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ABSTRACT

Recent advances in robot learning have accelerated progress toward generalist
robots that can operate across diverse tasks and environments. Yet despite this
momentum, it remains difficult to gauge how close we are to this goal, as the field
lacks a reproducible, large-scale benchmark for systematic evaluation. To address
this gap, we present RoboCasa365, a comprehensive simulation benchmark for
everyday household robotics. Built on the RoboCasa platform, RoboCasa365 in-
troduces 365 everyday tasks across 2,500 diverse kitchen environments, and over
2,000 hours of robot interaction data, making it one of the most diverse and large-
scale resources for studying generalist policies. We design the benchmark to sup-
port evaluation across key settings, including multi-task learning, robot foundation
model training, and lifelong learning. Using RoboCasa365, we conduct extensive
experiments comparing state-of-the-art approaches and analyze how task diver-
sity, dataset scale, and environment variation influence generalization. Our results
provide new insights into what factors most strongly affect the performance of
generalist robots and help inform strategies for future progress in the field.

1 INTRODUCTION

RoboCasa365

365 Everyday Tasks

2500 Kitchen Scenes

2200+ Hours of Data

Systematic

Benchmarking

Figure 1: Overview of RoboCasa365. RoboCasa365 is a large-scale simulation framework for training and
benchmarking generalist robots. RoboCasa365 includes 365 everyday tasks, 2,500 diverse kitchen scenes,
2,200+ hours of data, and systematic benchmarks to train and evaluate generalist robot models.

Recent advances in robot learning have enabled significant progress toward generalist robots capable
of performing a wide range of tasks across diverse environments. Several efforts have focused on
collecting large-scale robot datasets in the real world and training high-capacity models capable
of performing complex behaviors (Black et al., 2024; Team et al., 2025a; NVIDIA et al., 2025;
Intelligence et al., 2025). These models have demonstrated promising signs of generalization to
novel objects, environments, and tasks, suggesting that training generalist policies is within reach.

Despite these advances, two major challenges remain. First, training generalist robots requires vast
amounts of robot interaction data. Although recent datasets have grown substantially, they remain
limited in scale, diversity, and task coverage, which constrains the ability to train robust, gener-
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alist policies. Second, evaluating and benchmarking these systems in the real world is resource-
intensive, time-consuming, and subject to noise, making reproducible and systematic comparisons
across methods difficult.

Simulation provides a practical avenue for addressing these limitations. With simulation, we can
generate large-scale interaction datasets, covering an effectively infinite variety of tasks and envi-
ronments (Mandlekar et al., 2023; Jiang et al., 2025). Simulation also enables rapid experimenta-
tion, controlled evaluation, and reproducible benchmarking that would be infeasible in real-world
robotics Saxena et al. (2025). Together, these capabilities make it possible to generate data, train
policies, and systematically evaluate generalist robots at scale.

However, existing simulation frameworks fall short of this potential. Most current tools support
only limited tasks and environments, often focusing on simple object manipulation or single-room
scenarios Zhu et al. (2020); James et al. (2020); Wang et al. (2023). The datasets they generate are
small relative to the diversity and complexity of real-world robotics challenges, and benchmarking
is typically confined to these narrow conditions (Liu et al., 2023; Mandlekar et al., 2021). Con-
sequently, it remains difficult to study how task diversity, environment variation, and dataset scale
affect policy generalization.

To address these gaps, we introduce RoboCasa365, a comprehensive simulation benchmark for ev-
eryday household robotics. RoboCasa365 is built on top of the RoboCasa simulation framework
by Nasiriany et al. (2024), and is structured around four core components:

Diverse environments: The benchmark includes 2,500 unique kitchen scenes modeled from real
kitchens across the United States. These scenes capture a wide spectrum of layouts, object configu-
rations, and visual variations, providing realistic contexts for a variety of everyday tasks.

Comprehensive tasks: RoboCasa365 defines 365 tasks spanning over 50 distinct kitchen activities,
including manipulation, semantic reasoning, long-horizon planning, and memory-dependent tasks.
This task diversity allows evaluation across multiple dimensions of generalist robot capability.

Large-scale data: The benchmark provides over 2,000 hours of robot interaction data, split be-
tween pretraining and post-training phases. Using the MimicGen data generation tool, we signifi-
cantly expand dataset scale and diversity, enabling systematic investigation of how pretraining data
composition and size affect downstream task performance.

Systematic benchmarking: RoboCasa365 supports rigorous evaluation across three learning set-
tings: massively multi-task training, foundation model training, and lifelong learning. The bench-
mark is designed to facilitate reproducible, large-scale experiments and in-depth analysis of which
data and environment factors most strongly influence generalization.

By integrating these elements, RoboCasa365 provides a large, diverse, and systematically struc-
tured resource for studying generalist robots in simulation. It enables researchers to scale training,
run reproducible evaluations, and analyze the impact of task and environment diversity on policy
generalization. Using RoboCasa365, we conduct extensive experiments to compare state-of-the-art
methods, evaluate learning strategies, and investigate the factors that most strongly drive perfor-
mance in generalist robot learning.

2 RELATED WORK

Robot Simulation Frameworks. There is a long list of robot simulation frameworks (Zhu et al.,
2020; Gu et al., 2023; Mittal et al., 2023; Tao et al., 2025; Szot et al., 2021; Kolve et al., 2017; Li
et al., 2023; 2024; Liu et al., 2023; Deitke et al., 2022). Some are focused on tabletop settings (Zhu
et al., 2020; Liu et al., 2023; Li et al., 2024; James et al., 2020). We focus on simulating entire
room-scale scenes, similar to some other prior works (Li et al., 2023; Nasiriany et al., 2024; Szot
et al., 2021; Kolve et al., 2017). Our work is unique in that it features hundreds of tasks across
thousands of unique scenes, and features large-scale high quality demonstration datasets, and comes
with a suite of benchmarks for training and evaluating generalist robot models. To our knowledge
our work is the first simulation framework to satisfy all of three criteria.

Datasets and Benchmarks for Generalist Robots. There have been numerous efforts towards col-
lecting large robot datasets in the real world (Brohan et al., 2022; Walke et al., 2023; Khazatsky
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et al., 2024; Collaboration et al., 2023). Evaluating and benchmarking policies trained on these
datasets is challenging due to the resources needed to run large-scale systematic evaluations, despite
some recent approaches towards this goal (Atreya et al., 2025). Simulation allows the ability to
run large-scale benchmarks at scale. However, most simulation benchmarks are confined to a very
narrow distribution of tasks and environments (Mandlekar et al., 2021; Zhu et al., 2020; Liu et al.,
2023; Team et al., 2025b), Li et al. (2023) bring forth diverse environments and tasks but lack ac-
companying large-scale datasets. Nasiriany et al. (2024) include 100k demonstrations spanning 30
tasks and 100 scenes. In contrast, our datasets comprise over 650k demonstrations spanning over
300 tasks, and span 2500 unique scenes. While prior work focuses on benchmarking specific meth-
ods such as multi-task training Team et al. (2025b); Nasiriany et al. (2024) and lifelong learning Liu
et al. (2023), we provide a comprehensive suite of benchmarks to systematically study multi-task
training, foundation model training, and lifelong learning.

Training Generalist Robots. There is a long body of work on learning generalist robot policies
from large diverse robot datasets (Octo Model Team et al., 2024; Collaboration et al., 2023; NVIDIA
et al., 2025; Brohan et al., 2023; Kim et al., 2024; Shukor et al., 2025; Wen et al., 2025). In our work
we aim to be agnostic to the choice of model, and instead create benchmarks to systematically assess
the capabilities of these models across distinct settings, including multi-task training, pretraining and
post-training, and lifelong learning.

3 ROBOCASA365: LARGE-SCALE SIMULATION OF 365 EVERYDAY TASKS

We present RoboCasa365, a large-scale simulation framework for training and benchmarking gen-
eralist robots. We use the existing RoboCasa simulation framework (Nasiriany et al., 2024) as the
starting ground for RoboCasa365 and make significant contributions to scale up the assets, environ-
ments, tasks, and datasets. We also establish a rigorous benchmark to study state-of-the-art policy
learning methods, which we will outline in Section 4. In the following sections, we will outline the
individual components of this simulation framework, including assets, scenes, tasks, and datasets.

3.1 EXPANDING THE SCOPE OF ASSETS

RoboCasa features a diverse arrangement of objects and interactable fixtures and appliances, with a
focus for use in kitchen environments. We use the existing library of 2,509 objects from Nasiriany
et al. (2024), spanning 153 object categories. In addition to these, we source an additional collection
of high-quality 3D assets spanning 57 object categories. These are high-quality 3D assets sourced
from artists and edited to preserve strict quality standards. We use these new objects to support new
tasks and to populate various areas of kitchen scenes generally. A complete inventory is provided in
Appendix B.1.

In addition to the 3D assets, we significantly expand the scope of interactable fixtures and appliances
in the kitchen environment. RoboCasa (Nasiriany et al., 2024) includes a total of 20 interactable
fixtures and appliances spanning 4 categories: sinks, coffee machines, stoves, and microwaves.
We significantly expand the scope of these assets to 456 instances spanning 12 categories. We
include new categories of appliances, such as toasters, toaster ovens, stand mixers, blenders, and
electric kettles. All of these appliances are articulated, including fridges, ovens, dishwashers, which
were not previously articulated under RoboCasa. We model these assets using the same format as
RoboCasa, as MJCF objects with annotations of the regions. For each category, we include between
20 to 50 instances, in order to ensure that there is sufficient diversity to support generalization to
novel instances. We provide a complete inventory of our fixtures and appliances in Appendix B.2.

3.2 DIVERSE KITCHEN SCENES

Achieving generalization in robot learning requires exposure to a wide range of training environ-
ments; we address this need by providing thousands of diverse kitchen scenes spanning a broad
spectrum of household settings. We categorize these scenes into pretraining and post-training splits.
Our goal is to use the pretraining kitchen scenes for large-scale data collection and synthetic data
generation pipelines; we use the post-training kitchen scenes for post-training data collection and to
run most of our experiment evaluations. Using the etymology from Nasiriany et al. (2024), we de-
fine each kitchen scene as a combination of layout and style, where the layout defines the floor plan,
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Pretraining Scenes

Post-training Scenes

Figure 2: Kitchen Scenes. Our simulation framework features 2500 distinct kitchen scenes for pretraining (top,
representative samples shown), and 10 distinct kitchen scenes for post-training (bottom, all scenes shown).

and the style defines the specific selection of fixtures, appliances, and textures used in the kitchen.
We can configure each kitchen scene to use any combination of layout and scene.

For our post-training kitchens, we use the 10 layouts and 10 styles defined by Nasiriany et al. (2024)
in RoboCasa, where each layout is matched with a specific style, for a total of 10 kitchen scenes.
For our pretraining kitchen scenes, we create 50 distinct new layouts. In order to capture the distri-
bution of diverse scenes, we source our kitchens from 50 real-world homes with active listings on
Zillow.com, a real estate marketplace. These homes span diverse geographic locations across the
United States. We build digital cousin (Dai et al., 2024) replicas for each of these environments,
making sure to match the floor plan as closely as possible. In addition to these layouts, we create 50
distinct styles. We ensure that the pretraining and post-training styles do not overlap in the selection
of the fixtures, appliances, or environment textures used. Together, we have a total combination of
50 layouts × 50 styles, for a total of 2,500 kitchen scenes. We provide an overview of the pretraining
and post-training kitchen scenes in Figure 2.

3.3 SUITE OF 365 EVERYDAY TASKS

We aim to provide a diverse set of tasks to support sharing knowledge across tasks and generalizing
to new tasks. Nasiriany et al. (2024) define two broad categories of tasks: atomic tasks, which
represent the execution of a single skill, and composite tasks, which involve executing a sequence of
skills. Nasiriany et al. (2024) define eight foundational skills: (1) pick-and-place, (2) opening and
closing doors, (3) opening and closing drawers, (4) turning levers, (5) turning knobs, (6) pressing
buttons, (7) insertion, and (8) navigation. We adopt these skills as the basis for our atomic tasks. In
addition to the 25 atomic tasks in RoboCasa, we create an additional set of 40 new atomic tasks to
support various new appliances and new behaviors afforded by our simulator. We provide the entire
list of 65 atomic tasks in Appendix D.1.
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1. Washing produce
2. Defrosting food
3. Preparing sandwiches
4. Mixing ingredients
5. Seasoning food
6. Making salads
7. Preparing marinades
8. Measuring ingredients
9. Frying foods
10. Slicing meat
11. Boiling water
12. Sautéing vegetables
13. Steaming vegetables
14. Chopping vegetables
15. Microwaving foods
16. Mixing drinks
17. Baking cookies/cakes
18. Slow cooking
19. Cleaning sink
20. Broiling fish
21. Simmering sauces
22. Brewing coffee
23. Making smoothies
24. Making juice
25. Making tea

RoboCasa365 Activity List

26.  Preparing hot chocolate
27. Adding ice to beverages
28. Toasting bread
29. Arranging cabinets
30. Stocking supplies
31. Sanitizing cutting boards
32. Storing leftovers
33. Organizing utensils
34. Sorting ingredients
35. Loading refrigerator
36. Loading dishwasher
37. Serving beverages
38. Setting the table
39. Plating food
40. Portioning meals
41. Filling serving dishes
42. Arranging buffet
43. Managing freezer space
44. Packing lunches
45. Arranging condiments
46. Garnishing dishes
47. Organizing dishes and containers
48. Organizing recycling
49. Cleaning Appliances
50. Sanitizing surfaces
51. Washing dishes

Instruction: Place vegetables inside pot 
and close the lid

Task: SteamVeggiesWithWater

Instruction: Move fruit from fridge to bowl 
for washing

Task: GatherProduceWashing

Instruction: Place fruits in the blender and 
start the blender

Task: BlendIngredients

Instruction: Fully scrub the sink using a 
sponge

Task: GatherProduceWashing

Instruction: Toast bread using toaster; the 
serve on plate

Task: GetToastedBread

Instruction: Place the dishes in the 
dishwasher and close the door.

Task: LoadDishwasher

Figure 3: Composite Tasks. RoboCasa365 features 300 composite tasks that involve a sequence of skills. We
use large language models to generate a set of high-level activities, and for each activity, a set of task blueprints.
We highlight representative tasks for selected activities here.

For our composite tasks, we follow the same framework established by Nasiriany et al. (2024),
where we use large language models to solicit task blueprints. The process follows two stages.
First, we prompt LLMs to give a list of activities representing high-level groups of tasks in kitchen
environments. We retrieve a list of the top 50 activities, such as boiling water, toasting bread,
brewing coffee, washing dishes, and storing leftovers, to name a few. For each activity, we then
prompt the LLM to provide task blueprints, which consist of the name of the task, a high-level
description of the task, the objects and fixtures involved, and the sequences of skills needed to solve
the task. We then proceed to write code for the tasks based on these blueprints. We use 83 of the
existing composite tasks from RoboCasa and generate an additional set of 217 new composite tasks,
for a total of 300 composite tasks. We outline the full list of activities and representative composite
tasks in Figure 3. In total, our benchmark includes 365 everyday tasks: 65 atomic tasks and 300
composite tasks. Out of these, 247 require mobile manipulation, while 118 can be performed without
mobility.

3.4 DATASETS

We provide a large collection of robot datasets covering all of our tasks. Broadly, our datasets are
divided into two categories: pretraining datasets for data from the pretraining scenes, and post-
training datasets from the post-training scenes.

3.4.1 PRETRAINING DATASETS

Out of the 365 total tasks outlined in Section 3.3, our pretraining data covers 300 tasks, with 65
atomic tasks and 235 composite tasks. For each of these 300 tasks, we collect 100 human demon-
strations per task via robot teleoperation. This results in 30k human demonstrations total for pre-
training. For our data collection, we use the Franka Panda Emika robot, equipped with an Omron
mobile base (Haviland et al., 2022), and in principle, our simulation framework can support data
collection with other mobile manipulators and humanoid platforms.

We also use the MimicGen generation system (Mandlekar et al., 2023) to generate large-scale syn-
thetic data across 60 atomic tasks. For each task, we use the 100 human demonstrations previously
collected as seed demonstrations, and generate 10k demonstrations, effectively scaling data for these
tasks by 100×.

3.4.2 POST-TRAINING DATASETS

For our post-training data, we choose a set of 50 representative tasks out of the suite of 365 tasks,
grouped into three splits:
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• Atomic (18 tasks): We include 18 representative tasks out 65 total atomic tasks in the
benchmark.

• Composite-Seen (16 tasks): We choose 16 representative composite tasks spanning
16 activities. These include a mix of short and long-horizon tasks, with some involving 2
subtasks and the longest task involving 15 subtasks.

• Composite-Unseen (16 tasks): To test the effect of our pretraining data, we also choose
16 composite tasks that are unseen in the pretraining data. These tasks are of similar diffi-
culty to the composite seen tasks, but focus on another distinct set of 16 activities.

We list the entire set of 50 post-training tasks in Appendix D.2. For each of these tasks, we collect
500 human demonstrations via robot teleportation, for a total of 25k demonstrations.

3.4.3 DATASET STATISTICS

We provide a high-level overview of our datasets in Appendix E. Our pretraining synthetic demon-
stration dataset spans the highest amount of data, with 1615 total hours, followed by human pre-
training data (482 hours), and then human post-training data (193 hours). In Figure 4a we report the
distribution over the number of subtasks required for each of our 365 tasks. Most tasks require one
or two subtasks, but there are a few tasks that require 15 or more subtasks to complete. In Figure 4b,
we report the distribution of episode lengths across all pretraining and post-training human data (55k
episodes). The majority of episodes range from 10 to 60 seconds, with a long tail end for longer
horizon episodes, some going beyond 3 minutes.
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Figure 4: Distribution of task lengths (by number of subtasks) and dataset episode lengths (by number of
seconds). We observe a long tail of tasks and data representing long-horizon behaviors.

4 EXPERIMENTS

In our experiments, we conduct a systematic study to understand the key factors that influence the
training of generalist robots. To this end, we design a comprehensive suite of benchmarks aimed at
answering the following questions:

1. How well do generalist robots perform when trained on large multi-task datasets?
2. What role does pretraining data play, and to what extent can it improve learning of down-

stream tasks?
3. How effectively do agents learn in lifelong learning settings?
4. How does the scope and composition of pretraining data impact performance on down-

stream tasks?

4.1 MULTI-TASK TRAINING

We begin by investigating how state-of-the-art methods perform when trained on massively multi-
task datasets. This evaluation is a critical step toward developing generalist robots that can not only
master a wide range of behaviors but also adapt to entirely novel tasks beyond their training data.
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We train language-conditioned vision-based policies on the mixture of 300 pretraining human
datasets outlined in Section 3.4.1. Each task has 100 human demonstrations, for a total of 30k
demonstrations. Our experiments feature three state-of-the-art methods: Diffusion policy (Chi et al.,
2023), π0 (Black et al., 2024), and GR00T N1.5 (NVIDIA et al., 2025).

We train a multi-task language-conditioned policy for each method. We use the pretrained check-
points released publicly for π0 and GR00T N1.5 as the base model for training our models. We
provide details on the training protocols for each method in Appendix F.

We evaluate on the 50 tasks outlined in Section 3.4.2: Atomic, Composite-Seen, and
Composite-Unseen. Note that the Composite-Unseen tasks represent unseen tasks in the
pretraining data, and thus our evaluation for these tasks are zero-shot and are aimed at understanding
generalization to novel tasks. We run evaluations in the pretraining kitchen scenes for each task and
report average task completion success rates across all methods. See Appendix F for details about
the evaluation protocol.

Task Split Diffusion Policy π0 GR00T N1.5
Atomic 15.7 36.3 43.0
Composite-Seen 0.2 5.2 9.6
Composite-Unseen 1.25 0.7 4.4
Average 6.1 15.0 20.0

Table 1: Multi-task training results. We compare state-of-the-art policy learning approaches on our human
pretraining data across 300 tasks, and report results across seen and unseen tasks. We see that learning longer-
horizon composite tasks is more challenging, and that performance suffers when evaluating on unseen tasks.

We report results in Table 1. Overall, we see that across all methods, learning Atomic tasks is
the easiest, followed by learning Composite-Seen tasks, and Composite-Unseen tasks. This is rea-
sonable, as the Atomic tasks are shorter horizon tasks which present fewer learning challenges for
imitation learning (Ross et al., 2011), and the lower performance on Composite-Unseen tasks is due
to the fact that the model has never been trained on these tasks. Overall, GR00T N1.5 performs the
best among all three methods. It shows non-zero success rates on Composite-Unseen tasks, a sign
of its generalization abilities. Diffusion Policy performs the worst, highlighting how high-capacity
vision-language-action models can better fit large, diverse multi-task robot datasets. Overall, we see
a significant opportunity for future methods to improve upon these results.

4.2 FOUNDATION MODEL TRAINING

In our next experiment, we are interested in studying foundation model training, i.e., train-
ing with our pretraining datasets, followed by fine-tuning on our post-training datasets.
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Figure 5: Foundation Model Training Results.
Pre-training enables learning downstream tasks
with significant gains in data efficiency.

This learning paradigm has been established by nu-
merous prior works in robotics (Black et al., 2024;
NVIDIA et al., 2025), with evidence that pretrain-
ing can aid learning downstream tasks in a more ro-
bust and data-efficient manner. In our experiments,
our pretraining data includes human datasets across
300 tasks (482 hours), and synthetic data across 60
atomic tasks (1615), while our post-training data in-
clude human datasets across 50 tasks (193 hours).
Out of the 50 post-training tasks, 34 are are also
represented in the human pretraining data (Atomic
and Composite-Seen tasks), and the post-training
data includes an additional 16 composite tasks that
are not seen in the pretraining data (Composite-
Unseen). We first train on all of our pretrain-
ing datasets (see Section 3.4.1), followed by post-
training on three separate post-training split datasets
(Atomic, Composite-Seen, Composite-Unseen; see
Section 3.4.2). We compare post-training on different amounts of post-training data, with 50, 150,
and 500 demos per task, representing 10%, 30%, and 100% of the total post-training data.
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Unless otherwise noted, we use GR00T N1.5 as the model for these experiments and all subse-
quent experiments, due to its superior performance from the experiments in the preceding section.
We compare pretraining only, post-training only, and pretraining followed by post-training. After
training, we evaluate the model across the 50 post-training tasks in the post-training kitchens. See
Appendix F for a detailed discussion of the training and evaluation protocols. We report experi-
ment results in Table 2. We see that with pretraining alone, the model performs above 40% on the
atomic tasks but performs very poorly on the composite tasks. For post-training only, we see more
capable policies but they require a high amount of data to be performant. By using pretraining, we
see a significant improvement in model performance. These gains are especially pronounced for the
Composite-Unseen tasks (see Table 2). We visualize the improvement in performance in Figure 5,
visualizing the average task success rates from Table 2. We observe a roughly 3× improvement in
data efficiency, i.e., pretraining helps achieve roughly the same performance as post-training only
with 3x additional post-training data. In Appendix G.2 we run a rigorous set of evaluations on the
robustness of these learned models, identifying how the model is sensitive to different factors.

Task Type Pretraining Only Post-training Only Pretraining + Post-training
10% 30% 100% 10% 30% 100%

Atomic 41.9 38.7 50.6 60.6 56.9 59.1 68.5
Composite-Seen 0.0 11.0 22.7 35.0 25.4 34.6 40.6
Composite-Unseen 0.2 11.2 27.5 33.3 22.7 30.8 42.1

Average 15.1 21.0 34.3 43.7 35.9 42.2 51.1

Table 2: Foundation model training results. Comparing the impact of pretraining and post-training on learn-
ing downstream tasks.

4.3 LIFELONG LEARNING

In contrast to the conventional two-stage paradigm of pretraining followed by post-training, robots
in the real world are often required to acquire new skills continuously. This setting, known as
lifelong learning, involves learning tasks over a sequence of phases. The central challenge lies in
using prior knowledge to learn new tasks effectively, while still retaining how to perform previously
learned tasks. We design a lifelong learning benchmark designed to assess these capabilities. In
our experiments, the robot is tasked with learning a series of tasks over four phases. Each phase
involves learning progressively longer horizon tasks. Phase 1 involves learning 65 atomic tasks,
phase 2 involves learning 20 new composite tasks with 2 to 3 stages, phase 3 involves learning 20
new composite tasks with 4 or 5 stages, and phase 4 involves learning 20 new composite tasks with
6 or more stages. We define “stage” as the invocation of one of the robot skills defined by Nasiriany
et al. (2024), such as pick-and-place, turning knobs, and navigation. We use pretraining datasets for
these phases; phase 1 includes all human and MimicGen datasets for atomic tasks, while phases 2,
3, and 4 feature human datasets.

Phase Atomic Tasks 2-3 Stage Tasks 4–5 Stage Tasks 6+ Stage Tasks
Phase1 41.5% - - -
Phase2 13.9% 24.5% - -
Phase3 13.9% 4.8% 11.3% -
Phase4 10.6% 1.7% 2.7% 4.3%

Table 3: Lifelong learning results. We train across four distinct phases with progressively longer horizon
tasks. After each phase, we report results across all tasks seen in the current and previous phases.

For each phase N , we take the model previously trained from phase N − 1, and fine-tune it for data
pertaining to the tasks in phase N . After training completes for phase N , we run evaluations for
tasks from phase 1 through phase N in the pretraining kitchens and report results. We report results
in Table 3. We make two distinct observations. First, we see that the success rates steadily drop as
we learn progressively longer horizon tasks in each new phase (see the diagonal entries of the table).
This is intuitively the case, as learning longer horizon tasks can demand higher data requirements.
Second, we see that the performance on previously learned tasks steadily drops with each new phase.
This highlights the catastrophic forgetting problem, i.e., performance degrades on prior tasks if the
agent does not continue to train on them in subsequent phases. Overall, this experiment highlights
the current challenges with lifelong learning, and is a useful testbed for improving upon these results.
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4.4 PRETRAINING DATA COMPOSITION STUDY

In Section 4.2, we showed that pretraining brings forth significant improvements in data efficiency
for learning downstream post-training tasks. In this section, we run experiments to further under-
stand how the composition of pretraining data affects downstream performance. In our foundation
model training experiments, we used all of the available pretraining data, comprising human data
from 300 tasks and MimicGen data across 60 tasks (Human300+MG60). We compare to a variant
that does not include MimicGen data and only includes the human data (Human300). To better
understand the role of task diversity in the pretraining data, we compare two variants that include
human data from 50 tasks (Human50). These 50 tasks include the Atomic and Composite-Seen
tasks, and an additional randomly selected set of tasks. Finally, we compare with the case with no
pretraining data. Our pretraining and post-training protocol is identical to the process in Section 4.2.
We specifically run two separate sets of post-training experiments, one for the low-data regime with
10% of post-training data, and one for the high-data regime with 100% of the post-training data.

Post-training Data Pretraining Data
No Pretraining Human50 Human300 Human300+MG60

Atomic (10%) 38.7 52.0 57.0 56.9
Composite-Seen (10%) 11.0 26.2 28.7 25.4
Composite-Unseen (10%) 11.2 23.8 32.3 22.7

Average (10%) 21.0 34.7 40.0 35.9

Atomic (100%) 60.6 68.1 70.0 68.5
Composite-Seen (100%) 35.0 41.0 41.2 40.6
Composite-Unseen (100%) 33.3 38.5 44.0 42.1

Average (100%) 43.7 50.0 52.5 51.1

Table 4: Pretraining task diversity results. We compare the downstream effects of training on different
mixtures of pretraining data.
We report evaluations in post-training kitchens in Table 4. Compared to training on all pretraining
data (Human300+MG60), we find that training on just the human data (Human300) yields better
downstream learning results. One reason for this may be that adding MimicGen data dilutes the
contribution of other human datasets. Comparing the Human50 and Human300 settings, we see that
increasing the number of pretraining tasks enables a significant improvement in downstream post-
training, especially for the low-data regime post-training setting. Notably, the biggest gains are seen
for the Composite-Unseen tasks, suggesting that increasing the scope of task diversity is especially
beneficial for learning novel tasks.

In addition to task diversity, we study the effects of scene diversity in pretraining on downstream
performance. We report these results in Appendix G.1.

5 CONCLUSION

We presented RoboCasa365, a large-scale simulation framework for training and benchmarking
generalist robot models. RoboCasa365 provides 2,500 realistic kitchen environments, 365 everyday
tasks spanning over 50 activity categories, and 2,000 hours of robot interaction data, making it one
of the most diverse simulation resources to date.

Using this benchmark, we conducted a systematic study along three axes: multi-task learning at
scale, foundation model pretraining, and lifelong learning. Our experiments show that (i) generalist
policies trained on large multi-task datasets can acquire broad competence but still face challenges
with long-horizon tasks, (ii) pretraining data significantly improves downstream learning, with both
scale and task diversity playing key roles, and (iii) lifelong learning remains an open challenge, with
substantial trade-offs between acquiring new tasks and retaining prior knowledge.

RoboCasa365 opens several avenues for future work. First, the benchmark is currently limited to
kitchen environments, raising the question of how well findings transfer to other household set-
tings or broader domains. Second, while the dataset is large, it does not capture the full sensory
and physical complexity of the real world, and bridging the gap between simulation and real-world
deployment remains a significant challenge. Addressing these limitations will be an important di-
rection for future research.
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A USE OF LARGE LANGUAGE MODELS

We use the aid of large language models to create activity labels and task blueprints, using the
process outlined by Nasiriany et al. (2024). We also use large language models for soliciting writing
feedback for parts of this manuscript.

B SIMULATION ASSETS

B.1 3D OBJECTS

We have 57 new object categories: aluminum foil, basket, blender jug, cheese grater, chicken drum-
stick, cinnamon, colander, cookie dough ball, cream cheese stick, digital scale, dish brush, flour
bag, glass cup, honey bottle, hotdog bun, ice cube, ice cube tray, jar, juice, kebab skewer, lemon
wedge, lettuce, marshmallow, mayonnaise, measuring cup, mustard, non electric kettle, oil and
vinegar bottle, oven tray, pancake, paprika, peeler, pickle slice, pitcher, pizza, pizza cutter, place-
mat, pot, reamer, salt and pepper shaker, sandwich bread, saucepan, saucepan lid, shrimp, soap
dispenser, spray, strainer, straw, sugar cube, syrup bottle, tomato slice, tongs, tupperware, turkey
slice, turmeric, whisk, and wooden spoon.

B.2 INTERACTIVE FIXTURES AND APPLIANCES

We report an inventory of all fixtures and appliances in table 5.

C SCENES

We build 50 kitchen layouts modeled after 50 homes on sale on Zillow.com. These homes span
locations in the Bay Area (California), Austin (Texas), Denver (Colorado), Boston (Massachusetts),
and Atlanta (Georgia).
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Category Unique models
Blender 22
Coffee machine 48
Dishwasher 25
Electric kettle 25
Fridge 50
Microwave 50
Oven 21
Sink 49
Stand mixer 25
Stove 50
Toaster 44
Toaster oven 47

Total 456

Table 5: Inventory of fixtures and appliances

D TASKS

D.1 ATOMIC TASKS

We have 65 atomic tasks: AdjustToasterOvenTemperature,
AdjustWaterTemperature, CheesyBread, CloseBlenderLid, CloseCabinet,
CloseDishwasher, CloseDrawer, CloseElectricKettleLid, CloseFridge,
CloseFridgeDrawer, CloseMicrowave, CloseOven, CloseStandMixerHead,
CloseToasterOvenDoor, CoffeeServeMug, CoffeeSetupMug, LowerHeat,
MakeIcedCoffee, NavigateKitchen, OpenBlenderLid, OpenCabinet,
OpenDishwasher, OpenDrawer, OpenElectricKettleLid, OpenFridge,
OpenFridgeDrawer, OpenMicrowave, OpenOven, OpenStandMixerHead,
OpenToasterOvenDoor, OrganizeMugsByHandle, PnPCabinetToCounter,
PnPCounterToBlender, PnPCounterToCabinet, PnPCounterToDrawer,
PnPCounterToMicrowave, PnPCounterToOven, PnPCounterToSink,
PnPCounterToStandMixer, PnPCounterToStove, PnPCounterToToasterOven,
PnPDrawerToCounter, PnPFridgeDrawerToShelf, PnPFridgeShelfToDrawer,
PnPMicrowaveToCounter, PnPSinkToCounter, PnPStoveToCounter,
PnPToasterOvenToCounter, PnPToasterToCounter, PreheatOven,
SlideDishwasherRack, SlideOvenRack, SlideToasterOvenRack,
StartCoffeeMachine, TurnOffMicrowave, TurnOffSinkFaucet, TurnOffStove,
TurnOnBlender, TurnOnElectricKettle, TurnOnMicrowave,
TurnOnSinkFaucet, TurnOnStove, TurnOnToaster, TurnOnToasterOven,
TurnSinkSpout.

D.2 POST-TRAINING TASKS

We provide an overview for the post-training tasks across Tables 6, 7, and 8.

E DATASETS

We present an overview of our datasets in Table 6.

Setting Num Tasks Num Scenes Demos per Task Dataset Size (hrs)
Pretraining (Human) 300 2500 100 482
Pretraining (MimicGen) 60 2500 10,000 1615
Post-training (Human) 50 10 500 193

Table 6: Dataset statistics across pretraining and post-training settings.
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Activity Task # Sub-
tasks

MoMa
req.

Description

Atomic CloseBlenderLid 1 No Close the lid blender by securely placing the lid
on top.

Atomic CloseFridge 1 No Close the fridge door(s).

Atomic CloseToasterOvenDoor 1 No Close the toaster oven door.

Atomic CoffeeSetupMug 1 No Pick the mug from the counter and place it under
the coffee machine dispenser.

Atomic NavigateKitchen 1 Yes Navigate to the [kitchen location].

Atomic OpenCabinet 1 No Open the cabinet door(s).

Atomic OpenDrawer 1 No Open the [left/right] drawer.

Atomic OpenStandMixerHead 1 No Open the stand mixer head.

Atomic PnPCounterToCabinet 1 No Pick the item from the counter and place it in the
cabinet.

Atomic PnPCounterToStove 1 No Pick the item from the plate and place it in the
pan.

Atomic PnPDrawerToCounter 1 No Pick the item from the drawer and place it on the
counter.

Atomic PnPSinkToCounter 1 No Pick the item from the sink and place it on the
container located on the counter.

Atomic PnPToasterToCounter 1 No Place the toasted item on a plate.

Atomic SlideDishwasherRack 1 No Fully slide the top dishwasher rack [in/out].

Atomic TurnOffStove 1 No Turn off the [burner location] burner of the
stove.

Atomic TurnOnElectricKettle 1 No Press down the lever to turn on the electric kettle.

Atomic TurnOnMicrowave 1 No Press the start button on the microwave.

Atomic TurnOnSinkFaucet 1 No Turn on the sink faucet.

Figure 6: Post-training Atomic Seen Tasks (18)

Note: The ”MoMa req.” column indicates whether the task requires Mobile Manipulation or base movement.

For each demonstration, we store the language instruction, proprioceptive information (robot base
pose, robot end effector pose, gripper state information), images from three cameras (wrist camera,
left third-person camera, right their-person camera), and the actions.

F TRAINING AND EVALUATION PROTOCOL

F.1 TRAINING PROTOCOL

Our experiments focus on training vision-based models. The model takes as input a combination of
low-level proprioceptive information (base pose, end effector pose, gripper state), task instruction
language, and camera images (one wrist camera image, and two third-person camera images). For
GR00T N1.5, we freeze the vision encoder and language encoder and use a batch size of 128 (the
highest batch size we can fit on a GH200 GPU). We train the model between 60k and 120k steps,
depending on setting (multi-task training, post-training, lifelong learning). For π0, we use the
default training setting, and use a batch size of 64 (the highest batch size we can fit on a GH200
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GPU). We train the model for 75k steps for the multi-task learning experiment. For diffusion
policy, we use the transformer diffusion variant and train with a batch size of 192 and train for 250k
steps for the multi-task learning experiment.

F.2 EVALUATION PROTOCOL

After training, we evaluate the model at a specified checkpoint on a suite of evaluation tasks. For
each evaluation task, we run 30 trials for a specified maximum number of timesteps (the maximum
duration is task-dependent). If during this duration the agent achieves the task success condition
(binary condition), the episode is counted as a success, otherwise a failure. We report the average
success rate across tasks.

G ADDITIONAL EXPERIMENTS

G.1 PRETRAINING SCENE DIVERSITY

Our pretraining data spans 2500 kitchen scenes (50 layouts × 50 styles), and we compare to
restricting pretraining data to 25 scenes (5 layouts × 5 styles), and 5 scenes (5 layouts × 1 style).
To run a fair comparison across these settings, we use MimicGen to generate demonstrations for
each setting, generating data across 17 atomic tasks in pretraining kitchens. We run zero-shot
evaluations on the 10 fixed post-training kitchen scenes, and also try post-training on the atomic
post-training data with 50 demonstrations per task. See Table 7 for results. For zero-shot
evaluation, we observe notable performance gains as the number of pretraining scenes increases.
These gains also hold in subsequent post-training, highlighting the need for diverse pretraining
data.

Pretraining Data
5 Scenes 25 Scenes 2500 Scenes

Zero-shot Evaluation 29.6 39.6 44.7
+ Post-training on Atomic (10%) 53.3 56.7 62.4

Table 7: Pretraining scene diversity results. Increasing the composition of scenes in pretraining data improves
downstream task performance.

G.2 ROBUSTNESS EVALUATIONS

In order to examine the generalization capabilities endowed by pretraining on our data, we perform
a set of robustness evaluations on the GR00T N1.5 model trained on the full pretraining and
post-training mixture. We perturb an aspect of the model’s input and evaluate it on our
Composite-Seen and Composite-Unseen tasks. Specifically, we look at the following
perturbations:

• Novel Language: We prompt an LLM for novel but semantically similar task instructions.
• Novel Joint Angles: We sample Gaussian noise and add it to the starting joint angles of

the robot.
• Novel Base Pose: We sample Gaussian noise and add it to the starting position and yaw of

the robot base.
• Novel Camera Pose: We sample Gaussian noise and add it to the default third-person and

wrist camera poses.

Table 8: Evaluation of robustness under different perturbations.

Task Split No Perturbation Novel Language Camera Perturbations Initial Joint Noise Initial Base Pose Noise
Composite-Seen 40.6 38.3 28.8 27.9 31.2
Composite-Unseen 42.1 39.2 31.5 32.1 30.2

We find that the model is robust to language variations, but can suffer with novel camera poses,
joint angles, and base poses.
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Activity Task #
Sub-
tasks

MoMa
req.

Description

Serving beverages DeliverStraw 4 Yes Take a straw from the drawer in front and place
it inside the glass cup on the dining counter.

Toasting bread GetToastedBread 4 Yes Start the toaster. Once the lever pops up, take the
bread to the plate on the dining counter.

Brewing KettleBoiling 2 Yes Pick the kettle from the counter and place it on a
stove burner. Then turn the burner on.

Loading
dishwasher

LoadDishwasher 3 No Pick up the items from the counter, place them in
the dishwasher, and close the dishwasher door.

Packing lunches PackIdentical
Lunches

15 Yes
Place two identical items of each object in each
tupperware on the nearby counter, to pack two
identical lunches.

Washing dishes PreSoakPan 3 No Pick the pan and sponge and place them into the
sink. Then turn on the water.

Brewing PrepareCoffee 2 No
Pick the mug from the cabinet, place it under the
coffee machine dispenser, and press the start
button.

Cleaning sink RinseSinkBasin 2 No Turn on the sink and manuever the spout to wash
all locations of the sink basin.

Sanitizing cutting
boards

ScrubCutting
Board

2 Yes

Pick up the sponge from the counter and clean
the cutting board by briefly scrubbing or
pressing down on the cutting board. Once
finished, release the sponge.

Frying SearingMeat 3 Yes

Grab the pan from the cabinet and place it on the
[burner location] burner on the stove. Then
place the item on the stove and turn the burner
on.

Slicing meat SetUpCutting
Station

2 Yes
Pick up the knife from the drawer and place it on
the cutting board. Then place the meat from the
plate to the cutting board.

Organizing dishes
and containers

StackBowls
Cabinet

2 Yes
Pick up the bowls on the counter and stack them
on top of one another in the open cabinet. Place
the smaller bowl on top of the larger bowl.

Steaming food SteamIn
Microwave

6 Yes

Pick the item from the sink and place it in the
bowl. Then pick the bowl and place it in the
microwave. Then close the microwave door and
press the start button.

Sauteing
vegetables

StirVegetables 4 Yes Put the items in the pot. Retrieve the spatula and
lightly stir the vegetables in the pot.

Storing leftovers StoreLeftovers
InBowl

5 Yes
Pick the chicken drumstick and item from their
plates and place them in the bowl. Then put the
bowl in the fridge.

Making salads WashLettuce 2 No Wash the lettuce in the sink by running water
over it.

Figure 7: Post-training Composite Seen Tasks (16)
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Activity Task #
Sub-
tasks

MoMa
req.

Description

Setting the table ArrangeBread
Basket

5 Yes
Open the cabinet, pick up the item from the cabinet and
place it in the basket. Then move the basket to the
dining counter.

Brewing ArrangeTea 3 No
Pick the kettle from the counter and place it on the tray.
Then pick the mug from the cabinet and place it on the
tray. Then close the cabinet doors.

Making toast Bread
Selection

2 Yes

From the different types of pastries on the counter,
select a croissant and place it on the cutting board. Then
retrieve a jar of jam from the cabinet and place it
alongside the croissant on the cutting board.

Arranging
condiments

Categorize
Condiments

2 Yes Put the shaker and condiment bottle from the counter
next to their counterparts in the cabinet.

Chopping
vegetables

CuttingTool
Selection

1 Yes Place the appropriate cutting tool for cutting the item
skin on the cutting board.

Garnishing
dishes

Garnish
Pancake

4 Yes Take the strawberry from the fridge and place it on top
of the pancake, located on the dining counter.

Arranging
cabinets

Gather
Tableware

4 Yes Gather all objects into one cabinet and sort the glasses
and bowls to opposite sides.

Preparing
sandwiches

HeatKebab
Sandwich

6 Yes
Pick up the kebab skewer and baguette bread, and place
them inside the toaster oven. Close the toaster oven
door and start by setting the timer.

Adding ice to
beverages

MakeIce
Lemonade

5 Yes
Grab a lemon wedge from the fridge and one ice cube
from the ice bowl, and put them in the glass of
lemonade.

Serving food PanTransfer 3 No Pick up the pan and dump the vegetables in it onto the
plate. Then return the pan to the stove.

Portioning meals PortionHot
Dogs

4 Yes Place one bun and one sausage from the bowl on each
plate.

Organizing
recycling

Recycle
BottlesBy
Type

3 Yes
Move the plastic bottles in the middle to the plastics
group, and the glass bottles in the middle to the glass
group.

Managing
freezer space

Separate
FreezerRack

7 Yes

Take the meat container that has the meat item(s) and
place it on the second highest rack of the freezer. Then
take the vegetable container that has the vegetable(s)
and place it on the highest rack of the freezer.

Reheating food WaffleReheat 4 Yes
Open the microwave, place the bowl with waffle inside
the microwave, then close the microwave door and turn
it on.

Washing
produce

WashFruit
Colander

4 No
Put the colander in the sink, put the item in the
colander, and turn on the sink faucet and pour water
over the colander.

Measuring
ingredients

Weigh
Ingredients

2 No Pick the item and place it on the digital scale for
weighing, and close the cabinet.

Figure 8: Post-training Composite Unseen Tasks (16)
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