
D2CSG: Unsupervised Learning of Compact CSG
Trees with Dual Complements and Dropouts

Fenggen Yu1 Qimin Chen1 Maham Tanveer1
Ali Mahdavi Amiri1 Hao Zhang1

1Simon Fraser University

This supplementary document provides 1) two propositions and their proofs regarding the generality
of D2CSG and CAPRI-Net in Section A; 2) additional details related to the notations and loss
functions in Section B; 3) details about CAD mesh construction process and more shape editing
results in Section C; 4) additional experiments regarding to ablation studies, pre-training, primitive
choices and hyper-parameters in Section D.

A Generality Proofs

Here, we provide two propositions and their proofs regarding the generality of D2CSG and CAPRI-
Net mentioned in Section 3 of the main paper.
Proposition 1. The fixed order introduced by CAPRI-Net cannot support all possible combinations
of CSG operations applied to convex shapes.

Proof. To prove Proposition 1, we provide an example that CAPRI-Net’s sequence fails to support.
In Fig. 1, the union of two rings is produced using four given circular convex shapes Ci as S =
(C1 − C2) ∪ (C3 − C4). We first assume that we can convert it to the fixed operation sequence of
CAPRI-Net where the last operation is a difference: S = Sl − Sr. There will be three cases:

Case 1: Sl = C1 − (C2 − C3), Sr = C4 (Fig. 1 (b)).

Case 2: Sl = C1, Sr = (C2 − C3) ∪ C4 (Fig . 1 (c)).

Case 3: Sl = C1 − C4, Sr = C2 − C3 (Fig. 1 (d)).

In all these cases, a difference operation is required either in Sl or Sr. However, Sl and Sr can only
be produced by intersection and union operations in CAPRI-Net’s sequence. Note that CAPRI-Net
does not support inverse convex shapes. Since we have found a contradiction, S is not reproducible
by CAPRI-Net’s operation sequence and therefore the proposition is proven.

Before presenting the second proposition about the generality of D2CSG, we provide three rules that
are later needed for this proof (see Fig. 2 for an illustration).
Rule 1: (A ∪ C)− (B − C) = (A−B) ∪ C

Proof. (A∪C)− (B−C) = (A∪C)− (B ∩C) = (A∪C)∩ (B ∩ C) = (A∪C)∩ (B ∪C) =
((A∪C)∩B)∪ ((A∪C)∩C) = ((A∪C)∩B)∪C = ((A∩B)∪ (C ∩B))∪C = (A∩B)∪C =
(A−B) ∪ C

Rule 2: A− (B ∪ C) = A−B − C

Proof. A− (B ∪ C) = A ∩ (B ∪ C) = A ∩ (B ∩ C) = A ∩B ∩ C = A−B − C

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

C1 C2 C3 C4

(a) (b)

(c) (d)

=

= =- -

-

Sl Sr

Sl Sr Sl Sr

S

S S

Figure 1: Given four convex shapes in (a), there are three ways to produce the double ring (Left)
illustrated in (b), (c) and (d).

Figure 2: The three CSG rules we used in our proof.

Rule 3: (A ∩ C)− (B ∩ C) = (A−B) ∩ C

Proof. (A∩C)−(B∩C) = (A∩C)∩(B ∩ C) = (A∩C)∩(B∪C) = (A∩C∩B)∪(A∩C∩C) =
A ∩ C ∩B = A ∩B ∩ C = (A−B) ∩ C

Proposition 2. The operation sequence in D2CSG is able to support any CSG sequence.

Proof. Knowing that any CSG sequence can be represented by a binary CSG tree, we would use
induction to prove that any binary CSG tree can be converted to our D2CSG order, where the final
operation is a difference between the cover shape SC and residual shape SR.

Base Cases: We first prove that any single CSG operation based on two convex primitives P1 and P2

can be converted to our D2CSG representation:

P1 ∩ P2 = (P1 ∩ P2)− ∅ → SC = (P1 ∩ P2), SR = ∅
P1 ∪ P2 = (P1 ∪ P2)− ∅ → SC = (P1 ∪ P2), SR = ∅
P1 − P2 = P1 − P2 → SC = P1, SR = P2

As a result, it is evident that any single CSG operation based on two convex primitives can be
converted to our D2CSG representation, where the final operation is a difference operation between
the cover shape SC and the residual shape SR.

Inductive Step: Assume any CSG tree with n CSG operations can be converted to our D2CSG
representation, where the final operation is a difference operation between the cover shape and the
residual shape. Having a CSG tree B with n+ 1 CSG operations, we need to prove that B can be
converted to our D2CSG representation.

We observe that tree B can be split into two sub-trees at the root node: B = BC ⊙ BR, where
⊙ is the CSG operation at the root node. Obviously, each of two subtrees BC and BR contains
maximum n CSG operations and can be represented by our D2CSG representation: BC = αC − αR

and BR = βC − βR, where cover shapes αC and βC are constructed only by intersection and

2

Initial Shapes

Union Results Intersection Results Difference Results

αC αR βC βR

αC

αC
αC

αC

βC

βC
βC

βC

βR

βR
βR

βR

αR

αR
αR

αR

Figure 3: 2D examples for different CSG operations.

union operations, residual shapes αR and βR are constructed only by inverse, intersection and union
operations.

Here, we discuss all possible cases for operation ⊙ between BC and BR, see examples for all three
cases in Fig. 3. We prove that all cases can be converted to our D2CSG representation.

Union case: B is a union of BC and BR:

B = BC ∪BR = (αC − αR) ∪ (βC − βR)
R1
=

(αC ∪ (βC − βR))− (αR − (βC − βR))

Here, we have SC = (αC ∪ (βC − βR)) and SR = (αR − (βC − βR)). Therefore, union case can
be written in the form of D2CSG representation.

Intersection case: B is an intersection of BC and BR:

B = BC ∩BR = (αC − αR) ∩ (βC − βR)
R3
=

(αC ∩ (βC − βR))− (αR ∩ (βC − βR))

Here, SC = (αC ∩ (βC − βR)) and SR = (αR ∩ (βC − βR)).

Difference case: B is a difference between BC and BR:

B = BC −BR = (αC − αR)− (βC − βR)
R2
=

(αC)− (αR ∪ (βC − βR)).

Here, SC = αC and SR = αR ∪ (βC − βR).

In all the above cases, each CSG operation between BC and BR can be converted to our D2CSG
representation, where the final operation is a difference operation between the cover shape SC and
residual shape SR. In addition, the cover shape SC and residual shape SR in the above three cases
can be represented by three fixed order CSG layers(Inverse, Intersection and Union) from each branch
according to the proof in CSG-Stump [1].

All the above derivations show that CSG tree B with n+ 1 CSG operations can also be converted
to our D2CSG representation, where the final operation is a difference operation between the cover
shape SC and residual shape SR.

B 2D Examples for Notations and Loss Functions

3

Q

X

DCPT

TC

ConC

WC

=
aC

|a1| |a2| -|ap|

|b1| |b2| -|bp|

g1 g2 gp

x1
2

xn
2

y1
2 z1

znyn
2

1

1

Figure 4: Visualization example shows how the notations (D, Con, a) of the cover branch are
obtained.

Figure 5: 2D examples for notations used in the loss functions (Equation (6) and (7) in the main
paper). Each sub-figure represents a 2D implicit filed defined by the notation below. The inside areas
are colored as black and outside areas are colored as white. As for L+

C and L+
R, the ground truth

shape contour is colored as green and the reconstructed shape contour at training is colored as red.
The loss functions are utilized to minimize the black area in L+

C and L+
R.

In Fig. 4, we show how the notations (D, Con, a) of the cover branch are obtained. Notations in the
residual branch can be calculated in the similar way. We also provide the 2D examples of notations
in the Equation (6) and (7) in the Fig. 5, we can see that L+

C and L+
R can force the cover shape to

cover the ground-truth shape and make the residual shape to carve out residual volumes.

C CAD Mesh Construction and Shape Editing

During inference, after obtaining PC , PR, TC and TR, we combine the two sets of primitives that
the network has produced to create cover shape SC and residual shape SR along with the learned
CSG operations in two CSG branches, then perform difference operation between them to output a
CAD mesh. Specifically, we obtain the mesh for each primitive by performing Marching-Cube on the
signed distance field produced by the quadric equation of that primitive. The CSG operations utilized
to assemble the primitive meshes are from the PyMesh library.

To facilitate shape editing in popular CAD software, once we have acquired the primitives and CSG
assembly operations, we further convert quadric primitives into basic primitives (e.g., cubes, spheres,
cylinder, etc.) by identifying the best-fitting basic primitive for each predicted quadric primitive. This
basic primitive fitting algorithm is adopted from SPFN [2]. Subsequently, we can export the primitive
parameters and CSG sequence into an OpenSCAD script. Fig. 6 shows more shape editing results.
We also provided some our generated OpenSCAD code examples in the supplementary material.

4

Figure 6: Shape editing results for ABC shapes. D2CSG learns OpenSCAD scripts for a given shape
and supports editability.

D Additional Results

Additional metric. We have used two additional compactness metrics in the Table 3 of the paper:
the number of intermediate shapes and the surface segments. The surface segments is achieved by
a hierarchical surface decomposition following the learned CSG tree and it can also measure the
compactness of the learned CSG tree. Firstly, we sample 2,048 points on the ground truth shape
surface and segment the points according to the point to left and right shape distances. Then we
decompose each point cloud segment from the last step according to the point to intermediate shape
distances. Finally, we further decompose the point cloud segments from the last step according to the
point to primitive distances. The final number of point cloud segments is calculated as the number of
surface segments we used in the paper. Based on the fact that #CSG = #intersection+#union+
#differ = (#P −#IS) + (#IS − 2) + 1 = #P − 1 for D2CSG, the number of CSG operations
is only related to the number of primitives, and the surface segments is also strongly related to the
number of primitives, we mainly use the number of primitives as compactness metric in other tables.

Pre-training. To demonstrate the pre-training on the train set is not helpful for D2CSG, we adopt
the same 3D convolutional encoder from CAPRI-Net as 3D shape encoder. We produce the shape
feature vector from the input 3D shape voxels in resolution 643 instead of sampling the shape feature
vector from the Gaussian distribution. We pre-train the encoder and decoder the in the 5,000 shapes
train set from the ABC dataset provided in the CAPRI-Net.

The results are shown in Table 1, where we can see that CAPRI-Net still under-performs compared
to D2CSG w/o pre-training. The results also demonstrate that the pre-training step is not helpful to
D2CSG since there are many structure and topology variations in the train set and the network cannot
learn a good shape prior. In addition, D2CSG can quickly fit the test shape from scratch owing to its
more general representation capabilities. Another observation is that the models with pre-training
tends to use less primitives than models w/o pre-training, we believe the reason is that pre-trained

5

Table 1: Ablation study and comparison to CAPRI-Net in the same setting with or without pre-
training.

Pre-training w/o Pre-training
Methods CAPRI D2CSG CAPRI D2CSG
CD ↓ 0.177 0.198 0.183 0.069
NC ↑ 0.903 0.904 0.907 0.928
ECD ↓ 3.990 4.170 3.918 3.091
#P ↓ 66.26 26.62 77.15 28.62

Table 2: Additional ablation study on the key components of D2CSG: complementary primitives
(CP), dual branches (DB), and dropout (DO).

Row ID CP DB DO CD ↓ NC ↑ ECD ↓ #P ↓ #IS ↓
1 - - - 0.183 0.907 3.92 77 9.2
2 - ✓ - 0.114 0.918 2.97 37 10.5
3 - ✓ ✓ 0.127 0.914 3.56 32 10.0

CSG layers have many parameters close to zero which limits the primitive count used in the following
optimization stages.

Additional ablation studies. We show additional ablation studies in the Table 2. The results
again prove that the dual branch design is helpful to achieve more accurate reconstruction results.
In addition, the dropout design can produce a more compact CSG sequence while sacrificing the
reconstruction accuracy slightly.

The primitive choice. We further demonstrate the superiority of quadric primitives over basic
primitives in our framework, such as spheres, cylinders, cubes and cones. We adopt the same primitive
representations as CSG-Stump to replace the quadric primitives in D2CSG while keeping the other
designs unchanged. Since the basic primitives make the network training much slowe (25 minutes of
each stage), we only train it in the first stage and compare it to results of D2CSG at the first stage.
The results are shown in Table 3, we can see that the quadric primitives can produce better results
than basic primitives. We believe there are two reasons: 1. the basic primitives will introduce many
complex and non-differentiable operations in point-to-primitive distance calculation; 2. the quadric
primitive representation can cover many basic primitives, therefore the change between different
primitives is smooth during training, which makes the network use more accurate primitives.

Effects of the sampled points density on stage 0. In the mesh to CSG experiments, we sampled
different number of training points to examine the effects. Table 4 shows that our results can be
slightly improved with more sampled points. This also proves that the number of points does not
affect results much when the sampled points number is larger than twenty thousand.

The hyper parameters. We examine the effects of several hyper parameters: the dropout threshold
σ, the number of maximum primitives p and intermediate shapes c, and the random sample seeds.

The results for dropout threshold σ are shown in Table 5, we can see that changing this parameter will
slightly affect the results. Specifically, increasing the threshold will produce more compact results
but sacrifice the accuracy.

Since the actual primitives and intermediate shapes used by each shape is much less than our pre-set
maximum primitive count p and intermediate shape count c, we try to reduce p and c and examine

Table 3: Effects of the primitive choice.

Methods CD ↓ NC ↑ ECD ↓
Basic 0.112 0.922 15.361

Quadric 0.063 0.946 4.265

6

Table 4: Effects of the sampled training points density on stage 0.

Density CD ↓ NC ↑ ECD ↓
14,336 0.065 0.932 4.929
28,672 0.063 0.946 4.265
57,344 0.062 0.954 4.182

Table 5: Effects of the dropout threshold σ.

σ CD ↓ NC ↑ ECD ↓ #P # IS

1 0.0686 0.9344 2.986 31.12 6.11
3 0.0692 0.9283 3.091 28.62 5.68
5 0.0713 0.9278 3.164 28.48 5.59

the effects. As it is showed in Table 6, reducing p and c will make the network use less primitives but
result in worse reconstruction quality and more intermediate shapes. In addition, we found reducing
p especially affects the reconstruction quality of the shapes with complex topologies, which requires
more primitives to reconstruct the details.

We also provide additional Mesh-to-CSG representation learning results on ABC dataset, with respect
to different random seeds used for shape feature and network initialization, seed values used in seed
#1, seed #2 and seed #3 are set to be 0, 100 and 10,000, respectively. Please see Table 7, our results
will only be slightly changed under different random seed settings.

Additional visualization results for ablation studies. We show additional visualization results
for ablation studies in Fig. 7. The results show that incorporating complementary primitives enables
better generalization to shapes with complex structures. The dual branch design further enhances
reconstruction accuracy. The dropout design can improve the compactness of the learned sequence
while slightly affect the reconstructed visual results.

Complete CSG Tree. We show additional complete CSG trees obtained by our method in Fig. 8.
The learned CSG tree looks visually compact and natural for the given input shapes.

Additional visual comparison Results. We also present more qualitative comparison results on
CSG representation learning from meshes and point clouds on ABC dataset and ShapeNet in Fig. 9,
10, 11, 12, additional CSG trees comparison in Fig. 13, 14, 15, 16.

References
[1] Jianmin Zheng Daxuan Ren, Jianfei Cai, Haiyong Jiang Jiatong Li, Zhongang Cai, Junzhe Zhang, Liang

Pan, Mingyuan Zhang, Haiyu Zhao, and Shuai Yi. CSG-Stump: A learning friendly csg-like representation
for interpretable shape parsing. ICCV, 2021. 3

[2] Lingxiao Li, Minhyuk Sung, Anastasia Dubrovina, Li Yi, and Leonidas J Guibas. Supervised fitting of
geometric primitives to 3d point clouds. In CVPR, pages 2652–2660, 2019. 4

Table 6: Effects of the maximum primitive count and intermediate shapes count.

Row p c CD ↓ NC ↑ ECD ↓ #P ↓ #IS ↓
1 32 8 0.167 0.914 4.315 23 6.1
2 128 16 0.089 0.926 3.371 28 6.0
3 512 32 0.069 0.928 3.091 29 5.7

7

Figure 7: Visualization results for the ablation study.

Figure 8: Complete CSG trees obtained by our method.

8

Table 7: Effects of the random seeds.

Seeds CD ↓ NC ↑ ECD ↓ #P ↓ #IS ↓
seed # 1 0.069 0.928 3.091 29 5.7
seed # 2 0.071 0.928 3.124 33 6.0
seed # 3 0.067 0.929 3.078 32 5.8

BSP STUMP CAPRI D2CSG GTInverseCSG

Figure 9: Comparing CSG representation learning from 3D meshes on ABC.

9

BSP STUMP CAPRI GTD2CSG

Figure 10: Comparing CSG representation learning from 3D meshes on ShapeNet.

10

Input BSP STUMP CAPRI GTD2CSG

Figure 11: Comparing CSG representation learning from 3D PointCloud in ABC.

11

Input BSP STUMP CAPRI GTD2CSG

Figure 12: Comparing CSG representation learning from 3D PointCloud in ShapeNet.

12

CAPRI

BSP STUMP

D2CSG

Figure 13: Comparing learned CSG Trees from an 3D example in ABC.

CAPRI

BSP STUMP

D2CSG

Figure 14: Comparing learned CSG Trees from an 3D example in ABC.

13

BSP STUMP

CAPRI D2CSG

Figure 15: Comparing learned CSG Trees from an 3D example in ShapeNet.

CAPRI

BSP STUMP

D2CSG

Figure 16: Comparing learned CSG Trees from an 3D example in ShapeNet.

14

