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ABSTRACT

Transporting between arbitrary distributions is a fundamental goal in generative
modeling. Recently proposed diffusion bridge models provide a potential solu-
tion, but they rely on a joint distribution that is difficult to obtain in practice.
Furthermore, formulations based on continuous domains limit their applicability
to discrete domains such as graphs. To overcome these limitations, we propose
Discrete Diffusion Schrödinger Bridge Matching (DDSBM), a novel framework
that utilizes continuous-time Markov chains to solve the SB problem in a high-
dimensional discrete state space. Our approach extends Iterative Markovian Fit-
ting to discrete domains, and we have proved its convergence to the SB. Fur-
thermore, we adapt our framework for the graph transformation and show that
our design choice of underlying dynamics characterized by independent modifi-
cations of nodes and edges can be interpreted as the entropy-regularized version
of optimal transport with a cost function described by the graph edit distance.
To demonstrate the effectiveness of our framework, we have applied DDSBM to
molecular optimization in the field of chemistry. Experimental results demonstrate
that DDSBM effectively optimizes molecules’ property-of-interest with minimal
graph transformation, successfully retaining other features.

1 INTRODUCTION

Transporting an initial distribution to a target distribution is a foundational concept in modern gen-
erative modeling. Denoising diffusion models (DDMs) have been highly influential in this area,
with a primary focus on generating data distributions from simple prior (Sohl-Dickstein et al., 2015;
Song & Ermon, 2019; Ho et al., 2020; Song et al., 2020; Kim et al., 2024b). Despite their promising
results, setting the initial distribution as a simple prior makes DDMs hard to work in tasks where
the initial distribution becomes a data distribution, such as image-to-image translation. To tackle
this, diffusion bridge models (DBMs) extend DDMs to transport data between arbitrary distribu-
tions (Liu & Wu, 2023; Liu et al., 2023; Zhou et al., 2023). However, training DBMs requires a
coupling between the initial and target distributions, which is often difficult to obtain in practice.
The Schrödinger Bridge (SB) provides an attractive framework for constructing a joint distribution
of two data distributions while aligning with the underlying stochastic dynamics (Pariset et al., 2023;
Kim et al., 2023; Dong et al., 2024).

Formally, the SB problem seeks the stochastic process that connects two distributions and is closest
to a reference process, measured by the Kullback-Leibler (KL) divergence (Schrödinger, 1932). The
SB problem can be described as an entropy-regularized optimal transport (EOT) problem, which in-
troduces an entropy term to the optimal transport (OT) objective, resulting in randomness in the
transport process (Léonard, 2013). Here, the transportation cost is determined by the system’s nat-
ural dynamics; for example, in the case of Brownian motion, the transportation cost becomes L2

(De Bortoli et al., 2021). The SB/EOT can be computed efficiently using the Sinkhorn algorithm,
though high-dimensional or large-scale data applications remain challenging (Sinkhorn, 1967; Cu-
turi, 2013). In recent, many methods have been proposed to approximate SB via distribution learn-
ing, utilizing techniques developed in DBM and DDM (De Bortoli et al., 2021; Liu et al., 2022;
Somnath et al., 2023; Liu et al., 2023; Peluchetti, 2023a; Shi et al., 2024; Lee et al., 2024).

Despite the progress, most of the methods focus on the continuous spaces, where diffusion processes
are represented by Brownian motion, and SB problems in discrete domains are less explored. It is
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Figure 1: A schematic illustration of DDSBM transforming (a) bridge process to (b) Schrödinger
Bridge in discrete spaces.

particularly significant in fields that handle discrete state data, such as graphs or natural language
(Austin et al., 2021; Vignac et al., 2022). Directly applying frameworks for approximating SB
formulated in continuous spaces to these domains limits its potential since it does not reflect the
intrinsic properties of discrete data space. To bridge the gap, we propose a novel framework called
Discrete Diffusion Schrödinger Bridge Matching (DDSBM) utilizing the continuous-time Markov
chains (CTMCs) to solve the SB problem in a high-dimensional discrete setting. Our approach
leverages Iterative Markovian Fitting (IMF), which was originally proposed for the SB problem in
a continuous domain (Peluchetti, 2023a; Shi et al., 2024).

We then extend our formulation to the graph domain, where the underlying process can be inter-
preted as independent modifications to both the nodes and edges (Vignac et al., 2022). In this case,
the cost function of the corresponding EOT can then be regarded as the graph edit distance (GED),
which is especially suited for systems where preserving graph similarity is crucial (Sanfeliu & Fu,
1983). The molecular optimization in drug/material discovery is such a case in that molecules are
represented as graphs. In addition, the goal is to obtain the molecules with desired molecular prop-
erties while retaining favorable properties in acclaimed molecules. Since molecular structures are
closely related to their properties, it is highly advantageous to minimize structural changes (or graph
editing) during the optimization.

To validate our framework, we evaluated the performance of DDSBM on molecular optimization
tasks, with criteria of demonstrating optimal structural modifications to achieve desired property.
DDSBM shows promising results in molecular distribution shift with minimum structural change
compared to the previous graph-to-graph translation models. As a direct result of this, DDSBM
retains multiple properties of the initial molecules, along with desired property. Lastly, we applied
DDSBM for a more challenging task, where proper joint pairing between two molecular spaces can
not be defined properly.

Our contributions are as follows:

• We propose a novel framework, DDSBM, for the SB problem in discrete state spaces by
exploiting the IMF procedure and prove its convergence to the SB solution.

• We extend our framework to the graph domain, demonstrating a connection between the
objective function and the GED.

• By reformulating molecular optimization as the SB problem, we show that our approach
successfully addresses molecular optimization tasks.

2 RELATED WORKS

Diffusion Bridge Models. Diffusion bridge models (DBMs) have recently shown state-of-the-art
results in a variety of continuous domains, such as images, biology, and chemistry (Liu & Wu,
2023; Liu et al., 2023; Somnath et al., 2023; Zhou et al., 2023; Lee et al., 2024). While Igashov
et al. (2023); Yang et al. (2023) have extended these models to discrete domains, they focused on
settings where well-defined data pairs exist. To the best of our knowledge, we are the first to study
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DBM in discrete domains where proper joint distributions between data points are not provided or
well-defined.

Schrödinger Bridge Problem. The Schrödinger Bridge (SB) problem is an important concept in
recent generative modeling (Liu et al., 2022; Somnath et al., 2023; Peluchetti, 2023a; Shi et al.,
2024). In particular, incorporating the SB problem into DBM can address scenarios where no ap-
propriate joint distribution is available, as demonstrated by recent works (Pariset et al., 2023; Kim
et al., 2023; Dong et al., 2024). For example, Somnath et al. (2023) proposed learning an SB based
on an assumed (partial) true coupling, while Shi et al. (2024) showed that it is possible to generate
high-quality samples from arbitrary couplings that are well-aligned with the initial data. However,
most existing approaches focus on continuous spaces. To the best of our knowledge, we are the first
to propose a framework for solving the SB problem in high-dimensional discrete spaces.

Molecular Optimization. Molecular optimization is a promising strategy in drug/material discov-
ery that aims to improve acclaimed molecules to satisfy multiple domain-specific properties. One
major approach to the molecular optimization problem is to formulate it as a graph transformation
problem, which can be categorized into latent-based and graph-editing approach. The latent based
approaches such as JT-VAE by Jin et al. (2018) and HierG2G by Jin et al. (2020) encode an input
graph into a single latent vector and then decode it into a whole graph that follows a certain data dis-
tribution. The graph-editing approaches such as Modof by Chen et al. (2021) and DeepBioisostere
by Kim et al. (2024a) learn a graph editing procedure to transport a given molecule to another. De-
spite their promising results in optimizing molecular graphs, their training schemes rely on paired
data created by predefined rules, which limits not only the general applicability but also the opti-
mality of the transformations. In this work, we propose a more flexible framework for molecular
optimization by formulating it as a graph SB problem, leading to more optimal graph transformation
accompanying less structural changes.

3 THEORETICAL BACKGROUND

3.1 SCHRÖDINGER BRIDGE PROBLEM

Consider the standard Brownian motion (Xt)0≤t≤τ defined in Euclidean space, taken as a reference
process with a given transition density. Given an initial distribution Γ for X0, the distribution for
Xτ is subsequently determined by Γ and the transition density of the reference process. Suppose
we not only prescribe the initial distribution Γ but also specify a terminal distribution Ξ at t = τ . In
this scenario, the reference process Xt generally fails to hold the boundary conditions. Schrödinger
Bridge (SB) problem is finding the process that closely resembles the reference process while satis-
fying the boundary conditions on initial and terminal distributions. For an intuitive introduction to
the SB problem, please refer to Appendices A.1 and A.2.

Specifically, the reference process with the path measure Q is given, the SB problem is finding
a process with path measure P by minimizing Kullback-Leibler (KL) divergence to the reference
process, DKL(P∥Q). The SB solution is characterized as below:

PSB = argmin
P

{DKL(P∥Q) : P0 = Γ,Pτ = Ξ}. (1)

If we additionally fix the initial and terminal coupling (joint distribution) P0,τ , the optimality can
be found easily as a mixture of bridges P0,τQ·|0,τ (see formal definition at Definition 3.1), which
implies that finding the SB solution is equivalent to finding optimal coupling PSB

0,τ (Léonard, 2013).
In particular, such optimal coupling is called static SB solution, which could be defined as follows:

PSB
0,τ = argmin

P0,τ

{DKL(P0,τ∥Q0,τ ) : P0 = Γ,Pτ = Ξ}. (2)

Note that the KL-divergence is decomposed into the entropy term H(P0,τ ) and the cross-entropy
term EP0,τ [− log q(xτ |x0)], where q denotes the transition density of Qτ |0. The transition density
in cross-entropy term is L2 distance when the reference process is the standard Brownian motion.
In general, the static SB problem is equivalent to the entropy-regularized optimal transport (EOT)
problem with the cost function c(x, y) = − log qτ |0(y|x) (Léonard, 2013).
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3.2 STOCHASTIC PROCESS OVER DISCRETE SPACE

To extend the SB problem to discrete state spaces, a suitable stochastic process is necessary. Un-
like continuous spaces, where Brownian motion serves as the canonical reference process, discrete
spaces require a distinct approach that aligns with their structure.

Let the state space (X , dX ) be a finite metric space, where X is the finite set of states, and dX
represents the distance between states. The corresponding path space Ω = D([0, τ ],X ) consists of
all left-limited and right-continuous (cádlág) paths over X within the time interval [0, τ ]. A path
ω ∈ Ω represents a sequence of states indexed by time, where ωt ∈ X denotes the state at time
t. The space of path measures is denoted P(Ω) and the set of Markov path measures is denoted as
M ⊂ P(Ω).

In this work, we model the reference path measure for the SB problem, Q ∈ M, as continuous-time
Markov Chains (CTMCs). A CTMC describes the stochastic evolution over X in continuous time,
which is characterized by transition rates. The transition rate At(x, y) defines the instantaneous rate
of transition from x to y at time t. This rate satisfies At(x, y) ≥ 0 for x ̸= y, and

∑
y∈X At(x, y) =

0. The time evolution of the stochastic process is governed by the Kolmogorov forward equation:

∂Ps:t(x, y)

∂t
=
∑
z∈X

Ps:t(x, z)At(z, y), (3)

where Ps:t(x, y) is the probability of transitioning from x at time s to y at time t. To ensure that
the reference process Q is suitable for constructing the SB problem, we assume that the reference
process is an irreducible CTMC, meaning that every state in X can be reached from any other state.
More specifically, for any pair of states x, y ∈ X , Qτ |0(y|x) := P0:τ (x, y) > 0.

3.3 EXTENSION OF ITERATIVE MARKOVIAN FITTING METHOD TOWARD DISCRETE SPACE

Recently, there have been many studies to solve the SB problem with diffusion processes on smooth
manifolds using denoising score matching (Peluchetti, 2023a; Shi et al., 2024). We refer to Ap-
pendix A.3 for a brief description of the method. While these approaches primarily focus on con-
tinuous spaces, we here aim to address the SB problem in discrete spaces, specifically dealing with
left limited and right continuous (càdlàg) paths over finite state spaces. While it is known that the
SB problem can be solved in finite state spaces (Sinkhorn, 1967; Cuturi, 2013; Chow et al., 2021),
existing methods face limitations when handling high-dimensional or large-scale data and are not
suitable for generative modeling applications. For an intuitive explanation and our insights into the
discrete SB problem, refer to Appendix A.4.

Overcoming these challenges, we extend the Iterative Markovian Fitting (IMF) method, originally
formulated on continuous diffusion processes, to the discrete setting of Markov chains over fi-
nite state spaces. The IMF method and projection operations were introduced in previous work
(Peluchetti, 2023a; Shi et al., 2024); we adopt these concepts without conceptual changes. Our con-
tribution lies in providing the theoretical extension toward the discrete setting, which to the best of
our knowledge, has not been previously established.

In this subsection, we introduce the previously developed IMF method and prove a convergence
theorem specific to the discrete-state problem setting, with detailed proofs provided in Appendix B.
Despite extending the IMF method to discrete spaces, our approach is still fundamentally rooted in
the intrinsic properties of the SB solution. Specifically, we rely on the representation of the unique
Markov measure as a mixture of bridges P0,τQ·|0,τ (see Theorem B.1).

According to Theorem B.1, the SB solution is a mixture of pinned-down measures of Q(·|X0 =
x0, Xτ = xτ ), where the pair (x0, xτ ) is drawn from the coupling PSB

0,τ . Based on this, the projection
method first constructs a reciprocal measure, which is a mixture of pinned-down processes from a
given initial coupling. Although each pinned-down process is Markov, the mixture generally loses
the Markov property in general as a collection of Markov processes is non-convex (Léonard et al.,
2014). Thus, it then identifies the Markov measure that is closest to the mixture. This yields an
improved coupling, and the process is iterated to obtain a measure that is both the mixture of pinned-
down measures and Markov—the desired SB solution.
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In this context, we define the reciprocal projection to describe the construction of a reciprocal mix-
ture from a given coupling (see Definition 3.1). Similarly, the term Markov projection is used to
describe the approximation of a reciprocal process with a Markov process (see Definition 3.2).

Definition 3.1. (Reciprocal Projection)
Λ ∈ P(Ω) is in the reciprocal class R(Q) with respect to a Markov measure Q if Λ = Λ0,τQ|0,τ .
For a measure Λ ∈ P(Ω), its reciprocal projection with respect to Q is

ΠR(Q)(Λ)(·) :=
∫∫

(·)
Λ(dx0, dxτ )Q(dxt|x0, xτ ).

Among the measures with the coupling Λ0,τ ̸= PSB
0,τ , the minimizer of the KL-divergence to the ref-

erence process is the (non-Markov) reciprocal projection ΠR(Λ). The reciprocal projection consists
of a mixture of bridges, where each bridge is derived from Doob’s h-transform with the realization
of an end-point pair (x, y) ∼ Λ0,τ (Levin & Peres, 2017). Obviously, it preserves the initial-terminal
coupling. Although each pinned-down bridge is Markov (see Lemma B.4), the mixture is generally
not Markov.

Definition 3.2. (Markov Projection)
Given a path measure Λ ∈ R(Q), a Markov path measure that minimizes the reverse KL-divergence
to Λ is called as Markov projection of Λ,

ΠM(Λ) = argmin
M

{DKL(Λ∥M) : M ∈ M} .

The Markov projection preserves the marginal distribution at all times t, but does not preserve
the coupling. Furthermore, the generator of the projected Markov measure and the reverse KL-
divergence DKL(Λ∥ΠM(Λ)) are explicitly derived in the Proposition B.2.

For a given reciprocal process Λ(0) ∈ R(Q), we consider a sequence (Λ(n))n∈N which is defined
by the recurrence relation:

Λ(2n+1) = ΠM(Λ(2n)), (4)

Λ(2n+2) = ΠR(Q)(Λ
(2n+1)),

where Λ
(0)
0 = Γ and Λ

(0)
τ = Ξ. Under mild assumptions, the resulting sequence of measures of

iterative projection converges to PSB in law (see Theorem 3.3 and Appendix B.5).

Theorem 3.3. (Convergence of Iteration)
Assume that DKL(Λ

(0)
0,τ∥PSB

0,τ ) < ∞, Λ(n) ≪ PSB for all n ∈ N. Then the sequence of KL-divergence
to PSB is non-increasing,

DKL(Λ
(2n)∥PSB) ≥ DKL(Λ

(2n+1)∥PSB) ≥ DKL(Λ
(2n+2)∥PSB).

DKL(Λ
(2n)∥PSB) = DKL(Λ

(2n+1)∥PSB) if and only if Λ(2n) = Λ(2n+1) = PSB. Moreover, Λ(n)

converges to PSB in law as n → ∞.

4 METHODS

Here, we propose the Discrete Diffusion Schrödinger Bridge Matching (DDSBM) framework, which
solves the SB problem in discrete state spaces with a diffusion generative modeling, supported by
our theoretical background in Section 3.3. Approaches to the SB problem in continuous spaces are
based on stochastic differential equations, while our method uses continuous-time Markov chains
(CTMCs) in discrete state spaces. We first propose the DDSBM framework that adjusts the Itera-
tive Markovian Fitting (IMF) to càdlàg paths in discrete spaces, whose convergence is ensured by
Theorem 3.3 (Section 4.1). We then discuss how the DDSBM framework can be implemented for a
graph transformation problem (Section 4.2) and introduce a graph permutation matching algorithm
to reflect the permutation-invariance nature of graphs (Section 4.3).
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4.1 ALGORITHM FOR SOLVING SCHRÖDINGER BRIDGE PROBLEM ON DISCRETE STATES

The IMF algorithm begins with a random initial coupling π such that π0 = Γ and πτ = Ξ. Following
the definition of the reciprocal class in Definition 3.1, we construct the initial reciprocal bridge to
obtain the measure Λ(0). Given a reciprocal measure Λ(2n) ∈ R(Q), the next step is to compute its
Markov projection M (2n+1) := ΠM(Λ(2n)). The exact form of the transition rate for M (2n+1) is
provided in Proposition B.2. In practice, the transition rate is approximated by a neural network.

To achieve this, it first samples pairs (x0, xτ ) from Λ
(2n)
0,τ and samples intermediate states xt by

constructing the bridge Q(·|X0, Xτ ). The sampled pairs (xt, xτ ) are distributed according to Λ
(2n)
t,τ .

Using these realizations, the rate matrix of M (2n+1) is approximated by parameterized Markov
measure Mθ, by minimizing the following loss function:

L(θ) =
∫ τ

0

E
Λ

(2n)
t,τ

(AQ·|τ
t −AMθ

t )(Xt, Xt) +
∑
y ̸=Xt

A
Q·|τ
t log

A
Q·|τ
t

AMθ

t

(Xt, y)

 dt, (5)

where A
Q·|τ
t denotes the generator of pinned down process of Q(·|Xτ ), explicitly defined in

Lemma B.4. From the approximated generator AMθ

t , we can sample xτ given x0, where (x0, xτ ) ∼
Mθ

0,τ ≈ M
(2n+1)
0,τ . Note that, until the sequence of measures converges, the new joint coupling

Mθ
0,τ ≈ M

(2n+1)
0,τ will differ from the previous one Λ

(2n)
0,τ .

Once the Markov measure M (2n+1) is obtained, we proceed to compute the corresponding recip-
rocal measure Λ(2n+1) through reciprocal projection, Λ(2n+1) := ΠR(Q)(M

(2n+1)). In theory, as
shown in Proposition B.2, the time marginal distributions are preserved under Markov projection,
meaning that Λ(2n)

t = M
(2n+1)
t for all t ∈ [0, τ ]. However, in practice, since the Markov projec-

tion is approximated using a neural network, repeatedly applying this approximation can lead to an
accumulation of errors in the time marginals. Such accumulated errors may violate the marginal
condition of the SB problem, particularly leading to a potential failure in satisfying the terminal
condition Pτ = Ξ.

To compensate these errors, the next Markov measure M (2n+2) := ΠM(Λ(2n+1)) is approximated
in a time-reversal way (see Proposition B.8). Based on the time-symmetric nature of Markov mea-
sures, we can leverage the time-reversed generator ÃM(2n+2)

t , which enables the sampling of x0

conditioned on xτ , where (x0, xτ ) ∼ M
(2n+2)
0,τ . The approximation of ÃM(2n+2)

t is achieved by
minimizing the following loss function:

L(ϕ) =
∫ τ

0

EΛ0,t

(ÃQ·|0
t − ÃMϕ

t )(Xt, Xt) +
∑
y ̸=Xt

Ã
Q·|0
t log

Ã
Q·|0
t

ÃMϕ

t

(Xt, y)

 dt, (6)

where Ã
Q·|0
t denotes the time-reversal generator of the pinned down process of Q(·|X0), and ϕ

represents the parameters of the neural network approximating the time-reversed generator ÃMϕ

t .

In this manner, the iterative Markov projection following the reciprocal projection is performed
alternately in a forward and backward (time-reversal) fashion (see Algorithm 1). Finally, this process
yields a sequence of measures (Λ(n))n∈N and (M (n))n∈N+ , which converge to PSB in theory.

4.2 APPLY DDSBM ON GRAPHS

We present a method for applying the previously described solution to graph transformation. Here,
we represent a graph as G = (V,E), where V = (v(i))i and E = (e(ij))ij denote node and edge
features, respectively. In a molecular graph, for example, the node and edge features correspond to
atomic types and edge features, respectively. Here, V and E are modeled as products of categorical
random variables.

As the reference process, we define a jump process in which the nodes and edges of the graph vector
change discretely, assuming that all nodes and edges are independent. Therefore, the transition

6
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probability P and the rate A of the reference process is described as follows:

PG
s:t(G1,G2) =

∏
i

PV
s:t(v

(i)
1 , v

(i)
2 )
∏
i,j

PE
s:t(e

(ij)
1 , e

(ij)
2 ),

∂tP
(·)
s:t (x, y) =

∑
z∈X (·)

P
(·)
s:t (x, z)A

(·)
t (z, y), (7)

A(·)
s (x, y) = ∂tP

(·)
s:t (x, y)

∣∣
t=s

,

where · denotes V or E, G1 denotes (V1,E1) =
(
(v

(i)
1 ), (e

(ij)
1 )

)
, G2 denotes (V2,E2) =(

(v
(i)
2 ), (e

(ij)
2 )

)
, and X V and XE denote the state space of the nodes and edges, respectively. More

specifically, we use a monotonically decreasing function for the signal to noise ratio, ᾱ : [0, τ ] →
(0, 1], in which the transition rate is defined as:

A
(·)
t (x, y) = ∂t(ln ᾱ(t))

(
δxy −m(·)(y)

)
, (8)

where δxy denotes the Kronecker delta, and m(V ) and m(E) denote the prior distribution of nodes
and edges as proposed in the previous discrete diffusion work (Vignac et al., 2022). According to
the Kolmogorov equation, we get the transition probability as,

P
(·)
s:t (x, y) =

ᾱ(t)

ᾱ(s)
δxy +

(
1− ᾱ(t)

ᾱ(s)

)
m(·)(y). (9)

Note that the choice of m(·) as uniform is associated to the diffusion on the state space X , where the
X is considered fully-connected graph. Moreover, the stationary distribution of the associated gener-
ator always becomes m(·). Although non-uniform choice of m(·) breaks the diffusion formulation
on X , it does not harm SB formulation.

The reference process defined above, Q, is a permutation-equivariant process since each node and
edge changes independently. Formally,

Qs:t(G1,G2) = Qs:t(σG1, σG2), ∀σ ∈ Sn, 0 ≤ s ≤ t ≤ τ, (10)

where Sn is the permutation group for n elements. Although we represented a graph as a vectorized
form, G, the graph itself must be permutation-invariant. To reflect this, we define a graph with n
nodes as a set of graph vectors,

G := {σ(G)|σ ∈ Sn} , (11)

where G is an arbitrary vectorization of G. The nature choice of a joint probability between G and
G is to define it with an indicator function,

p(Gi,Gj) = p(Gj |Gi)p(Gi), p(Gj |Gi) = pij1Gi
(Gj) =

{
pij if Gj ∈ Gi,

0 otherwise,
pij =

1

|Gi|
, (12)

where |Gi| is the number of distinct graph vectors in a graph Gi. Now, we can define the transition
kernel between graphs with an associated stochastic process of graph vectors as follows:

Q̃ (G′|G) :=
∑

σ∈SG′ ,µ∈SG

p (G′|σ(G′))Q0:τ (σ(G
′), µ(G)) p(µ (G)|G) (13)

=
∑

σ∈SG′ ,µ∈SG

1G′ (σ(G′))Q0:τ (σ(G
′), µ(G))

1

|G|
(14)

=
∑

ω∈SG′

Q0:τ (ω(G
′),G), (15)

where SG and SG′ are permutation groups of G and G′, and G and G′ are arbitrary graph vectors of
G and G′, respectively. Equation (15) connects the transition kernels on graphs and their vectorized
forms.
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4.3 GRAPH PERMUTATION MATCHING

The transition probability of the reference process depends on graph permutations (see Equation (7)),
so graph permutation matching must be considered beforehand. Although this issue does not affect
the sampling phase, it becomes problematic when computing the likelihood of the reference process
for two given graphs G and G′, or when constructing a reciprocal process, which is a mixture of
Markov bridges between the two graphs (see Appendix D).

One way to handle this is selecting a graph permutation that maximizes the likelihood under the
reference process. Finding the optimal permutation can be formulated as a quadratic assignment
problem (QAP), where the objective is to minimize the negative log-likelihood (NLL), consisting
of the sum of the NLLs for both the nodes and edges. While exact solutions are possible through
mixed integer programming, the problem is NP-hard, so alternative methods are preferred. Specifi-
cally, we employ a max-pooling algorithm by Cho et al. (2014), which is an approximation method
categorized by continuous relaxation. After obtaining an approximate solution, we use the Hungar-
ian algorithm (Kuhn, 1955), implemented in the Pygmtools (Wang et al., 2024), to discretize the
assignment vector to the final solution. We observed that the graph matching is highly accurate in
molecular graph matching (see Appendix D.5). The details of the algorithm are described in Ap-
pendix D.4. We utilized the graph matching algorithm for every reciprocal bridge construction and
likelihood computation.

Recall that the SB problem could be interpreted to the EOT problem, where the cost function cor-
responds to the NLL. Thus, defining the reference process can be interpreted as defining a distance
(cost) on the set of graphs. Interestingly, we found that the likelihood of optimal permutation is
interpreted as the graph edit distance (see Appendix D.6). This leads to the conclusion that the SB
problem, with the Q as Equation (9), is analogous to an OT problem over the metric space of graphs
equipped with graph edit distance (GED) as metric, where the GED computation is well known to
be NP-hard problem.

5 RESULTS AND DISCUSSIONS

Here, we demonstrate the effectiveness of the Discrete Diffusion Schrödinger Bridge Matching
(DDSBM) framework on graph transformation tasks. Specifically, we apply DDSBM to a chem-
ical domain, where the graph transformation task is nontrivial due to additional constraints imposed
by molecular graphs and their associated properties. We conducted experiments on two different
molecule datasets: ZINC250K (Kusner et al., 2017) and Polymer (St. John et al., 2019). Through-
out this section, we first elaborate on the common experimental setups and metrics for evaluation.
The second and third sections provide a detailed analysis of ZINC250K and Polymer experiments.
Also, we discuss ablation studies for graph matching algorithms and the initial data coupling method
to analyze their effects on the overall performance of DDSBM and the convergence of the Iterative
Markovian Fitting (IMF) iteration (see Appendix F.2). Furthermore, for readers who might be inter-
ested in the performance of DDSBM on unconditional graph generation tasks, i.e. synthetic graph
data such as Community-20, Planar, or the small molecule graph dataset, QM9, we present the
DDSBM results for them in Appendix G.

5.1 EXPERIMENTAL SETUP AND METRICS

Experimental Setup. To train the models on graph transformation problems, an initial coupling
between two distributions is necessary. We randomly coupled the data of initial and terminal distri-
butions to obtain paired data. The molecular pairs are divided into training and test datasets in a ratio
of 8:2. All the following reported values are average of three independent training runs with differ-
ent random seeds. For standard deviation, please refer to Appendix F.1. Also, detailed explanations
about model architectures and hyperparameters can be found in Appendix E.

Metrics. By definition of SB shown in Equation (1), both joint and marginal distributions at each
side must be examined to assess the degree to which the SB has been successfully achieved. We eval-
uate these distributions from two perspectives: graph structural properties and molecular properties.
Analysis on graph structural properties examines whether our model could capture the data-intrinsic
features and the optimality of transporting between given data distributions. Since the graph struc-
tural features might exhibit weak correlation with the molecular properties, we also analyze the
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Table 1: Distribution shift performance on ZINC. Reference refers to metrics from the initial
coupling, used as a standard to evaluate each model’s graph translation. For both AtomG2G and
HierG2G, we’ve excluded the generated molecules that are too large with more atoms than the
maximum number of atoms in our dataset for computing metrics other than validity. ↑ and ↓ denote
higher and lower values are better, respectively. The best performance is highlighted in bold.

Model Type Val.(↑) Uniq.(↑) Nov.(↑) NLL(↓) NSPDK(↓) LogP W1(↓) QED MAD(↓) SAscore MAD(↓) FCD(↓)
Reference1 - - - - 360.862 1.47e-4 2.007 0.153 0.595 4.807 / 0.279

AtomG2G Latent 99.9 64.4 99.3 355.025 9.70e-3 0.162 0.143 0.697 5.019
HierG2G Latent 100.0 73.7 99.5 344.458 2.10e-2 0.113 0.146 0.687 5.742

DBM Bridge 87.6 100.0 100.0 288.572 8.04e-4 0.150 0.141 0.608 1.046
DDSBM Schrödinger Bridge 94.8 100.0 99.9 160.461 7.30e-4 0.139 0.120 0.402 0.833
1 NLL, W1, and MADs were calculated using random pairs from the test set. Two FCD values are provided: the first compares the initial molecules in the test set with the terminal

molecules in the training set, and the second compares the terminal molecules in both sets. Also, the reference NSPDK is computed with the terminal molecules from training and
test sets.

molecular properties to validate the effectiveness of the DDSBM framework on the molecular opti-
mization tasks. Besides the basic metrics for molecular generative models—validity (Val.), unique-
ness (Uniq.), and novelty (Nov.)— we evaluate molecular properties with Wasserstein-1 distance
(W1) and Fréchet ChemNet Distance (FCD). On ZINC250K, mean absolute differences (MAD) of
drug-likeness (QED), and synthetic accessibility (SAscore) are also evaluated. For graph structural
properties, we analyze negative log-likelihood (NLL) and neighborhood subgraph pairwise distance
kernel (NSPDK). More details about the metrics are explained in Appendix E.4.

5.2 SMALL MOLECULE TRANSFORMATION

First, we validate our proposed methods on the SB problem between two molecule distributions
constructed from the standard ZINC250K dataset. We constructed two sets of molecules whose
logP values are largely different. Molecules from the ZINC250K dataset were randomly selected
and divided into two sets whose logP values follow the Gaussian distributions centered at 2 and 4
with variance of 0.5, respectively (see Appendix E.2 for more details). We compared our methods
with three baseline models that perform graph-to-graph translation. AtomG2G and HierG2G are
latent-based models that encode an input graph into a latent vector and decode it into another graph
(Jin et al., 2020). Diffusion Bridge Model (DBM) is a bridge model trained with the same refer-
ence process as DDSBM, which is equivalent to the first Markov projection in DDSBM. We refer
readers to Appendix E.3 for more details about the baselines and implementation of our models. We
note that, for these three baseline models, the initial coupling is utilized during the whole training
procedure without change, while DDSBM dynamically alters the training data pair by IMF.

Table 1 shows overall results of our method compared to the three baseline models. DDSBM con-
sistently outperforms the other models in terms of both NSPDK, NLL, and FCD. The lower NSPDK
and FCD suggest that DDSBM-generated molecules are more similar to those in the target dataset,
while the minimal NLL indicates that DDSBM applies minimal structural change on initial graphs.
This result demonstrates that DDSBM achieves more optimal graph transformation between fixed
initial and terminal distributions. When it comes to the model type, bridge models shows superior
in FCD, NLL, and NSPDK, compared to the latent-based models. The bridge models, DBM and
DDSBM, dynamically transform a graph based on the reference dynamics, favoring the retention of
the given structure, whereas whole-graph reconstruction using a latent vector does not. This leads to
lower NLL values for the bridge models, which is ensured by the Definition 3.2. Additionally, the
lower NSPDK and FCD values of the bridge models highlight that constructing a dynamic bridge
within the graph domain enhances the performance of distribution learning for the target distribu-
tion. The latent models have a higher validity, but given that their uniqueness is significantly lower
compared to the bridge models, which achieve 100% uniqueness, the bridge models are better suited
for tasks that require distinct and diverse molecule generation. Furthermore, we attribute the best
performance of DDSBM to the gradual updating of training pairs, which become more similar than
the random initial pairs, simplifying the graph transportation process.

Next, we analyze the molecular properties of the source and generated molecules. DDSBM resulted
in the lowest MAD in QED and SAscore, meaning the deviation of molecular properties other than
logP is the smallest for DDSBM. It is noteworthy that DDSBM achieves minimal changes in various
molecular properties despite being trained solely to optimize graph transformations with minimal
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structural alterations, without explicit knowledge on molecular properties. Meanwhile, the latent-
based models exhibited larger MAD values in QED and SAscore, indicating that they are vulnerable
to losing other properties of the initial molecules. This can be inferred from the result of HierG2G;
although HierG2G achieves the lowest W1 value in logP so that it modulates logP the best to
the desired degree, its much larger NLL value suggests that it could generate a graph with less
consideration of the initial graph constraint, as illustrated in Figure 14. For a better understanding
of the overall results, we provide the corresponding distributions of properties of the models in
Figure 10.

Despite the promising results, we observe that all models except DDSBM have a high reliance on a
predefined initial coupling. Thus, we conducted additional experiments using pseudo-optimal initial
coupling based on Tanimoto similarity, which is detailed in Appendix F.2.2. Interestingly, we found
that introducing the pseudo-optimal initial coupling not only accelerated the training of DDSBM in
practice but also allowed it to achieve performance on par with the previous results.

5.3 POLYMER GRAPH TRANSFORMATION

The Polymer dataset (St. John et al., 2019) consists of 91,000 monomer molecules with their optical
excitation energies (GAPs) obtained by time-dependent density functional theory calculations. We
reconstructed the Polymer dataset for a transport problem between two sets of molecules with dis-
tinct GAPs, corresponding to green and blue optical colors, respectively. The reconstructed dataset
contains 7,603 molecular pairs. This task is considered as a more challenging application because
the relationship between the graph structure and the target GAP property is highly non-linear, mak-
ing it hard to predict the effect of specific structural changes on the GAP. In this context, we apply
our DDSBM model to find the optimal transformation between the two sets of molecules.

The performance of DDSBM is compared to DBM, which serves as a baseline. The GAPs of the
molecules generated by the models were obtained using the pre-trained MolCLR model (Wang et al.,
2022), which has a mean absolute error (MAE) of 0.027 eV for the GAP prediction. Table 2 shows
the overall results of our method on the Polymer dataset. DDSBM outperforms DBM on most of
the metrics evaluated, which is consistent with the results of the experiments on ZINC. In terms
of validity, DBM shows significantly lower scores, which contrasts with the results observed on the
ZINC250K dataset. This can be attributed to the characteristics of the molecules in the Polymer
dataset, which have relatively large sizes and multiple ring structures. In this context, minimal
transformations are advantageous for achieving high validity, and DBM may have struggled to learn
these changes from the randomly paired data. Examples of the generated molecular graphs are
visualized in Figure 15.

Table 2: Distribution shift performance on Polymer. Reference refers to metrics from the initial
coupling, used as a standard to evaluate each model’s graph translation. ↑ and ↓ denote higher and
lower values are better, respectively. The best performance is highlighted in bold.

Model Type Val.(↑) Uniq.(↑) Nov.(↑) FCD(↓) NLL(↓) NSPDK(↓) GAP W1(↓)
Reference1 - - - - 1.469 / 0.384 749.800 5.64e-4 0.312

DBM Bridge 43.4 99.8 97.4 2.230 580.415 5.82e-3 0.249
DDSBM Schrödinger Bridge 97.4 94.5 71.3 1.074 212.047 4.18e-3 0.127
1 NLL and W1 were calculated using random pairs from the test set. Two FCD values are provided: the first compares the initial molecules in the test set with the terminal

molecules in the training set, and the second compares the terminal molecules in both sets. Also, the reference NSPDK is computed with the terminal molecules from training
and test sets.

6 DISCUSSION

In this paper, we propose Discrete Diffusion Schrödinger Bridge Matching (DDSBM), a novel
framework utilizing continuous-time Markov chains to solve the SB problem in a high-dimensional
discrete state space. To this end, we extend Iterative Markovian Fitting (IMF), proving its conver-
gence to SB. We successfully apply our framework to graph transformation, specifically for molec-
ular optimization. Experimental results demonstrate that DDSBM effectively transforms molecules
to achieve the desired property with minimal graph transformation, while retaining other features.
However, the IMF requires iterative sampling from the learned Markov process, which can be more
computationally intensive than simple bridge matching.
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Jean-René Chazottes, Cristian Giardina, and Frank Redig. Relative entropy and waiting times for
continuous-time markov processes. 2006.

Ziqi Chen, Martin Renqiang Min, Srinivasan Parthasarathy, and Xia Ning. A deep generative model
for molecule optimization via one fragment modification. Nature machine intelligence, 3(12):
1040–1049, 2021.

Minsu Cho, Jian Sun, Olivier Duchenne, and Jean Ponce. Finding matches in a haystack: A max-
pooling strategy for graph matching in the presence of outliers. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2083–2090, 2014.

Shui-Nee Chow, Wuchen Li, Chenchen Mou, and Haomin Zhou. A discrete schrodinger bridge
problem via optimal transport on graphs. calculus of variations, 20(33):34, 2021.

Fabrizio Costa and Kurt De Grave. Fast neighborhood subgraph pairwise distance kernel. In Pro-
ceedings of the 27th International Conference on International Conference on Machine Learning,
pp. 255–262, 2010.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
bridge with applications to score-based generative modeling. Advances in Neural Information
Processing Systems, 34:17695–17709, 2021.

Xuanzhao Dong, Vamsi Krishna Vasa, Wenhui Zhu, Peijie Qiu, Xiwen Chen, Yi Su, Yujian Xiong,
Zhangsihao Yang, Yanxi Chen, and Yalin Wang. Cunsb-rfie: Context-aware unpaired neural
schr”{o} dinger bridge in retinal fundus image enhancement. arXiv preprint arXiv:2409.10966,
2024.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like
molecules based on molecular complexity and fragment contributions. Journal of cheminfor-
matics, 1:1–11, 2009.

Stewart N Ethier and Thomas G Kurtz. Markov processes: characterization and convergence. John
Wiley & Sons, 2009.

Paul C Gilmore. Optimal and suboptimal algorithms for the quadratic assignment problem. Journal
of the society for industrial and applied mathematics, 10(2):305–313, 1962.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ilia Igashov, Arne Schneuing, Marwin Segler, Michael Bronstein, and Bruno Correia. Retrobridge:
Modeling retrosynthesis with markov bridges. arXiv preprint arXiv:2308.16212, 2023.

Benton Jamison. Reciprocal processes. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte
Gebiete, 30(1):65–86, 1974.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pp. 2323–2332.
PMLR, 2018.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular graphs
using structural motifs. In International conference on machine learning, pp. 4839–4848. PMLR,
2020.

Beomsu Kim, Gihyun Kwon, Kwanyoung Kim, and Jong Chul Ye. Unpaired image-to-image trans-
lation via neural schr\” odinger bridge. arXiv preprint arXiv:2305.15086, 2023.

Hyeongwoo Kim, Seokhyun Moon, Wonho Zhung, Jaechang Lim, and Woo Youn Kim. Deep-
bioisostere: Discovering bioisosteres with deep learning for a fine control of multiple molecular
properties. arXiv preprint arXiv:2403.02706, 2024a.

Seonghwan Kim, Jeheon Woo, and Woo Youn Kim. Diffusion-based generative ai for exploring
transition states from 2d molecular graphs. Nature Communications, 15(1):341, 2024b.

Claude Kipnis and Claudio Landim. Scaling limits of interacting particle systems, volume 320.
Springer Science & Business Media, 2013.

Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.
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A INTROUDCTION TO SCHRÖDINGER BRIDGE

In this section, we will begin with a thought experiment to briefly understand the Schrödinger Bridge
problem (SBP), followed by a simple toy example in continuous space. Specifically, we will focus
on intuitively understanding how the Iterative Markovian Fitting (IMF) method works through a toy
example. Building on this, we aim to gain insight into the Schrödinger bridge problem and explore
its application in discrete spaces.

A.1 THE LAZY GAS EXPERIMENT AND THE SCHRÖDINGER BRIDGE PROBLEM

t=0 t=τ

How do gas 
particles move?

Figure 2: A schematic illustration of the lazy gas experiment

Imagine a gas, a collection of non-interacting particles confined to a specific region of space. At
time t = 0, these particles are distributed according to a given distribution. By time t = τ , the gas
must reorganize itself to match a different distribution.

t=0 t=τ

t=0 t=τ

a. Busy Gas

b. Lazy Gas

Figure 3: A schematic comparison between lazy gas and busy gas

Busy gas will find a way to perform the given transition regardless of the amount of work required.
In contrast, lazy gas will seek to make the transition while minimizing the total work, following the
principle of least action. This simple yet thought-provoking scenario, known as the lazy gas experi-
ment, provides an intuitive starting point for understanding the SBP. Proposed by Erwin Schrödinger,
the SBP seeks to identify the most natural probabilistic process that connects two probability distri-
butions under certain constraints. At its core, the problem is to find a probabilistic interpolation that
minimizes the cost.

In essence, the SBP addresses the following question: Given the initial and final distributions of
a stochastic process, what is the optimal way to probabilistically interpolate between these two
distributions? This process must satisfy two important principles. First, the process must exactly
match the given initial and final distributions (boundary condition). Second, it must minimize some
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properly defined cost. This cost is typically defined as the Kullback-Leibler (KL) divergence with
respect to a reference process representing the underlying dynamics.

In the example of the lazy gas experiment, if the gas particles are moving according to the reversible
Brownian motion (a Wiener process with zero drift), the cost can be defined as the total distance
traveled by the particles. This principle of cost minimization ensures that the particles follow the
optimal paths that most efficiently (in terms of L2 norm) connect the initial and final distributions.
This analogy intuitively captures the essence of the SBP’s goal: to achieve a natural and efficient
transition between given marginal distributions1.

A.2 SCHRÖDINGER BRIDGE WITH TOY EXAMPLE IN CONTINUOUS SPACE

To better understand the SBP in a real-world context, consider a simple toy example involving prob-
abilistic transitions between two probability distributions in a one-dimensional continuous space.
Here, we use reversible Brownian motion as the reference process. This example allows us to con-
trast the optimal transition process (Schrödinger bridge) between the initial and final distributions
with an inefficient, suboptimal one. By visualizing these differences, we gain an intuitive under-
standing of the SBP. In particular, this example illustrates how the central goal of the problem -
minimizing costs - is achieved in practice by reducing the Kullback-Leibler (KL) divergence rela-
tive to the reference process.

t=0 t=τ t=0 t=τ

Schrödinger Bridge Arbitrary Bridge

Figure 4: A schematic comparison between Schrödinger bridge and aribtrary bridge

In Figure 4, the trajectory labeled Schrödinger Bridge on the left represents the optimal probabilistic
path connecting the two distributions. These paths are carefully structured not only to satisfy the
given boundary condition, but also to adhere to optimal cost, achieving a balance between efficiency
and regularity. On the right, the trajectories labeled Arbitrary Bridge illustrate a suboptimal transport
process. While the boundary condition is still satisfied, the intermediate paths are not optimal for
the given cost. In this context, the cost, defined by the L2 norm, highlights the differences in the
distances traveled by each point. As shown in the figure, the movements in the optimal paths are
significantly more efficient compared to those in the arbitrary paths.

Considering these differences, the next question is: how can the Schrödinger Bridge be found in
practice?

A.3 SOLVING SCHRÖDINGER BRIDGE PROBLEM IN CONTINUOUS SPACE

Since the SBP does not admit a closed-form solution, iterative algorithms such as Iterative Propor-
tional Fitting (IPF) and Iterative Markovian Fitting (IMF) are used to approximate it. Both methods
adopt the Markovian projection for a given stochastic process to minimize the KL divergence.

IPF algorithm iteratively fits their marginal distribution to the given distribution, while preserving the
reciprocal class and Markovian properties of the given process. In contrast, IMF method alternates
between reciprocal projection and Markovian projection to refine the process while keeping the
marginal distributions fixed.

1The experiments presented in this section are based on Villani (2009), with the associated explanations
informed by Léonard (2013).
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IPF

IPF

IPF

IPF

IPF (1)

(1)

(2)

(2)
(3)

(3)

(1)

(3)

(5)

(2)(4)

IMF
(1)

IMF
(2)

IMF
(3)

Figure 5: A schematic comparison between Iterative Proportional Fitting (IPF) and Iterative Marko-
vian Fitting (IMF) method. The image are reproduced based on Peluchetti (2023a). In the notation,
P (Γ, ·) represents the collection of path measures where only the initial distribution is fixed at Γ,
P (·,Ξ) represents the collection of path measures where only the terminal distribution is fixed at Ξ,
and P (Γ,Ξ) represents the collection of path measures where both the initial and terminal distribu-
tions are fixed at Γ and Ξ, respectively.

At this point, reciprocal projection is the process of constructing a mixture bridge using the refer-
ence process and Doob’s h-transform based on the given joint distribution. Markovian projection,
on the other hand, is performed by generative modeling with neural networks to produce a Markov
process similar to the given one in terms of the KL divergence. In practice, training occurs dur-
ing the Markovian projection phase, which plays the same role as bridge matching in refining the
probabilistic process.

In this section, we will focus on IMF since it is the main reference method for our DDSBM frame-
work. We will explore the interchange between the two projections and the principles by which they
work together to refine the given process.

First, when reversible Brownian motion is given as the reference process in one dimensional contin-
uous space, our goal is to find the Schrödinger bridge between the marginal distributions. We start
by obtaining the initial coupling between the marginal distributions. For visualization purposes, we
assume an initial joint distribution in which points opposite in space are coupled.

Next, we use reciprocal projection to construct a reciprocal mixture bridge connecting the marginal
distributions (Figure 6a). While this bridge has the reciprocal property, the Markov property is
generally lost. Moreover, it shows significant differences from the joint distribution of the SB,
which resembles the left side of Figure 6c.

We then apply Markov projection to this mixture bridge to derive the Markov process that is closest
in terms of KL divergence (Figure 6b). The obtained process reduces the KL divergence compared
to the previous process, bringing it closer to the Schrödinger bridge (see Figure 5). In addition,
the joint distribution becomes more similar to the SB joint distribution than the initial coupling, as
reflected by the reduced cost.

By iteratively repeating this process, the obtained Markov process converges to the Schrödinger
bridge, as guaranteed by the convergence theorem (Shi et al., 2024; Peluchetti, 2023a). Through
IMF iterations, we progressively refine the process, eventually arriving at the Schrödinger bridge
(Figure 6c).

A.4 SCHRÖDINGER BRIDGE PROBLEM IN DISCRETE SPACE

So far, we have described the SBP in the context of continuous space. Since the Wiener process used
in continuous space cannot reflect the characteristics of discrete space well, we need to introduce a
new diffusion process to solve SBP in discrete space.
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a. Reciprocal Projection

b. Markovian Projection

(1)

(1)

c. Markovian Projection (   )→

t=0

t=0

t=0

t=τ

t=τ

t=τ

t=0 t=τ

Figure 6: A schematic illustration of Iterative Markovian Fitting method.

a b c

c a b

a b a

a a b

a b c

c a b

a b a

a a b

a b c a b a

a. Discrete Diffusion Process

transition

b. Initial Bridge

c. Schrödinger Bridge

a b c b a atransition
=0

≠0

Figure 7: A schematic illustration of the discrete diffusion process and a comparison between the
initial bridge and the Schrödinger bridge

Let us consider discrete random variables with three categories (a, b, c). In this context, we can
adopt the discrete diffusion process proposed in Austin et al. (2021), such as the uniform transition
process. Unlike processes where all information about a state is lost (ᾱτ = 0), we define a discrete
diffusion process that retains partial information about its initial state (ᾱτ ̸= 0). This approach is
visualized in Figure 7a, highlighting the retained structure.

In the case of continuous space, the cost is typically represented by the L2 norm. In discrete space,
however, the cost can be thought of as the dissimilarity between discrete states. Thus, minimizing
the L2 norm in the continuous space is equivalent to minimizing the negative log-likelihood (NLL)
of the joint distribution in the discrete state space, given by the reference diffusion process we used.
The ᾱτ can be interpreted as a parameter that indicates how much of the original structure is retained
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during the diffusion process. If the original discrete diffusion process (ᾱτ = 0) is used, the NLL
assigns the same value to all pairs, making it impossible to define the SBP.

By solving the SBP using our DDSBM framework, it is possible to refine from an initial non-
optimal coupling to the optimal coupling, i.e. the Schrödinger bridge, from the perspective of NLL.
As shown in Figure 7b and Figure 7c, this procedure can be understood as finding the coupling that
best preserves the current state. This insight is a major reason for introducing DDSBM into graph
domains, especially for molecular optimization.

Figure 8 illustrates the initial bridge and the Schrödinger bridge in the graph domain. The initial
bridge shows a non-optimal coupling between two graphs, where the structural consistency is not
well preserved. In contrast, the Schrödinger bridge shows an optimal coupling that preserves the
core structure of the graph while transforming to the target graph, reflecting the principle of minimal
change.

!"#$%&'()*$+&,-*..

# $! %$"

!"#

NH2

O

N

O
O

O

N

NH2

OH

O
O

O

# $! %$"

!"#

NH2

O

N

O
O

O

N

NH2

OH

O
O

O

a. Initial Bridge

b. Schrödinger Bridge

Figure 8: A schematic comparison between the initial bridge and the Schrödinger Bridge in graph
domain

B PROPOSITIONS AND PROOF

B.1 NOTATIONS

In this section, we introduce the notations that will be used throughout the proofs of the propositions.
Ω = D([0, τ ],X ) denotes the space of all left-limited and right-continuous (càdlàg) paths over a
finite space X . We assume the state space X has connected finite graph structure (fully-connected
graph), which imply it becomes metric space with graph distance metric dX (·, ·). Accordingly, the
sample space Ω is equipped with Skorokhod topology with Skorokhod metric dΩ(·, ·), and associated
Borel σ-algebra. X = (Xt)t∈[0,τ ] denotes the canonical process given by:

Xt(ω) = ωt, t ∈ [0, τ ], ω = (ωs)s∈[0,τ ].

The reference measure Q is an irreducible Markov measure on Ω with its associated canonical
filtration. Assume that the transition probability of Q, denoted by Ps:t(x, y), from (s, x) ∈ [0, τ ]×X
to (t, y) ∈ [0, τ ] × X , is continuous and differentiable over time. The measure is generated by the
transition rate function As(x, y), which gives the rate of transition from x ∈ X to y ∈ X at time
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s ∈ (0, τ), and satisfies the Kolmogorov forward equation:

∂Ps:t(x, y)

∂t
=
∑
z∈X

Ps:t(x, z)At(z, y), (16)

As(x, y) =

[
∂Ps:t(x, y)

∂t

]
t=s

.

We also assume that Q can construct a bridge Q(·|X0 = x,Xτ = y) for all x, y ∈ X . For any
Markov measure M , the corresponding generator is denoted as A(M).

B.2 THEOREM B.1

Theorem B.1. (Uniqueness of the Schrödinger Bridge Solution)
If the reference process Q is Markov, then under mild conditions the Schrödinger Bridge solution PSB

exists and is unique. Furthermore, the solution is mixture with static Schrödinger Bridge solution
represented as PSB = PSB

0,τQ·|0,τ ∈ R(Q), and also it is in M. Conversely, a process P = P0,τQ·|0,τ
is Markov if and only if P = PSB.

Proof. This is direct consequence of Theorem 2.12 of (Léonard, 2013).

B.3 MARKOV PROJECTION

Proposition B.2. (solution of Markov projection)
Let M∗ = ΠM(Λ), Λ ∈ R(Q) and the generator of Q be At(x, y) with transition probability
Ps:t(x, y). Under mild assumptions, the generator of the Markov measure M∗ becomes

A
(M∗)
t (Xt, y) = EΛτ|t

[
At(Xt, y;Xτ )

∣∣∣∣Xt

]
At(x, y; z) = At(x, y)

Ps:τ (y, z)

Ps:τ (x, z)
− δxy

∑
u

At(y, u)
Pt:τ (u, z)

Pt:τ (x, z)

, where z ∈ X
The reverse KL-divergence is

DKL(Λ∥M∗) =

∫ τ

0

EΛ0,t

(A(Λ|0)
t −A

(M∗)
t )(Xt, Xt) +

∑
y ̸=Xt

A
(Λ|0)
t log

A
(Λ|0)
t

A
(M∗)
t

(Xt, y)

 dt,

where the AΛ|0 is the generator for the conditioned measure Λ|0 which is defined as

A
Λ|0
t (Xt, y) = EΛτ|0,t

[
At(Xt, y;Xτ )

∣∣∣∣Xt, X0

]
.

Moreover, for any t ∈ [0, τ ],Λt = M∗
t .

B.3.1 KL-DIVERGENCE OF MARKOV MEASURE

Consider two Markov path measure M̃ ≪ M . Based on the Girsanov’s formula, we can express the
Radon-Nikodym derivative as follow:

dM

dM̃
(ω) =

dM0

dM̃0

(ω0) exp

(∫ τ

0

log
AM

t

AM̃
t

(ωt−, ωt)dNt(ω) +

∫ τ

0

(AM
t −AM̃

t )(ωt, ωt)dt

)
,

where Nt(ω) is the number of jumps of the path ω up to time t and ωt− is the left limit of the path
at time t2. Note that, due to the compactness of time interval, the number of jumps of each path in

2See Chazottes et al. (2006) or Appendix 1 of Kipnis & Landim (2013)
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Ω is at most finite, and thus Nt(ω) is bounded. Also, the escape rate of the state x associated to M
is −AM

t (x, x). Thus, we can construct a natural martingale3

Nt +

∫ t

0

As(ωs, ωs)ds,

which is zero-mean process.

For any continuous and bounded function ϕ : X → R, we can change the integrator dNt as follow:

EM

[∫ t

0

ϕ(ωs)dNs

]
= EM

[∫ t

0

−ϕ(ωs)A
M
s (ωs, ωs)ds

]
=

∫ t

0

Ex∼Ms

[
−ϕ(x)AM

s (x, x)
]
ds.

The KL-divergence is expectation of logarithm of Radon-Nikodym derivative, which leads to:

DKL(M∥M̃) = DKL(M0∥M̃0) + EM

[∫ τ

0

log
AM

t

AM̃
t

(ωt−, ωt)dNt(ω) +

∫ τ

0

(AM
t −AM̃

t )(ωt, ωt)dt

]
,

= DKL(M0∥M̃0) +

∫ τ

0

Ex∼Ms

−AM
s (x, x)

∑
y ̸=x

ps(x, y) log
AM

s

AM̃
s

(x, y)

 ds

+

∫ τ

0

Ex∼Ms

[
(AM

t − ÃM̃
t )(x, x)

]
ds,

where ps(x, y) is the probability of jump from x to y given that a jump occurs, which is AM
s (x,y)

−AM
s (x,x)

By applying this, we obtain KL-divergence represented solely in terms of transition rate AM and
AM̃ :

DKL(M∥M̃) = DKL(M0∥M̃0)+

∫ τ

0

Ex∼Ms

∑
y ̸=x

AM
s (x, y) log

AM
s

AM̃
s

(x, y) + (AM
t −AM̃

t )(x, x)

 ds.

(17)

B.3.2 KL-DIVERGENCE OF RECIPROCAL MEASURE TO MARKOV MEASURE

Lemma B.3. If a reciprocal measure Λ ∈ R(Q) is conditioned on X0 being a.s. constant, then the
corresponding measure Λ·|0 is Markov. For any M ∈ M such that M0 = Λ0 and Λ ≪ M , the
KL-divergence DKL(Λ∥M) disintegrates as follow:

DKL(Λ∥M) = EΛ0

[
DKL(Λ·|0∥M·|0)

]
.

Proof. According to proposition 2.5 of Léonard et al. (2014) and lemma 1.4 of Jamison (1974),
conditioning Λ on X0 not only preserves its reciprocal property, but also transforms it into a Markov
process. Due to the absolute continuity together with |X | < ∞, the KL-divergence is finite. Then,
the KL-divergence can be reformulated as follows:

DKL(Λ∥M) = EΛ

[
dΛ

dM

]
,

= EΛ

[
dΛ·|0

dM·|0

]
,

= EΛ0
EΛ·|0

[
dΛ·|0

dM·|0

]
,

= EΛ0

[
DKL(Λ·|0∥M·|0)

]
.

According to Lemma B.3, while a reciprocal measure Λ ∈ R(Q) is in general non-Markov, the
conditional measure Λ·|0 is Markov. Note that we can compute the KL-divergence between two
Markov measure based on Equation (17).

3See Lemma 5.1 of Kipnis & Landim (2013)
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B.3.3 GENERATOR OF CONDITIONED PROCESS

To compute DKL(Λ∥M) based on Lemma B.3, Equation (17), we need the generator of the condi-
tioned process Λ·|0. Before deriving the generator of Λ·|0, we first consider the pinned process of Q
conditioned on Xτ = z in prior.
Lemma B.4. Let (Xt)0≤t≤τ be a Markov process under the reference measure Q with transition
probability Ps:t(·, ·), (s ≤ t), and generator As(·, ·). Consider the process conditioned on Xτ = z
with corresponding measure denoted by Q(z). Then, the conditioned process is also Markov, and its
generator is given by:

As(x, y; z) = As(x, y)
Ps:τ (y, z)

Ps:τ (x, z)
− δxy

[∑
u

As(x, u)
Ps:τ (u, z)

Ps:τ (x, z)

]
.

Proof. The conditional probability of Xt given the natural filtration Fu and Xs with u ≤ s ≤ t ≤ τ
under the measure Q(z) is as follows:

Q(z)(Xt = y|Xs = x,Fu) = Q(Xt = y|Xs = x,Xτ = z,Fu),

= Q(Xt = y|Xs = x,Xτ = z), (∵ Q ∈ M)

= Q(z)(Xt = y|Xs = x),

which confirms Q(z) is Markov.

Next, the transition probability of Q(z), denoted by Ps:t(x, y; z), is derived as:

Ps:t(x, y; z) = Q(z)(Xt = y|Xs = x),

= Q(Xt = y|Xs = x)
Q(Xτ = z|Xt = y)

Q(Xτ = z|Xs = x)
,

= Ps:t(x, y)
Pt:τ (y, z)

Ps:τ (x, z)
.

Note that, we assumed the measure Q construct bridge everywhere, the probability ratio has finite
value.

Finally, the corresponding generator As(x, y; z) is obtained using the Kolmogorov forward equation:

As(x, y; z) =
∂

∂t
Ps:t(x, y; z)

∣∣∣∣
t=s

,

= As(x, y)
Ps:τ (y, z)

Ps:τ (x, z)
+ δxy

[
∂sPs:τ (y, z)

Ps:τ (x, z)

]
,

= As(x, y)
Ps:τ (y, z)

Ps:τ (x, z)
− δxy

[∑
u

As(x, u)
Ps:τ (u, z)

Ps:τ (x, z)

]
.

We now consider the transition probability and generator of conditioned measure Λ·|0 of Λ ∈ R(Q).

Lemma B.5. For a reciprocal measure Λ ∈ R(Q), the conditioned process with X0 = x0 is denoted
by Λ·|0=x0

. The generator of Λ·|0=x0
is given by the conditional expectation:

A
Λ|0=x0
s (x, y) = Ez∼Λτ|0,s [As(x, y; z)|X0 = x0, Xs = x] ,

where As(x, y; z) is the generator of the conditioned process of Q with Xτ = z.

Proof. We denote the transition probability conditioned on X0 = x0 by P
Λ·|0=x0
s:t , which is com-

puted as follows:

P
Λ·|0=x0
s:t (x, y) =

∫
X
Λ·|0=x0

(Xτ = z|Xs = x)Λ·|0=x0
(Xt = y|Xs = x,Xτ = z)dz.
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The first term in the integrand is

Λ·|0=x0
(Xτ = z|Xs = x) = Λ(Xτ = z|X0 = x0, Xs = x),

=
Λ(Xτ = z|X0 = x0)Λ(Xs = x|X0 = x0, Xτ = z)

Λ(Xs = x|X0 = x0)
,

=
ντ (z;x0)

νs(x;x0)
P0:s(x0, x; z),

=
ντ (z;x0)

νs(x;x0)
P0:s(x0, x)

Ps:τ (x, z)

P0:τ (x0, z)
,

=
ντ (z;x0)

νs(x;x0)

µs(x;x0)

µτ (z;x0)
Ps:τ (x, z),

where νs(·;x0), µs(·;x0) are the probability mass functions of Λs|0,Qs|0, respectively, with X0 =
x0. Given the initial-terminal condition, Λ is equivalent to the reference Q based on the definition
of reciprocal class Definition 3.1. Similarly, the second term is same as Q(Xt = y|X0 = x0, Xs =
x,Xτ = z), which can be expressed as Ps:t(x, y; z) due to the Markov property of Q. Therefore,
the transition probability is:

P
Λ·|0=x0
s:t (x, y) =

µs(x;x0)

νs(x;x0)
Ps:t(x, y)

∫
X
Pt:τ (y, z)

ντ (z;x0)

µτ (z;x0)
dz.

Accordingly, the generator is derived as:

A
Λ·|0=x0
s (x, y) = ∂tP

Λ·|0=x0
s:t (x, y)

∣∣∣∣
t=s

,

=
µs(x;x0)

νs(x;x0)
∂tPs:t(x, y)

∣∣∣∣
t=s

∫
X
Pt:τ (y, z)

ντ (z;x0)

µτ (z;x0)
dz

+
µs(x;x0)

νs(x;x0)
Ps:t(x, y)

∫
X
∂tPt:τ (y, z)

∣∣∣∣
t=s

ντ (z;x0)

µτ (z;x0)
dz,

=
µs(x;x0)

νs(x;x0)
As(x, y)

∫
X
Ps:τ (y, z)

ντ (z;x0)

µτ (z;x0)
dz

− δxy
µs(x;x0)

νs(x;x0)

∫
X

∑
u

[As(y, u)Ps:τ (u, z)]
ντ (z;x0)

µτ (z;x0)
dz,

=

∫
X

µs(x;x0)

νs(x;x0)

[
As(x, y)Ps:τ (y, z)− δxy

∑
u

As(y, u)Ps:τ (u, z)

]
ντ (z;x0)

µτ (z;x0)
dz,

=

∫
X

ντ (z;x0)

µτ (z;x0)

µs(x;x0)

νs(x;x0)
Ps:τ (x, z)As(x, y; z)dz,

=

∫
X
Λ|0(Xτ = z|Xs = x)As(x, y; z)dz,

= Ez∼Λτ|0,s [As(x, y; z)|X0 = x0, Xs = x].

In conclusion, the generator of Λ·|0 is given as the conditional expectation,

A
Λ·|0
s (x, y) = EΛτ|0,s [As(x, y;Xτ )|X0, Xs = x].

B.3.4 MARGINAL DISTRIBUTION OF MIXTURE OF MARKOV CHAINS

A reciprocal process Λ ∈ R(Q) can be represented as a mixture of Markov chains as:

Λ(·) =
∑
x,y

Q(·|X0 = x,Xτ = y)Λ0,τ (x, y).

We here propose the mixture representation of Markov chain similar to theorem 2 of Peluchetti
(2023b) which describing mixture of diffusion process over Euclidean space.
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Proposition B.6. Consider a family of Markov measures on Ω indexed by u ∈ I
∂tP

u
s:t(x, y) =

∑
z

Pu
s:t(x, z)A

u
t (z, y),

Au
s (x, y) = ∂tP

u
s,t(x, y)

∣∣∣∣
t=s

,

where Pu and Au is the transition probability and generator for each measure associated to the
process Xu = (Xu

t )t∈[0,τ ]. We here assume that Au
s is finite for every u. Let the corresponding

Markov measure be Mu, and µu
t be the density of Mu

t , the marginal distribution of Xu
t . Let a

mixture of Mu with the index distribution U over I be Λ,

Λ(·) =
∫
I
Mu(·)U(du).

We denote mixture marginal density µt and mixture initial distribution Λ0 as:

µt(x) =

∫
I
µu
t (x)U(du),

Λ0(·) =
∫
I
Mu

0 (·)U(du).

Let X = (Xt)t∈[0,τ ] be another Markov chain generated by:

∂tPs:t(x, y) =
∑
z

Ps:t(x, z)At(z, y),

At(x, y) =
1

µt(x)

∫
I
Au

t (x, y)µ
u
t (x)U(du),

X0 ∼ Λ0.

Then, the marginal density of Xt is µt. It is assumed that exchange of ∂t and
∫
I U(du) is justified.

Proof. We start from verifying At(x, y) admits conditions of transition rate function. For x ̸= y it
is trivial that At(x, y) is finite and non-negative. Also,

∑
y∈X At(x, y) becomes zeros for all x and

t as: ∑
y∈X

At(x, y) =
∑
y∈X

1

µt(y)

∫
I
Au

t (x, y)µ
u
t (x)U(du),

=
1

µt(y)

∫
I

∑
y∈X

Au
t (x, y)µ

u
t (x)U(du),

= 0.

Thus, mixture of generators At(x, y) holds the condition for a generator of Markov measures.

Next, for t ∈ (0, τ),

∂tµt(x) = ∂t

∫
I
µu
t (x)U(du),

=

∫
I
∂tµ

u
t (x)U(du), (assumption)

=

∫
I

∑
y∈X

Au
t (y, x)µ

u
t (y)U(du), (∵ Kolmogorov equation)

=
∑
y∈X

(∫
I
Au

t (y, x)µ
u
t (y)U(du)

)
,

=
∑
y∈X

At(y, x)µt(y).

The equality of the left-hand side and the final line corresponds to the Kolmogorov equation for the
process X generated by At. This shows that µt is the marginal distribution of Xt.
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B.3.5 MINIMIZER OF THE KL-DIVERGENCE

The Markov projection of a reciprocal process Λ, denoted ΠM(Λ), is a Markov process M∗ which
minimizes the reverse KL-divergence DKL(Λ,M). We here characterize M∗ by specifying its gen-
erator. While the generator A

Λ·|0
t of Λ·|0 represented as a conditional expectation given X0, Xt as

noted in Lemma B.5, that of the M∗ is supposed to be represented as the conditional expectation
without X0 condition. The following lemma says that EΛ0|t

[
A

Λ·|0
t (Xt, y)

]
is the generator.

Lemma B.7. Let the Markov projection of a reciprocal process Λ ∈ R(Q) be M∗ = ΠM(Λ). Then

the generator of M∗ is AM∗

t (Xt, y) = EΛτ|t

[
At(Xt, y;Xτ )

∣∣∣∣Xt

]
.

Proof. Because Q is assumed to be able to construct bridge everywhere, At(x, y; z) = 0 ⇐⇒
At(x, y) = 0 ∀x ̸= y, z ∈ X , t ∈ [0, τ).

We claim that the Markov measure M generated by AM
t (x, y) = EΛτ|t

[
At(Xt, y;Xτ )

∣∣Xt = x
]

with M0 = Λ0 is a.s. M∗. We can re-formulate the generator as:

AM
t (Xt, y) = EΛτ|t

[
At(Xt, y;Xτ )

∣∣Xt

]
,

=
∑
xτ

Λ(Xτ = xτ |Xt)At(Xt, y;xτ ),

=
∑
xτ

∑
x0

Λ(X0 = x0, Xτ = xτ |Xt)At(Xt, y;xτ ),

=
∑
x0

Λ(X0 = x0|Xt)
∑
xτ

Λ(Xτ = xτ |X0 = x0, Xt)At(Xt, y;xτ ),

=
∑
x0

Λ(X0 = x0|Xt)A
Λ·|0
t (Xt, y),

= EΛ0|t

[
A

Λ·|0
t (Xt, y)

∣∣Xt

]
, (18)

which conclude that it becomes conditional expectation of the generator of Λ·|0. Also, based on the
Proposition B.6, the Mt = Λt for all t.

Note that A
Λ·|0
t (x, y) = EΛτ|0,t

[
At(x, y;Xτ )

∣∣X0, Xt = x
]
, which implies AM

t (x, y) = 0 =⇒
A

Λ·|0
t (x, y) = 0 ∀x ̸= y, z ∈ X , t ∈ [0, τ). Thus, Λ ≪ M . Because M∗ is the minimizer

of KL-divergence DKL(Λ∥·), we can assume M∗
0 = Λ0. Based on this, we want to show that

DKL(Λ∥M∗)−DKL(Λ∥M) = 0. Recall that Equation (17), where the KL-divergence is formulated
as

DKL(Λ∥M) =

∫ τ

0

EΛ0,t

(AΛ·|0
t −AM

t

)
(Xt, Xt) +

∑
y ̸=Xt

A
Λ·|0
t log

A
Λ·|0
t

AM
t

(Xt, y)

 dt,

=

∫ τ

0

EΛ0,t

∑
y ̸=Xt

(
A

Λ·|0
t log

A
Λ·|0
t

AM
t

−A
Λ·|0
t +AM

t

)
(Xt, y)


︸ ︷︷ ︸

f(t,Λ,M)

dt.
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Then, DKL(Λ∥M∗) − DKL(Λ∥M) =
∫ τ

0
∆dt ≤ 0 by definition, where ∆ := f(t,Λ,M∗) −

f(t,Λ,M).

∆ = EΛ0,t

∑
y ̸=Xt

(
AM∗

t −AM
t +A

Λ·|0
t log

AM
t

AM∗
t

)
(Xt, y)

 ,

= EΛtEΛ0|t

∑
y ̸=Xt

(
AM∗

t −AM
t +A

Λ·|0
t log

AM
t

AM∗
t

)
(Xt, y)

 ,

= EΛt

∑
y ̸=Xt

EΛ0|t

[(
AM∗

t −AM
t +A

Λ·|0
t log

AM
t

AM∗
t

)
(Xt, y)

]
,

= EΛt

∑
y ̸=Xt

(
AM∗

t −AM
t + EΛ0|t

[
A

Λ·|0
t |Xt

]
log

AM
t

AM∗
t

)
(Xt, y), (∵ M,M∗ ∈ M)

= EΛt

∑
y ̸=Xt

(
AM∗

t −AM
t +AM

t log
AM

t

AM∗
t

)
(Xt, y), (∵ Equation (18))

= EMt

∑
y ̸=Xt

(
AM∗

t −AM
t +AM

t log
AM

t

AM∗
t

)
(Xt, y). (∵ Mt = Λt)

We can deduce that
∫ τ

0
∆dt = DKL(M∥M∗) ≥ 0, which conclude that M = M∗.

B.3.6 PROOF OF PROPOSITION B.2

Now we prove the proposition Proposition B.2 using above lemmas.

Proof. Proposition B.2

By the Lemma B.3 and Equation (17), the KL-divergence of Λ to any Markov measure M ∈ M
disintegrates as:

DKL(Λ∥M) =

∫ τ

0

EΛ0,t

(AΛ·|0
t −AM

t

)
(Xt, Xt) +

∑
y ̸=Xt

A
Λ·|0
t log

A
Λ·|0
t

AM
t

(Xt, y)

 dt,

where the A
Λ·|0
t is the generator of pinned process of Λ·|0 stated by Lemma B.5. According to

Lemma B.7, the Markov measure M∗ generated by At(x, y) = EΛτ|t [At(x, y;Xτ )|Xt = x] is the
minimizer of DKL(Λ∥M) for M ∈ M. In last, Proposition B.6 ensure the time marginals of Λ,M∗

for all t ∈ [0, τ ] are equivalent.

B.4 TIME-REVERSAL MARKOV PROJECTION

Proposition B.8. Let M∗ = ΠM(Λ),Λ ∈ R(Q) and the forward generator of Q be At(x, y)
with the transition probability Ps:t(x, y). Let X = (Xt)t∈[0,τ ] be the canonical process and Y =
(Yt)t∈[0,τ ] be the time reversal of X , where Yt = Xτ−t. Under mild assumptions, the time-reversal
generator of M∗ becomes

ÃM∗

t (Yt, x) = E0|t

[
Ãt(Yt, x;X0)

∣∣∣∣Yt

]
Ãs(y, x; z) = ∂tP̃s:t(y, x; z)

∣∣∣∣
t=s

= Aτ−s(x, y)
P0:τ−s(z, x)

P0:τ−s(z, y)
− δxy

∑
u

Aτ−s(u, x)
P0:τ−s(z, u)

P0:τ−s(z, x)
,
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where z ∈ X , and Ãs(·, ·; z) is the generator for the conditioned process of Y with Yτ = z. The
reverse KL-divergence is

DKL(Λ∥M∗) =

∫ τ

0

EΛτ,t

(ÃΛ·|τ − ÃM∗
)(Yt, Yt) +

∑
x ̸=Yt

ÃΛ·|τ log
ÃΛ·|τ

ÃM∗ (Yt, x)

 dt,

where the ÃΛ·|τ is the time-reversal generator for the conditioned measure Λ·|τ which is defined as

Ã
Λ·|τ
t (Yt, x) = EΛ0|t,τ

[
Ã(Yt, x;Yτ )

∣∣∣∣Yt, Y0

]
.

Proof. Follow the proof of Proposition B.2. Note that the Markov measure is time-symmetric.

B.5 PROOF OF THEOREM 3.3

Proof. With iterative projection, we have a sequence of measure Λ(n) such that:

Λ(2n+1) = ΠM(Λ(2n)),

Λ(2n+2) = ΠR(Q)(Λ
(2n+1)),

where Λ(0) ∈ R(Q). Let Π(n) = Λ(2n) and M (n) = Λ(2n+1). We will omit the superscription ·(n)
if there is no confusion.

Let P ∈ M be a Markov process generated by a generator AP
t (x, y) < ∞ with initial distribution

M0 with the Kolmogorov forward equation. Assuming that DKL(Π∥P) < ∞, then

DKL(Π∥P)−DKL(Π∥M) = EΠ

[
log

dM

dP

]
< ∞,

which implying the Radon-Nikodym derivative dM
dP < ∞ over the support of Π.

Then we will first show the equality:

EΠ

[
log

dM

dP

]
= EM

[
log

dM

dP

]
.

As Π0 = M0, it is sufficient to show

EΠ

[
log

dM·|0

dP·|0

]
= EM

[
log

dM·|0

dP·|0

]
,

where

log
dM·|0

dP·|0
(ω) =

∫ τ

0

log
AM

t

AP
t

(ωt−, ωt)dNt(ω) +

∫ τ

0

(AM
t −AP

t )(ωt, ωt)dt

is given from Appendix B.3.1. Since Π|0 is Markov from Lemma B.3 with generator

A
Π|0
t (x, y) = EΠτ|0,t [At(x, y;Xτ )|X0, Xt = x] ,

which is derived at the Lemma B.5. Then,

EΠ

[∫ τ

0

log
AM

t

AP
t

(Xt−, Xt)dNt

]

= EΠ

∫ τ

0

∑
y ̸=Xt

A
Π·|0
t log

AM
t

AP
t

(Xt, y)dt

 ,

= EΠ

∫ τ

0

∑
y ̸=Xt

EΠ [At(Xt, y;Xτ )|X0, Xt] log
AM

t

AP
t

(Xt, y)dt

 ,

= EΠ

∫ τ

0

∑
y ̸=Xt

EΠ [At(Xt, y;Xτ )|Xt] log
AM

t

AP
t

(Xt, y)dt

 ,
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by the tower property of conditional expectation. From the Lemma B.7 and Proposition B.6, we can
replace the EΠ [At(Xt, y;Xτ )|Xt] as AM

t (Xt, y),

EΠ

∫ τ

0

∑
y ̸=Xt

EΠ [At(Xt, y;Xτ )|Xt] log
AM

t

AP
t

(Xt, y)dt

 ,

= EΠ

∫ τ

0

∑
y ̸=Xt

AM
t log

AM
t

AP
t

(Xt, y)dt

 ,

= EM

∫ τ

0

∑
y ̸=Xt

AM
t log

AM
t

AP
t

(Xt, y)dt

 ,

where the last equation justified since Πt = Mt for all t ∈ [0, τ ]. The other term,
∫ τ

0
(AM

t −
AP

t )(Xt, Xt)dt, can be treated as the same way, which establishes the equality. From the result, we
get DKL(Π∥P) = DKL(Π∥M) +DKL(M∥P). The equality is derived for other diffusion processes
(Peluchetti, 2023a; Shi et al., 2024; Liu & Wu, 2023), but in this paper we extended it to continuous
Markov chain with discrete state space case.

By letting P = PSB, we get
DKL(Π∥PSB) ≥ DKL(M∥PSB),

the equality holds if and only if Π = M . By the assumption DKL(Λ
(0)∥PSB) < ∞, the sequence

of KL-divergence {DKL(Λ
(n)∥PSB)}n∈N is non-increasing and bounded, which implies the KL-

divergence converges. Thus,

lim
n→∞

DKL(Π
(n)∥PSB)−DKL(M

(n)∥PSB) = lim
n→∞

DKL(Π
(n)∥M (n)) = 0.

We here utilize Aldous’ tightness criteria for showing the tightness of PSB. Since the state space
is finite it is sufficient to show the following: For any ε > 0, there exists δ > 0 such that for all
stopping time t,

PSB(dX (Xt+θ, Xt) ≥ η) ≤ ε,

for arbitrary small η > 0 and 0 < θ < δ4. To check the criteria, we will show that the leaving rate of
PSB is bounded. From the Lemma B.5 and Lemma B.7, we know the analytic form of the transition
rate At. Since Theorem B.1 ensure that the PSB is Markov as well as is in reciprocal class,

APSB

t (x, x) = EPSB [At(x, x;Xτ )|X0 = x0, Xt = x] ,

=
∑

Xτ∈X

[
PSB(Xτ |Xt = x,X0 = x0)At(x, x)

− PSB(Xτ |Xt = x,X0)

Pt:τ (x,Xτ )

∑
u∈X

A(x, u)Pt:τ (u,Xτ )

]
,

=
∑

Xτ∈X

[
PSB(Xτ |Xt = x)At(x, x)

− PSB(Xτ |Xt = x,X0)

Pt:τ (x,Xτ )

∑
u∈X

A(x, u)Pt:τ (u,Xτ )

]
,

= At(x, x)−
∑

Xτ∈X

[
PSB(Xτ |Xt = x,X0)

Pt:τ (x,Xτ )

∑
u∈X

A(x, u)Pt:τ (u,Xτ )

]
,

= At(x, x)−
∑

Xτ∈X

[
dPSB

t,τ

dQt,τ
(x,Xτ )

∑
u∈X

A(x, u)Pt:τ (u,Xτ )

]
.

4See section 16 of Billingsley (2013) and section 3 of Ethier & Kurtz (2009)
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The Radon-Nikodym derivative is finite and positive for x, such that PSB(Xt = x) > 0. Because
the state space X is finite, there is finite upper bound ut for every possible pair (x, xτ ). Thus,

APSB

t (x, x) ≥ At(x, x)−
∑

Xτ∈X

[
ut

∑
u∈X

A(x, u)Pt:τ (u,Xτ )

]
,

= At(x, x)− ut

∑
u∈X

A(x, u)
∑

Xτ∈X
Pt:τ (u,Xτ ),

= At(x, x)− ut

∑
u∈X

A(x, u),

= At(x, x).

The leaving rate cSB
t (x) of PSB at (t, x) is bounded by that of Q, ct(x). Assuming the leaving rate of

Q is uniformly bounded by c, cSB
t is uniformly bounded by c. Back to the Aldous’ tightness criteria,

by choosing δ = ε/c we can see that PSB is tight.

The sequence {Π(n)}n∈N is tight. Since PSB is tight, for any ε > 0 we can choose a compact and
measurable K (under Skorokhod topology and associated Borel σ algebra). For any measurable K,

DKL(Π
(n)∥PSB) = EΠ(n)

[
− log

dPSB

dΠ(n)
|Kc

]
Π(n)(Kc) + EΠ(n)

[
− log

dPSB

dΠ(n)
|K
]
Π(n)(K),

≥ − log
PSB(Kc)

Π(n)(Kc)
Π(n)(Kc)− log

PSB(K)

Π(n)(K)
Π(n)(K),

by the Jensen inequality. If {Πn}n∈N is not tight, for each compact K and λ > 0, there is at least
one n ∈ N where Π(n)(Kc) ≥ λ,Π(n)(K) < 1− λ. Thus, for ε > 0 there exists n ∈ N, such that

− log
PSB(Kc)

Π(n)(Kc)
Π(n)(Kc) ≥ − log(ε/λ)λ,

which implies that the lower bound of DKL(Π
(n)∥PSB) can be arbitrary large. However, the KL-

divergence is non-increasing and upper bounded by DKL(Π
(0)∥PSB) < ∞, contradiction occurs.

Thus, the sequence of measure should be tight. Similarly, we can show the {M (n)}n∈N is tight.

The space (Ω, dΩ) is a Polish space5, and therefore, by Prokhorov’s theorem, the collections of mea-
sures Π(n)

n∈N and M (n)
n∈N are relatively compact. Each subsequence of {M (n)}n∈N has a sub-

subsequence {Π(i)}i≥0 weakly converges to Π(∞) as i → ∞. Similarly, there is a sub-subsequence
{M (i)}i≥0 that converges in law to M (∞). By the lower semi-continuity of the KL-divergence,
DKL(Π

(∞)∥M (∞)) ≤ lim infi→∞(Π(i)∥M (i)) = 0, which implies the two convergence point is
equal to P(∞). The resulting measure is Markov and is in R(Q), because the state space is finite,
which deduce PSB = P(∞). We choose an arbitrary convergent point of sub-subsequence resulting
in PSB, the convergence is ensured6.

C ALGORITHM

Algorithm 1 Iterative Discrete Markovian Fitting

Require: Joint distribution π, tractable bridge Q·|0,τ , number of outer iterations N ∈ N
1: Let Λ(0) = πQ·|0,τ
2: for n = 0, . . . , N do
3: Learn ϕ using Equation (6) with Λ(2n)

4: Let Λ(2n+1) = M
(2n+1)
b Q·|0,τ

5: Learn θ using Equation (5) with Λ(2n+1)

6: Let Λ(2n+2) = M
(2n+2)
f Q·|0,τ

7: end for
8: return θ∗, ϕ∗

5See section 12 of Billingsley (2013) or section 3.5 of Ethier & Kurtz (2009)
6See Theorem 2.6 of Billingsley (2013)

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

D GRAPH PERMUTATION MATCHING

D.1 INTRODUCTION

A graph G = (V, E) is defined as the set of nodes V = {vi} and the set of edges {eij}, where i
and j denote the node indices. Under a permutation σ ∈ Sn, the structure of the graph G remains
unchanged, as the node and edge sets are invariant to indexing:

σ(V) = {vσ(i)} = V,
σ(E) = {eσ(i)σ(j)} = E ,

However, the vectorized representation of a graph, G = (V,E) is affected by the permutation
because V and E are treated as ordered sets. Thus, a graph G can be considered as a set of all
permuted version of its vectorized representation:

G = {σ(G) : σ ∈ Sn},

where the G is an arbitrarily indexed vectorization of G.

The likelihood of transitioning from an initial graph G = (V,E) to a terminal graph G′ = (V′,E′),
denoted p(G′|G) = Q(Xτ = G′|X0 = G), depends on both node and edge correspondences,
whereas the likelihood p(G′|G), which is permutation-invariant, does not. More specifically, for
any permutation σ, the likelihood p(σ(G′)|G) changes, even though the underlying graph G′ re-
mains unchanged. Calculating the likelihood of the graph itself (as opposed to the graph vector)
would require summing the likelihoods of all possible permutations of G′, but this approach is
computationally prohibitive due to the factorial number of permutations.

This dependency on graph permutation introduces challenges not only in computing likelihoods but
also in constructing reciprocal measures. Ideally, a reciprocal measure over graph domain would
account for all permutations of graph vectors. However, as with likelihood computations, the con-
struction of reciprocal measures is highly sensitive on the alignment of graph vectors, making proper
handling of these permutations essential for the iterative Markovian fitting (IMF) algorithm.

D.2 SUB-OPTIMAL VS. OPTIMAL PERMUTATION

In practice, the key insight is that the likelihood difference of graph vectors between the optimal
permutation σ∗ and sub-optimal permutations σ is substantial, allowing us to neglect sub-optimal
permutations. The design choice of the reference process Q, particularly its signal to noise ratio
ᾱ(τ)
ᾱ(0) ≫ 0 (see Equation (9)), ensures the transitions preserving the initial states are far more proba-
ble. As a result, the likelihood for sub-optimal permutations, where node and edge correspondences
are mismatched, is expected to be significantly lower than for the optimal permutation. The reason
is that even a small mismatch in node alignment between σ∗ and σ can cause a large number of edge
state mismatches, leading to a dramatic decrease in the total likelihood.

Thus, the likelihood p(σ∗G′|G) ≫ p(σG′|G) and the contribution of sub-optimal permutation in
calculating p(G′|G) is negligible. It is sufficient that focus solely on the optimal permutation σ∗

for the likelihood computation, as the probability of sub-optimal arrangements is effectively zero in
practical terms.

The prioritization of optimal permutation could be also utilized in the construction of reciprocal
measures. Suppose we have only one graph for initial and terminal, where the one is G and G′,
respectively. Without loss of generality, we assume an even distribution over graph vectors G ∈ G,
and then consider permutations over σG′ ∈ G′. Note that p(σG′|G) = p(σ′σG′|σ′G). According
to the static SB solution, the graph vectors σG′ ∈ G′ are distributed according to the likelihood
p(σG′|G) for each graph vector G ∈ G, where the optimal permutation is selected most frequently.
In this context, neglecting sub-optimal permutation can be viewed as the static OT solution.

As the original SB problem is formulated with the dynamics over graph vector domain, arranging
the graph vectors is a part of the SB problem. However, by relying on the optimal permutation, we
can reduce complexity of the SB problem aroused by the graph vectors alignment. This strategy
ensures the transition from a graph vector to the optimally permuted graph vector, resulting in more
reliable convergence of the iterative algorithm.
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D.3 STANDARD FORMULATION OF GRAPH MATCHING PROBLEM

In this section we will discuss about the standard formulation of the graph matching problem and
how the task of finding the optimal permutation σ∗, which minimizes the negative log-likelihood
(NLL) − log p(σG′|G), can be framed as a graph matching problem.

Consider two graph vectors G = (V,E) and G′ = (V′,E′) along with the cost function cV and
cE , which define the cost of mapping nodes and edges, respectively. The binary assignment matrix
X ∈ {0, 1}n×n′

represents the matching between nodes, where n and n′ denote the number of nodes
of G and G′, respectively. If vi ∈ V matches v′a ∈ V′, then Xi,a = 1, while all other entries for
node vi are zero.

The total node matching cost is given by
∑

Xi,a=1 c
V (vi, v

′
a), where cV (vi, v

′
a) denotes the

cost of matching from vi ∈ V to v′a ∈ V′. Similarly, the total edge matching cost is∑
Xi,a=1,Xj,b=1 c

E(eij , e
′
ab), where cE(eij , e

′
ab) is the cost of matching from eij ∈ E to e′ab ∈ E′.

We define the cost matrix A ∈ Rnn′×nn′
, where the diagonal components Aia,ia = cV (vi, v

′
a)

represent node costs and the off-diagonal components Aia,jb = cE(eij , e
′
ab) represent edge costs.

By flattening the assignment matrix to be x ∈ {0, 1}nn′
, we can write the total cost function f as

f(x) =
∑

xia=1,xjb=1

cE(eij , e
′
ab) +

∑
xia=1

cV (vi, v
′
a),

= x⊤Ax.

Thus, the graph matching problem is find the optimal assignment x that minimizing cost f(x),
which is written in formal:

x∗ = argmin
x

x⊤Ax, (19)

s.t.

n∑
i=1

xia ≤ 1,

n′∑
a=1

xia ≤ 1,

where the inequalities become equalities if n = n′. This formulation corresponds to the well-known
quadratic assignment problem (QAP), which is NP-hard.

The NLL − log p(G′|G) can be decomposed by the sum of the NLLs of nodes and edges:

− log p(G′|G) =
∑

δia=1,δjb=1

− logPE
0:τ (eij , e

′
ab) +

∑
δia=1

− logPV
0:τ (vi, v

′
a).

By interpreting the NLLs of nodes and edges as cost function cV and cE , respectively, the problem
of finding the optimal permutation σ∗ can be formulated as a QAP, as in Equation (19).

D.4 SOLUTION METHOD

Exact solution methods for the QAP, such as mixed integer programming (MIP), requires combina-
torial optimization, which incurs prohibitive computational costs (Sahni & Gonzalez, 1976). Many
accelerated algorithms adopt branch-and-bound strategies that utilize bounds of objective functions
(Anstreicher, 2003; Gilmore, 1962; Loiola et al., 2007; Xia, 2008), reducing the exploration space.
However, the combinatorial optimization cannot be avoidable in these strategy. Alternatively, con-
tinuous relaxation methods (Cho et al., 2014; Leordeanu & Hebert, 2005) solve the QAP in Equa-
tion (19) using a continuous vector x, bypassing combinatorial explorations. However, the continu-
ous relaxation yields non-binary vectors, which require a discretization step, potentially introducing
errors.

In our work, we compared two continuous relaxation methods: spectral method (SM) and maximum
polling method (MPM), followed by the Hungarian algorithm for post-discretization. Both methods
iteratively update the continuous version of assignment vector x as:

xk+1 =
xk −A⊙ xkε

v
, (20)
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where ⊙ denotes matrix multiplication for SM and max-pooled matrix multiplication for MPM, and
ε denotes step size, and v denotes the normalizer. Specifically, the A⊙ x for SM is described as

(A⊙ x)ia = xiaAia:ia +
∑
j∈Ni

∑
b∈Na

xjbAia;jb.

In the MPM case, the operation is defined as

(A⊙ x)ia = xiaAia:ia +
∑
j∈Ni

max
b∈Na

xjbAia;jb.

In practice, we modified the cost matrix A slightly for efficiency. To accelerate the process, we
neglect all edges corresponding to dummies in G′, which significantly reduces computational cost,
making |Na| scale linearly with n′. Additionally, a small Gaussian perturbation was applied to
A, slightly altering the minima in the continuous vector space. We solved each QAP ten times to
compensate the effects of randomness, improving performance with reasonable computational costs
(see Appendix D.5).

D.5 PERFORMANCE OF GRAPH MATCHING ALGORITHM

In this section, we compare the performance of the following algorithms under different conditions:
(1) SM algorithm, (2) MPM algorithm, and (3) MPM algorithm with randomness. The hyper-
parameters ᾱ(τ)/ᾱ(0) = 0.3 for the reference process Q.

To evaluate the effectiveness of QAP solvers on molecular graphs, we selected 100 molecules from
the ZINC test set. In all experiments, the source molecule was treated as fully connected (with
dummy types), while the target molecule retained only its original edges. We performed up to 1,000
iterations of updates according to Equation (20) with a specified tolerance.

To assess the performance of the algorithms, we permuted the molecular graphs and then tested
whether the original indices could be recovered, where optimality is achieved with the inverse per-
mutation. For this task, we evaluated the exact matching ratio, which indicates the proportion of
cases where the original indices were successfully recovered. Due to the inherent symmetry in
molecular graphs, multiple optimal permutations may exist. Therefore, instead of relying solely on
exact index recovery, we base the success criterion on the objective function value. If the Negative
Log-Likelihood (NLL) error falls below 1e-2, the solution is considered successful.

For different molecule pairs where no optimal permutation is available, which is common in practical
scenarios, exact solvers become computationally prohibitive even with relatively small molecular
graphs. As such, we evaluated the performance of the QAP solvers by measuring the reduction in
NLL between the initial and optimized permutations.

We conducted experiments with various hyperparameters, and the results are illustrated in Table 3.
All algorithms successfully found exact matches for the same molecules, but the MPM algorithm
performed better than the SM algorithm when applied to different molecule pairs. For all subsequent
experiments, we adopted the MPM algorithm with randomness in the cost matrix as the QAP solver.

Table 3: Comparison of different algorithms based on configuration parameters. NLL drop
represents the improvement in likelihood between randomly paired molecules, while exact match
reflects the percentage of permutations successfully recovered after applying a random permutation
to the molecules. ↑ and ↓ denote higher and lower values are better, respectively.

Algorithm
Configuration

NLL drop(↑) Exact matching(↑)
Pooling Tolerance Precision Max # iterations Noise coefficient # trials

(1) SM Sum 1e-9 FP64 1000 0 1 2.251 100 %
(2) MPM Max 1e-5 FP32 1000 0 1 13.256 100 %
(3) MPM + Randomness Max 1e-5 FP32 1000 1e-6 10 13.256 100 %
(4) Our setting Max 1e-4 FP32 2500 1e-6 10 14.324 100 %

D.6 RELATION TO GRAPH EDIT DISTANCE

The graph edit distance (GED) is a widely used and flexible metric for measuring the dissimilarity
between two graphs. It is defined as the minimum cost required to transform one graph into another
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through a sequence of unit operations. Each unit operation can be a removal, substitution, or inser-
tion, and can be applied to either node or edges. The total cost of the transformation is the sum of
the costs assigned to these components.

According to Bougleux et al. (2015), finding the minimal-cost transformation between two graphs
is equivalent to the QAP problem with an associated cost function. Though both problems are NP-
hard, the equivalence is meaningful in that there are numerous approximation algorithms for the
QAP problem that operate within polynomial time.

The basic idea for re-formulation into QAP problem involves the introduction of dummy nodes and
dummy edges, where removal (insertion) operations could be replaced by substitution into (from)
dummies. The cost function of unit operation is defined as cV (vi, v′a) and eE(eij , e

′
ab) for node re-

placement and edge replacement, respectively. Let α = ᾱ(τ)/ᾱ(0), the cost replacement is defined
as:

cV (vi, v
′
a) =

{
− log (dV −1)α+1

dV if vi = v′a
− log −α+1

dV otherwise,

cE(eij , e
′
ab) =

{
− log (dE−1)α+1

dE if eij = e′ab
− log −α+1

dE otherwise,

where dV and dE denote the cardinality of X V and XE , respectively. Similar to Equation (19), we
can formulate it to a quadratic problem with the objective function f as:

f(x) =
∑

xia=1,xjb=1

cE(eij , e
′
ab) +

∑
xia=1

cV (vi, v
′
a),

=
∑

xia=1,xjb=1

− logPE
0:τ (eij , e

′
ab) +

∑
xia=1

− logPV
0:τ (vi, v

′
a),

= p(σG′|G),

where, the σ is the graph permutation associated to the assignment vector x.

However, the GED is not same to the NLL. Note that the edit cost functions penalize every operations
with same cost − log −α+1

d except for the identity operation. Though the cost of identity operation
is lesser than the others, the optimal transformation would not contains any identity operation. In
real, the cost of identity operation does not affect the optimal edit path, implying that GED is not
equal but proportion to the NLL, where the difference proportional to the number of the nodes and
edges that are equal under the optimal graph matching σ∗. Though the GED is not exactly same to
the NLL, the problem is equivalent to the graph matching problem.

This observation provides a clear interpretation of the underlying dynamics of the SB problem,
revealing that the associated OT cost is effectively the GED. Therefore, solving the SB problem can
be understood as finding the OT plan between graph distributions, where the transport cost is defined
by the GED.

E IMPLEMENTATION DETAILS

E.1 PARAMETERIZATION

In this section, we briefly describe the neural network parameterization and the practical training
loss. According to Equations (5) and (6), the neural network approximates the generator A

Λ·|0
t (x, y)

and Ã
Λ·|τ
t (y, x), which are formulated as conditional expectation of A(x, y; z) and Ã(y, x; z), re-

spectively (see Lemma B.5).

The target generator takes the form:

As(x, y; z) =

{
As(x, y)

Ps:τ (y,z)
Ps:τ (x,z)

, if x ̸= y

−
∑

u̸=x As(x, u)
Ps:τ (u,z)
Ps:τ (x,z)

, if x = y
(21)
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, where As and Ps:τ are tractable attributes of Q. Let the the transition probability matrix be
P (s, τ) : [0, τ ]2 → R|X |×|X|, with Ps:τ (x, y) = e⊤x P (s, τ)ey . Thus, the neural network pre-
dicts the distribution of z given Xs = x, denoted as zθ(s, x) ∈ R|X |, and our parameterization
choice is as follows:

AMθ

s (x, y; θ) = As(x, y)
e⊤y P (s, τ)zθ(s, x)

e⊤x P (s, τ)zθ(s, x)
,

for y ̸= x. The time reverse generator is also defined similarly.

Though the loss formulation was defined as continuous manner, we approximate it with the dis-
cretizations. Firstly, we will replace At(Xt, Xt; z)−AMθ

t (Xt, Xt) with as follows:

At(Xt, Xt; z)−AMθ

t (Xt, Xt) ≈
1

∆t
(1 +At(Xt, Xt; z)∆t) log

1 +At(Xt, Xt; z)∆t

1 +AMθ

t (Xt, Xt)∆t
,

≈ 1

∆t
P

Q·|τ=z

t:t+∆t(Xt, Xt) log
P

Q·|τ=z

t:t+∆t(Xt, Xt)

PMθ

t:t+∆t(Xt, Xt)
.

Similarly,

At(x, y; z) log
At(x, y; z)

AMθ

t (x, y)
≈ 1

∆t
P

Q·|τ=z

t:t+∆t(x, y) log
P

Q·|τ=z

t:t+∆t(x, y)

PMθ

t:t+∆t(x, y)
.

Thus the discretized loss function corresponding to Equation (5) is:

L(θ) =
∑
ti

1

∆t
EΛti,τ

[∑
y

P
Q·|τ=z

t:t+∆t(x, y) log
P

Q·|τ=z

t:t+∆t(x, y)

PMθ

t:t+∆t(x, y)

]
.

The time reversed loss can be discretized as same way.

E.2 DATA PROCESSING FOR ZINC250K DATASET EXPERIMENT

In Section 5.2, we experimented with the standard ZINC250K dataset. In our molecular graph
representation, G = (V,E), the node vectors V = (v(i))i represent the atomic types, and the edge
vectors E = (e(ij))ij represent bond orders. Due to this implementation choice, node features other
than the atomic type cannot be represented, causing occasional failures in decoding into molecules.
Still, to focus on the SB problem itself, we filtered out molecules whose graph representations are
not directly converted into molecules by the RDKit package. Among the node features, formal
charge and explicit hydrogen information is crucial in decoding process since, without them, each
atom’s valency cannot be inferred, so that corresponding molecule cannot be uniquely determined.
Thus, the following criteria were applied to filter molecules from the ZINC250K dataset: (1) all
atoms do not possess a formal charge and (2) all aromatic atoms do not have an explicit hydrogen.
Our final training and test dataset contain 23,936 and 5,984 molecule pairs, respectively.

E.3 NEURAL NETWORK PARAMETERIZATION AND HYPERPARAMETER SETTINGS

DDSBM and DBM. Our neural network parameterization is based on Vignac et al. (2022), which
uses a graph transformer network (Dwivedi & Bresson, 2020). In short, it takes as input a noisy
graph Gt = (Vt,Et) and predicts a distribution over the target graphs. Structural and spectral
features are also used as inputs to improve the expressivity of neural networks. We refer the reader
to Vignac et al. (2022) for more details.

For noise scheduling, we employ a slightly different strategy than Vignac et al. (2022). While
Vignac et al. (2022) uses a cosine schedule for ᾱt, we implement a symmetric scheduling of αt by
incorporating αmin, as defined below:

α(t) =
∂tᾱ(t)

ᾱ(t)
= cos

(
t/τ + s

1 + s
· π
2

)2

· (1− αmin) + αmin, (22)

for 0 ≤ t ≤ τ/2, with α(t) = α(τ − t) for the remaining half of the schedule. For instance, with
100 diffusion steps, ᾱ(τ) ≈ 0.95 when αmin = 0.999, and ᾱ(τ) ≈ 0.90 when αmin = 0.99795.
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Figure 9: Plot of α(t) and ᾱ(t) as functions of timestep t where αmin = 0.999

We trained DDSBM models with IMF iterations, and DBM models, an one-directional variant of
DDSBM with fixed joint molecular pairs, were trained with the same number of gradient updates
to ensure consistency. Both DBM and DDSBM reported in this work were trained using four RTX
A4000 GPUs. The detailed hyperparameters for training are shown in Table 4.

Table 4: Training hyperparmeters of DBM and DDSBM for graph transformation.

Task Model diffusion steps αmin epoch SB iterations

ZINC250K DBM 100 0.999 1800 –
ZINC250K DDSBM 100 0.999 300 6
Polymer DBM 100 0.999 1250 –
Polymer DDSBM 100 0.999 250 5

Graph-to-Graph Translation. For HierG2G and AtomG2G, we used the default settings provided
on the official GitHub repository. Both models were trained until maximum epochs by default with
a single RTX A4000 GPU.

E.4 DETAILS ABOUT METRICS

We here provide detailed explanations about each metric used in the results section. They are clas-
sified into two groups; the first is to evaluate the marginal distribution of the generated data (data-
wise) and the other is to evaluate the joint distribution between initial and generated data (pair-wise).
Among the metrics explained below, Validity, Uniqueness, Novelty, NSPDK, W1, and FCD are
metrics that evaluate the marginal distributions, while NLL and MAD are metrics that evaluate the
joint distribution.

E.4.1 BASIC METRICS

• Validity: Measures the proportion of chemically valid molecules generated by the model.
A valid molecule adheres to fundamental chemical rules, such as valency constraints.

• Uniqueness: Represents the fraction of unique molecules in the generated set. This metric
ensures the diversity of the generated molecules and prevents redundancy.

• Novelty: Quantifies the fraction of generated molecules that are not present in the training
dataset. This evaluates the ability of the model to explore new regions of the chemical
space.
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E.4.2 GRAPH STRUCTURAL METRICS

• Negative Log-Likelihood (NLL): Evaluates the quality of the joint distribution by mea-
suring the cost of transforming one graph into another based on the reference process. This
metric is closely related to the graph edit distance (GED), which quantifies the minimal
number of modifications required to transform one graph into another (see Appendix D.6).

• Neighborhood Subgraph Pairwise Distance Kernel (NSPDK): Computes the distance
between graph distributions using mean maximum discrepancy (MMD). NSPDK evalu-
ates similarity based on local neighborhood subgraphs, which incorporate node and edge
features as well as the underlying graph structure (Costa & Grave, 2010).

E.4.3 MOLECULAR PROPERTIES METRICS

• Wasserstein-1 Distance (W1): Measures the distance between the property distributions
of the target and generated molecules for the properties to be modified, focusing on the
marginal distribution. This metric reflects how closely the generated molecular properties
match the desired target distribution.

• Mean Absolute Difference (MAD): Quantifies the average absolute difference in key
properties within each molecular pair of initial and generated molecules. Low MAD value
ensures that critical molecular properties such as drug-likeness (QED) and synthetic acces-
sibility score (SAscore) remain consistent during graph transformation (Bickerton et al.,
2012; Ertl & Schuffenhauer, 2009).

• Fréchet ChemNet Distance (FCD): Calculates the similarity between the target molecule
distribution and the generated molecules, focusing on the marginal distribution of the
molecules (Preuer et al., 2018). It is based on comparing the feature distributions of
molecules embedded using a pre-trained neural network.

F SUPPLEMENTARY RESULTS

F.1 MORE STATISTICAL RESULTS FOR MAIN EXPERIMENTS

Tables 5 and 6 show average and standard deviation for all the metrics of ZINC and polymer exper-
iments from three different training runs, respectively. For clarity, we plot the raw values of each
molecular property—log P , QED, and SAscore—in Figure 10.

Table 5: Distribution shift performance on ZINC. ↑ and ↓ denote higher and lower values are
better, respectively. Standard deviation values for three independent runs included compared to the
original table in the main result.

Model Val.(↑) Uniq.(↑) Nov.(↑) NLL(↓) NSPDK(↓) LogP W1(↓) QED MAD(↓) SAscore MAD(↓) FCD(↓)
Reference - - - 360.862 1.47e-4 2.007 0.153 0.595 4.807 / 0.279

AtomG2G 99.9±0.1 64.4±2.6 99.3±0.1 355.025±0.484 9.70e-3±2.01e-3 0.162±0.034 0.143±0.001 0.697±0.019 5.019±0.572
HierG2G 100.0±0.0 73.7±1.3 99.5±0.1 344.458±4.454 2.10e-2±4.75e-3 0.113±0.045 0.146±0.005 0.687±0.032 5.742±0.378

DBM 87.6±1.2 100.0±0.0 100.0±0.0 288.572±3.327 8.04e-4±2.23e-4 0.150±0.012 0.141±0.002 0.608±0.013 1.046±0.043
DDSBM 94.8±1.9 100.0±0.0 99.9±0.0 160.461±10.409 7.30e-4±9.29e-5 0.139±0.003 0.120±0.009 0.402±0.028 0.833±0.082

Table 6: Distribution shift performance on polymer. ↑ and ↓ denote higher and lower values are
better, respectively. Standard deviation values for three independent runs included compared to the
original table in the main result.

Model Val.(↑) Uniq.(↑) Nov.(↑) NLL(↓) NSPDK(↓) GAP W1(↓) FCD(↓)
Reference - - - 749.800 5.64e-4 0.312 1.469 / 0.384

DBM 43.4±0.015 99.8±0.002 97.4±0.003 580.415±11.279 5.82e-3±3.62e-r 0.249±0.019 2.230±0.175
DDSBM 97.4±0.004 94.5±0.011 71.3±0.038 212.047±18.444 4.18e-3±1.55e-4 0.127±0.013 1.074±0.038
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Figure 10: Density plots comparing the distributions of three molecular properties (log P,
∆QED, and ∆SAscore) across four different molecular generation methods: AtomG2G, Hi-
erG2G, DBM, and DDSBM.

F.2 ABLATION STUDIES

We conducted ablation studies about the effects of graph matching algorithm and initial coupling
of data on the distribution shift performance and the convergence of IMF iteration. Note that the
former and the latter affect graph vectors and graphs, respectively.

F.2.1 THE EFFECT OF GRAPH MATCHING ALGORITHMS

We first conducted an experiment about graph matching algorithms’ effects on the performance of
DDSBM. As Table 7 shows, the performance variations across graph matching algorithms were not
significant. We attribute this outcome to the inherent characteristics of the DDSBM framework. As
the SB iterations progress, the differences between initial and generated graphs would be decreased,
in other words, they become increasingly similar. This is due to our reference process employs
non-zero ᾱτ to assign low probabilities to dissimilar data pairs. Consequently, the influence of the
graph matching algorithm on the optimality of graph data for each Markovian projection gradually
diminishes, as supported by the Figure 11. This effect causes the model to converge in a similar
manner regardless of the specific graph matching algorithm applied at each IMF iteration, resulting
in minor differences on the final values as shown in the Table 7.

Table 7: Ablation study on graph matching. ↑ and ↓ denote higher and lower values are better,
respectively.

Algorithm Val.(↑) Uniq.(↑) Nov.(↑) NLL(↓) NSPDK(↓) LogP W1(↓) QED MAD(↓) SAscore MAD(↓) FCD(↓)
(1) SM 94.6 100.0 99.9 163.931 1.17e-3 0.159 0.122 0.388 0.837
(2) MPM 95.8 100.0 100.0 155.378 6.95e-4 0.164 0.110 0.401 0.773
(3) MPM + Randomness 95.3 100.0 99.9 158.534 6.78e-4 0.130 0.116 0.424 0.759
(4) Our setting 94.1 100.0 99.9 164.480 7.49e-4 0.139 0.124 0.392 0.747

Furthermore, we additionally examined two scenarios on our main expeirment with the ZINC250K
dataset: 1) training with graph matching during the IMF iterations, and 2) training without any graph
matching algorithm during the whole training process. For the former, the graph matching setup
used in our main ZINC experiment in Section 5.2 was used without change. Figure 12 shows that,
similar to the comparison of several graph matching algorithm, the use of graph matching merely
affected the convergence of DDSBM after a sufficient number of IMF iterations. Still, we observed
that, without graph matching, both the training loss and the negative log-likelihood (NLL) between
the original and generated data start at higher values and require more iterations to reach levels
comparable to those achieved with graph matching. This indicates that graph matching algorithms,
while not essential for the eventual convergence of DDSBM, can accelerate the convergence through
the IMF iterations, providing an additional benefit.
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(a) The ratio of suboptimal initial pairs (b) The average NLL drop

Figure 11: The effect of graph matching algorithm on graph permutation matching versus the
IMF iterations. The result is computed from training data from a single run of our graph matching
algorithm, which updated during an IMF iteration. (a) The ratio of suboptimal initial permutation
pairs, found by the graph matching algorithm. For each iteration, this amount of graph data pairs
are modified in their permutations. (b) The average NLL drop percentage for the data pairs whose
permutations were changed by the graph matching algorithm, i.e. (NLLinit − NLLnew)/NLLinit.

(a) Comparison of DKL(Λ|Mθ). (b) Comparison of NLL.

Figure 12: Comparison of training loss, DKL(Λ|Mθ), and NLL between original and generated
data across IMF iterations of experiment setup with and without graph matching algorithm.
Here for graph matching, we used algorithm (4) in Table 7. Also, note that NLL in Figure 12b is
calculated directly from original data and generated data without permutation alignment.

F.2.2 THE EFFECT OF INITIAL COUPLING

We further analyze the molecular optimization task in Section 5.2 with different initial couplings.
In that section, we used randomly coupled molecules as the initial coupling for all the models.
However, except for DDSBM, all of them assume that suitable molecule pairs have already been
identified to be provided. To meet this, we adopted Tanimoto similarity (Willett et al., 1998) as
a pseudo-metric to find similar molecule pairs between the two molecule distributions, denoted as
Tanimoto similarity-based coupling. We note that the similarity-based coupling is another optimal
transport problem of maximizing the sum of pair-wise molecular similarities, where we employed
the Hungarian method to obtain a sub-optimal solution.

Using the Tanimoto similarity-based coupling, we retrained all models discussed in Section 5.2 and
compared their performance. Here, we denote a newly trained DDSBM model as DDSBM-T to
deviate it from the model trained on the randomly coupled data. From Table 8, we observe that all
models achieved lower NLL values compared to when they were trained with random coupling. The
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HierG2G model exhibits much lower FCD and NLL values compared to those of random coupling,
indicating that previous graph transformation methods can be improved if more optimal pairs are
provided as training data.

Figure 13: Comparison of DKL(Λ|Mθ) across IMF iterations for two types of initial couplings:
Random and Tanimoto similarity.

The distinct feature of DDSBM-T is that all baseline models learn graph transformations between the
molecule pairs with high Tanimoto similarity, while DDSBM-T learns graph transformations with
minimal cost defined by its reference process Q. It cannot be guaranteed that the distance defined
by our reference process is better than the Tanimoto similarity from the perspective of molecular
optimization. Essentially, the success of molecular optimization should be measured by how well
the target property is adjusted while preserving other key properties. Apparently, Table 8 shows that
DDSBM-T outperforms the other baselines in terms of molecular property metrics. This suggests
that the graph transformation from DDSBM retains other molecular properties, attaining the goal of
the molecule optimization task.

Finally, we analyze the effect of initial coupling on the training process, especially focusing on the
approach to convergence. We illustrate the training losses of DDSBM models from two different
initial couplings, random and Tanimoto similarity-based, in Figure 13, respectively. DDSBM-T
shows consistently lower loss values up to the sixth IMF iteration and reaches convergence at the
third IMF iteration.

Table 8: Distribution shift performance on ZINC with initial coupling based on the Tanimoto
similarity. As in Table 1, reference refers to metrics from the initial coupling, used as a stan-
dard to evaluate each model’s graph translation. The experimental setting is the same as described
Section 5.2, except for the initial coupling. ↑ and ↓ denote higher and lower values are better,
respectively.

Model Type Val.(↑) Uniq.(↑) Nov.(↑) NLL(↓) NSPDK(↓) LogP W1(↓) QED MAD(↓) SAscore MAD(↓) FCD(↓)
Reference1 - - - - 245.765 1.63e-4 2.011 0.126 0.367 4.811 / 0.315

AtomG2G Latent 100.0 99.8 99.9 289.674 5.22e-3 0.315 0.144 0.558 1.578
HierG2G Latent 100.0 99.7 99.9 264.072 1.33e-3 0.189 0.127 0.446 1.171

DBM Bridge 90.2 100.0 99.9 220.594 5.91e-4 0.141 0.127 0.508 0.749
DDSBM-T Schrödinger Bridge 95.6 100.0 99.9 152.856 6.23e-4 0.103 0.110 0.393 0.911
1 NLL, W1, and MADs were calculated using random pairs from the test set. Two FCD values are provided: the first compares the initial molecules in the test set with the terminal

molecules in the training set, and the second compares the terminal molecules in both sets. Also, the reference NSPDK is computed with the terminal molecules from training and
test sets.

F.3 EXAMPLES FOR GENERATED MOLECULES ON MOLECULE OPTIMIZATION TASKS

To show the difference between molecules generated from DDSBM and others, we visualized some
selected examples for the ZINC and polymer datasets, respectively (see Figures 14 and 15). As
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expected from the superior performance of DDSBM compared to other methods in terms of joint
distribution metrics (NLL and properties MAD), the generation result from DDSBM gives more
similar graph structure compared to source molecules in both ZINC and polymer datasets. We also
present generation trajectories for different molecules in ZINC and polymer datasets in Figures 16
and 17.

Figure 14: Visualization of molecules generated by DDSBM, DBM, and HierG2G compared to
the source molecule.
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Figure 15: Visualization of molecules generated by DDSBM and DBM with the source
molecule. The samples generated by DBM and DDSBM were selected from the molecules pre-
dicted to have a blue color with GAP values in the range of 2.56–2.75 eV.

G UNCONDITIONAL GRAPH GENERATION

G.1 EXPERIMENTAL SETUP AND METRICS

We conducted an additional evaluation of DDSBM on an unconditional graph generation task. To
ensure consistency, we adopted the same hyperparameter settings and training configurations as in
DiGress (Vignac et al., 2022), except for the noise scheduling as detailed in Table 4. Training,
validation, and test splits were same as DiGress, but early stopping based on the validation set was
not employed, similar to the main tasks. The training hyperparameters are detailed in Table 9.

For each task, both the DDSBM and DBM were trained for the same number of epochs, with sam-
pling from the prior distribution repeated five times. The results were averaged across the five for
the Maximum Mean Discrepancy (MMD) of graph features (degree distributions, clustering coef-
ficients, and orbit counts). Additionally, for the planar and QM9 datasets, further metrics such as
Validity/Uniqueness/Novelty (V.U.N.) were evaluated.

G.2 SYNTHETIC GRAPH GENERATION

In the Community-20 task, both DBM and DDSBM demonstrated superior performance compared
to DiGress in terms of degree, clustering, and orbit metrics. This result highlights the strengths of
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t=0 t=1/4 t=1/2 t=3/4 t=1

Figure 16: Trajectory visualization of ZINC molecule optimization task generated by DDSBM.
Note that t=0 and t=1 are the original and generated molecules, respectively.

Table 9: Training hyperparameters of DBM and DDSBM for unconditional graph generation

Task Model diffusion steps αmin epoch SB iterations

QM9 DBM 100 0.999 200 –
QM9 DDSBM 100 0.999 100 2
Community-20 DBM 500 0.9998 1000k –
Community-20 DDSBM 500 0.9998 200k 5
Planar DBM 1000 0.9999 100k –
Planar DDSBM 1000 0.9999 10k 10

DBM and DDSBM in unconditional graph generation tasks as well. Notably, DDSBM achieved
the best performance in clustering and competitive results in orbit while also significantly reducing
the NLL value compared to DBM. These findings underscore the capacity of the DDSBM to gen-
erate high-quality graph structures at a minimal cost, even when bridging noisy distribution to data
distribution.

G.3 SMALL MOLECULAR GRAPH GENERATION

For the QM9 task, both DBM and DDSBM demonstrated significant improvements in FCD com-
pared to DiGress, as reported in Nguyen et al. (2024). Additionally, enhancements in validity and
novelty were also observed. While DBM showed slightly better performance in FCD and validity,
DDSBM exhibited strengths in novelty compared to DBM. For other metrics, DDSBM and DBM
displayed comparable performance.
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t=0 t=1/4 t=1/2 t=3/4 t=1

Figure 17: Trajectory visualization of Polymer optimization task generated by DDSBM. Note
that t=0 and t=1 are the original and generated molecules, respectively.

Table 10: Unconditional graph generation performance on Community-20. ↑ and ↓ denote
higher and lower values are better, respectively. The best performance is highlighted in bold, and
the second-best performance is underlined.

Model Degree ↓ Clustering ↓ Orbit ↓ NLL ↓
GraphRNN1 8.00e-2 1.19e-1 4.00e-2 -
GRAN1 6.00e-2 1.12e-1 1.00e-2 -
GG-GAN1 8.00e-2 2.17e-1 8.00e-2 -
SPECTRE1 1.00e-2 1.89e-1 2.00e-2 -
DiGress1 2.00e-2 6.30e-2 1.00e-2 -

DBM 1.80e-2 3.80e-2 5.14e-3 3.26e+2
DDSBM 1.75e-2 2.78e-2 5.81e -3 2.87e+2
1 These results are taken from Vignac et al. (2022).

G.4 EXAMPLES FOR GENERATED GRAPH ON UNCONDITIONAL GRAPH GENERATION

To illustrate how graph structure is preserved in DDSBM, we visualized a selection of examples
from the Planar, Community-20, and QM9 unconditional generation tasks. For all three tasks, the
generation trajectories were visualized in Figures 18 to 20. In the case of planar graphs, we plotted
the initial and generated graphs using the trained DDSBM and the public checkpoints of Digress
(see Figure 21).
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Table 11: Unconditional graph generation performance on Planar. ↑ and ↓ denote higher and
lower values are better, respectively. The best performance is highlighted in bold, and the second-
best performance is underlined.

Model Degree ↓ Clustering ↓ Orbit ↓ V.U.N. ↑ NLL ↓
GraphRNN1 4.90e-3 2.79e-1 1.25e+0 0.0 -
GRAN1 7.00e-4 4.34e-2 9.00e-4 0.0 -
SPECTRE1 5.00e-4 7.75e-2 1.20e-3 25.0 -
ConGress1 4.76e-3 2.73e-1 1.30e+0 0.0 -
DiGress1 2.80e-4 3.72e-2 8.50e-4 75.0 -

DBM 9.35e-4 8.95e-2 8.67e-3 81.5 1.96e+3
DDSBM 7.39e-4 5.81e-2 9.60e-4 76.0 1.51e+3
1 These results are taken from Vignac et al. (2022).

Table 12: Unconditional graph generation performance on QM9. ↑ and ↓ denote higher and
lower values are better, respectively. The best performance is highlighted in bold, and the second-
best performance is underlined.

Model Val. ↑ Uniq. ↑ Nov. ↑ FCD ↓ NLL ↓
GraphAF1 74.43 88.64 86.59 5.27e+0 -
MoFlow1 91.36 98.65 94.72 4.47e+0 -
GraphDF1 93.88 98.58 98.54 1.09e+1 -
GDSS1 95.72 98.46 86.27 2.90e+0 -
GraphArm1 90.25 95.62 70.39 1.22e+0 -
GLAD1 97.12 97.52 38.75 2.01e-1 -
Digress1 99.00 96.66 33.40 3.60e-1 -

DBM 99.87 96.59 36.54 9.90e-2 7.55e+1
DDSBM 99.67 96.83 38.06 1.05e-1 5.38e+1
1 These results are taken from Nguyen et al. (2024).

G.5 COMPARISON OF GENERATION PERFORMANCE ACROSS VARYING NFES

We compared the generation performance, specifically validity and FCD, of DDSBM and DBM
on the QM9 task across different the number of function evaluations (NFEs), set at 5, 10, 20, 25,
50, and 100. The results show that DDSBM maintains performance reasonably well even at low
NFEs, whereas DBM shows a more pronounced performance degradation under the same conditions
(Figure 22). We attribute this to DDSBM finding optimal generation paths that can be predicted with
fewer NFEs.
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t=0 t=1/4 t=1/2 t=3/4 t=1

Figure 18: Trajectory visualization of planar graph generated by DDSBM. Note that t=0 and
t=1 are the prior and generated graphs, respectively.

t=0 t=1/4 t=1/2 t=3/4 t=1

Figure 19: Trajectory visualization of community-20 graph generated by DDSBM. Note that
t=0 and t=1 are the prior and generated graphs, respectively.
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t=0 t=1/4 t=1/2 t=3/4 t=1

Figure 20: Trajectory visualization of QM9 graph generated by DDSBM. Note that t=0 and t=1
are the prior and generated graphs, respectively.

Prior DDSBM Prior Digress

Figure 21: Visualization of planar graph generated by DDSBM and Digress with the source
prior graph. The color of each node is assigned based on the spectral features of the prior graph.
Graphs generated by DDSBM tend to better preserve the graph structures of the source prior graph
compared to those generated by Digress.
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(a) Validity vs NFE. (b) FCD vs NFE.

Figure 22: Comparison of DBM and DDSBM in terms of generation performance with respect
to number of diffusion steps (NFE) in QM9 experiment. Here, we used NFE of 5, 10, 15, 20, 25,
and 100 timesteps.
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