and hand gestures. 

Privacy and Data Use: 
We commit to using the recorded data solely for academic research purposes and not for any commercial use. All data 
will be anonymized to ensure the security of your personal information. The video material may be presented at 
academic conferences, in research papers, or educational courses. 

Consent Details: 

1. I have read and understood the information about the research described above. 
2. I agree to participate in the video recordings of Australian Sign Language. 
3. I understand that my participation is voluntary, and I can withdraw at any time without any adverse 

consequences. 
4. I agree that my facial expressions and hand gestures may be recorded and used for academic research. 

Please fill out the following information and sign below to indicate your consent to participate: 

• Name: ______________________ 
• Email: ______________________ 
• Signature: ______________________ 
• Date: ______________________ 

We greatly appreciate your participation and support! 

Should you have any questions or require further information, please contact us at: 

Contact Person: [Name of Coordinator] 
Email: [Coordinator’s Email] 
Phone: [Coordinator’s Phone] 

 

Figure 6: Consent Form for Recording.
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