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Figure 9: In experiments, we used a common feature-extractor (F ), decoder (D), and predictor (P )
network backbone while replacing different encoder heads (E).

7 Implementation details440

Here, we include implementation details omitted from the main paper for brevity. Code for recreating441

the experiments in the paper is available at https://anonymous.4open.science/r/complexity_concepts-442

16A2. Upon acceptance, a deanonymized repository will be released.443

7.1 Pretraining444

In pre-training (before the finetuning with a small number of examples on a cruder task), we used445

the following setup. In general, the overall network architecture comprised a feature extractor, an446

encoder head, a decoder, and a predictor, as depicted in Figure 9.447

In all experiments, the predictor was parametrized as a two-layer feedforward neural network with448

hidden dimension 128 and a ReLU activation. The last layer’s dimension depended upon the exact449

prediction task (e.g., 10 neurons for FashionMNIST, 100 for CIFAR100, and 1010 for iNat) and used450

a softmax activation.451

The feature extractors and decoders varied by domain. For FashionMNIST, the feature extractor452

used 3 2D convolution layers, followed by one fully connected layer. The decoder used two linear453

layers, followed by 3 inverse convolution layers. We again emphasize that the code for these models454

is available in our codebase, linked to at the beginning of this section.455

For CIFAR100 and iNat, we pre-processed the images to extract the 512-dimensional activations456

from the penultimate layer of a ResNet18 pretrained on ImageNet [9]. These features were used as457

inputs to the feature extractor (x in Figure 9). For both CIFAR100 and iNat, the feature extractor used458

two linear layers, with a ReLU activation after the first layer, which had hidden dimension 128. The459

decoder was used to reconstruct the 512-dimension outputs of the ResNet18, using 3 fully-connected460

layers of dimension 128, 256, and 512, with ReLU activations between layers.461

The different encoder heads were β-VAE, VQ-VIBC , and VQ-VIBN models. β-VAE models used462

two linear layers, branching off the output of the feature extractor, to generate µ and σ from which463

to sample a continuous latent variable. VQ-VIBC directly passed the output of the feature extractor464

into the vector quantization layer, from which the discrete latent representations were sampled, as465

described in the main paper. In VQ-VIBN , the output of the feature extractor was passed through two466

linear layers to generate a µ and a σ (exactly as in the β-VAE case) before the sampled continuous467

representation was discretized via vector quantization. Across experiments, the only differences468

among encoder heads that could arise were due to different latent dimensions (although we fixed it to469

32 for all experiments) or, for VQ-VIBC and VQ-VIBN , the number of elements in the learnable470

codebook or n, the number of quantized vectors to combine into a latent representation.471

In the main paper, we discussed the VQ-VIBC training loss (Equation 1), maximizing utility, mini-472

mizing reconstruction loss, and minimizing the entropy of the categorical distribution over codebook473

elements. A strict generalization of Equation 1, in which a variational bound on the complexity of474

representations is also penalized, is included in Equation 2:475
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max λUE[U(x, y)]− λIE[∥x− x̂∥2]

− λHE

 ∑
i∈[1,n]

H(P(ζ|hi(x))


− λCE [DKL[P(ζ|h(x))∥U(C)]]

− ∥sg[hi(x)]− ζi(x)∥2 − α∥hi(x)− sg[ζi(x)]∥2

(2)

Equation 2 differs from Equation 1 via the third line, penalizing the KL divergence between the476

conditional categorical distribution over codebook elements and a uniform distribution over the C477

elements. This provides a variational bound on I(X,Z), dubbed the complexity of representations478

in prior literature [35, 27]. In our main experiments, we set λC = 0 and vary λH ; ablation studies479

in which we varied λC instead of λH are included in Appendix 10 and confirm that controlling the480

entropy of representations supported better finetuning accuracy.481

In training β-VAEs, we trained to maximize the function described in Equation 3, where µ(x) and482

σ(x) represent the µ and σ parameters output by the encoder.483

max λUE[U(x, y)]− λIE[∥x− x̂∥2]
− λCE [DKL[N (µ(x), σ(x))∥N (0, 1)]]

(3)

Equation 3 trains agents to maximize classification accuracy, minimize MSE, and minimize the484

complexity of representations. The scalar weight λC can be viewed as a Lagrange multiplier,485

constraining how much information can be encoded in representations. This equation is closely486

related to Equation 2 but, given the continuous nature of encodings in β-VAE, we could not penalize487

the entropy of a categorical distribution.488

In training VQ-VIBN , we used the training objective proposed by Tucker et al. [27], which closely489

resembles the training loss for VQ-VIBC and is shown in Equation 4 (and closely matches Equation 2).490

We use the same notation as for the β-VAE and VQ-VIBC models.491

max λUE[U(x, y)]− λIE[∥x− x̂∥2]

− λHE
[
Ĥ(P(ζ|µ(x))

]
− λCE [DKL[N (µ(x), σ(x))∥N (0, 1)]]

− ∥sg[hi(x)]− ζi(x)∥2 − α∥hi(x)− sg[ζi(x)]∥2

(4)

The two key differences between Equation 4 and Equation 2 (used for training VQ-VIBC) are bounds492

on entropy and complexity (on the second and third lines of Equation 4). Just as for β-VAEs, VQ-493

VIBN models uses a KL divergence loss to regulate the complexity of representations. Increasing λC ,494

as we did while annealing complexity in experiments, decreases the amount of encoded information.495

However, as shown in our results, simply increasing λC does not ensure that VQ-VIBN models will496

use fewer discrete representations. (For visualizations of this effect, see Appendix 9.) Tucker et al.497

[27] advocate for using a small positive λH to penalize the estimated entropy over codebook elements.498

We explore varying λH in Appendix 10 and find some benefits relative to our main experiments, in499

which we set λH = 0. However, given that VQ-VIBN only supports an approximation of the entropy500

term, we find that controlling the entropy for VQ-VIBN is not as effective as controlling the entropy501

for VQ-VIBC .502

7.2 Finetuning503

In finetuning, we loaded pretrained frozen encoders and trained new predictor models to map from504

encodings to downstream predictions.505

For a finetuning task with M distinct classes, and a “duplication factor,” k, for how many examples506

of each class to train with, we randomly selected k ∗M datapoints to train with. For example, when507
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finetuning on the binary CIFAR100 task of living vs. non-living things, M = 2, so we loaded 2508

total datapoints for k = 1, 4 datapoints for k = 2, etc.. For each input in the finetuning dataset,509

we generated an encoding by passing through the encoder once. This generated a new dataset of510

encodings and labels, which we used the train the predictor. (Note that this approach is distinct511

from passing the input through the encoder many times; given stochastic encoders, which we used,512

the same input could result in many different encodings. Here, we assumed a limited budget of513

encodings.)514

Predictor neural networks were instantiated as feedforward networks with 4 fully connected layers,515

with hidden dimension 256 and ReLU activations, and trained to map from shifted encodings (see516

next paragraph) to classifications for 100 epochs using an Adam optimizer with default parameters,517

with the learning rate decreasing by a factor of 10 based on plateauing training loss, with a patience518

of 5 epochs, and early stopping if the learning rate fell below 10−8.519

One particular design choice that we made in finetuning predictors merits elaboration: shifting520

encodings. Rather than directly training predictors to map from encodings to predictions, we applied521

a simple linear transformation to the encodings before feeding them to the predictor. Specifically, we522

multiplied all tensor elements by 5 and increased them by 1. This simple linear transformation does523

not affect any relations between encodings except scale, and indeed we found that predictors could524

be successfully trained with this rescaling. Nevertheless, this linear transformation was important to525

provide a check against merely relying upon initialization conditions for good finetuning performance.526

In particular, we found that if we did not apply this linear transformation (i.e., pass the raw encodings527

to the predictor), predictors sometimes performed better than they should given the training data. For528

example, as a sanity check, we trained a predictor on a binary classification task, but only provided529

two positive datapoints and no negative data. In general, given this data, one would expect a trained530

predictor to only predict positive labels. However, we observed that in several cases, the predictor531

would achieve nearly perfect accuracy, including predicting negative labels for negative inputs.532

This surprising result disappeared when we simply shifted encodings, indicating that the particular533

initialization conditions of the predictor seemed to align well with pre-trained encoders. We wanted534

to measure the effect of data on finetuning performance, rather than just initialization conditions, but535

we note that this odd phenomenon of well-aligned initializations merits further investigation.536

We ran 10 finetuning trials per model, which was important given the small amount of randomly-537

sampled finetuning data.538

7.3 Hyperparameters539

In the following subsections, we present the hyperparameters used for training different encoders in540

the different domains. In general, we used the following principles when choosing hyperparameters:541

• For VQ-based methods, use a large enough codebook to have at least one element per class.542

Larger C are also acceptable, as tuning weights should decrease the effective codebook size.543

• When annealing, use a small enough weight increment to generate smooth changes during544

training. Larger increments, however, speed up training.545

• When annealing for larger n one can increase the annealing rate. Models with greater n546

tended to use more complex representations, so annealing could be extremely slow for small547

increments.548

7.3.1 FashionMNIST549

For FashionMNIST, we trained all models with batch size 64 for 200 epochs, using the hyperparam-550

eters specified in Table 1. The only differences across methods were which hyperparameters we551

annealed to penalize complexity. Other differences simply reflected differences in architecture (e.g.,552

using a codebook for vector-quantization methods). Pre-training a single model for 200 epochs took553

approximately 5 minutes on a desktop computer with one NVIDIA 2080 GeForce RTX.554

7.3.2 CIFAR100555

For CIFAR100, we trained all models with batch size 256 for 400 epochs, using the hyperparameters556

specified in Table 2. As explained for FashionMNIST, the only substantial differences across557
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Table 1: Hyperparameters for FashionMNIST training.

ENCODER LATENT DIM C n λU λI λC0 λC INCR λH0 λH INCR

β-VAE 32 NA NA 10 10 0.01 0.5 0.0 0.0
VQ-VIBN 32 1000 1 10 10 0.01 0.5 0.0 0.0
VQ-VIBN 32 1000 2 10 10 0.01 0.5 0.0 0.0
VQ-VIBN 32 1000 4 10 10 0.01 0.5 0.0 0.0
VQ-VIBC 32 1000 1 10 10 0.0 0.0 0.001 0.2
VQ-VIBC 32 1000 2 10 10 0.0 0.0 0.001 0.4
VQ-VIBC 32 1000 4 10 10 0.0 0.0 0.001 0.8

Table 2: Hyperparameters for CIFAR100 training.

ENCODER LATENT DIM C n λU λI λC0 λC INCR λH0 λH INCR

β-VAE 32 NA NA 10 10 0.01 0.1 0.0 0.0
VQ-VIBN 32 1000 1 10 10 0.01 0.5 0.0 0.0
VQ-VIBN 32 1000 2 10 10 0.01 0.5 0.0 0.0
VQ-VIBN 32 1000 4 10 10 0.01 0.5 0.0 0.0
VQ-VIBC 32 1000 1 10 10 0.0 0.0 0.001 0.04
VQ-VIBC 32 1000 2 10 10 0.0 0.0 0.001 0.08
VQ-VIBC 32 1000 4 10 10 0.0 0.0 0.001 0.12

architectures were architecture-specific terms that needed to be specified, and which terms were558

annealed to penalize complexity. Pre-training a single model for 400 epochs took approximately 10559

minutes on a desktop computer with one NVIDIA 3080.560

7.3.3 iNaturalist561

For iNat, we trained all models with batch size 256, using the hyperparameters specified in Table 3.562

We trained β-VAE and VQ-VIBC models for 300 epochs, while we trained VQ-VIBN models for563

600. We used more annealing epochs for VQ-VIBN simply because it seemed to need more epochs564

to eventually anneal to random chance. Likely, a larger annealing rate could also accomplish the565

desired effect, but initial experiments with faster annealing tended to induce rapid codebook collapse566

that did not generate the smooth spectrum of MSE values we desired. Pre-training a single model567

for 300 epochs took approximately 10 minutes on a desktop computer with one NVIDIA 3080 (and568

twice as long for 600 epochs).569

8 Further Finetuning Results570

In the main paper, we included only a small number of graphs highlighting our key results. Here,571

we include further results that corroborate the main trends stated in the paper. Primarily, these plots572

include further experiments for varying the amount of finetuning data, as well as varying n, the573

number of codebook elements to combine into a latent representation. Results are divided by domain:574

FashionMNIST, CIFAR100, and iNat.575

8.1 FashionMNIST576

Here, we include the finetuning results for the FashionMNIST domain for varying amounts of577

finetuning data, ranging over k ∈ [1, 2, 5, 10, 50], and n, the number of quantized vectors to combine578

into a single representation. Results for each k are included in Figure 10.579

As expected, increasing the amount of finetuning data improved performance for all models, and the580

gap between all model types (VQ-VIBC , VQ-VIBN , and β-VAE) shrank. It is noteworthy, however,581

that a VQ-VIBC model, tuned to the right complexity level and trained with just one example per582

ternary class (Figure 10 a), achieved better accuracy than a β-VAE model trained with 50 examples583

per class (Figure 10 e). Further, for any fixed k, VQ-VIBC consistently outperformed VQ-VIBN ,584

suggesting that many recent works that use VQ-VIB N could be improved by replacing the model585
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Table 3: Hyperparameters for iNaturalist training.

ENCODER LATENT DIM C n λU λI λC0 λC INCR λH0 λH INCR

β-VAE 32 NA NA 10 10 0.0001 0.03 0.0 0.0
VQ-VIBN 32 2000 1 10 10 0.001 0.1 0.0 0.0
VQ-VIBN 32 2000 2 10 10 0.001 0.2 0.0 0.0
VQ-VIBN 32 2000 4 10 10 0.001 0.4 0.0 0.0
VQ-VIBC 32 2000 1 10 10 0.0 0.0 0.001 0.05
VQ-VIBC 32 2000 2 10 10 0.0 0.0 0.001 0.10
VQ-VIBC 32 2000 4 10 10 0.0 0.0 0.001 0.20
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Figure 10: FashionMNIST finetuning results for varying k. As k increased, all models benefited. The
data-efficiency of advantage of VQ-VIBC was most pronounced when using the least amount of data.

type [27, 28, 13, 8]. Lastly, for both VQ-VIBN and VQ-VIBC , increasing n tended to support586

lower MSE but worse finetuning accuracy. This supports an intuition that combining more discrete587

representations starts to more densely fill the representation space, trending towards continuous588

representations.589

We note briefly that VQ-VIBN , both in this domain and others (explored in the next sections),590

typically failed to learn as complex representations as either VQ-VIBC or β-VAEs. This is apparent591

given the limited range of MSE values for the VQ-VIBN curves. We consistently struggled to592

make VQ-VIBN learn as rich representations as for the other model types, which led to worse593

reconstructions and higher MSE values.594

8.2 CIFAR100595

We found similar trends in the CIFAR100 to those in the FashionMNIST domain and plotted results596

in Figures 11 and 12 (for 2-way and 20-way finetuning tasks, respectively). In all experiments,597

VQ-VIBC outperformed both β-VAE and VQ-VIBN . In the 2-way finetuning example, we again598

found a peaked curve for VQ-VIBC finetuning accuracy as a function of MSE, indicating that tuning599

to the right complexity level induced the best accuracy. In the more complex 20-way classification600

task, however, we did not observe this peak.601

This last result is unsurprising: the 20-way hierarchy in CIFAR100 is less semantically meaningful602

and likely less obvious in photos than the 2-way task of distinguishing living and non-living things.603

For example, two of the 20 categories are simply different sorts of vehicles. It would be extremely604

surprising for VQ-VIBC to learn such arbitrary groups automatically while compressing represen-605
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tations. Without learning the right groupings, VQ-VIBC cannot benefit from learning less complex606

representations.607
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Figure 11: CIFAR100 2-way finetuning results for varying k.
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Figure 12: CIFAR100 20-way finetuning results for varying k.
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8.3 iNaturalist608

Lastly, we found similar trends in finetuning in the iNat domain, finetuned on a 3-way (Figure 13),609

34-way (Figure 14), and 1010-way (Figure 15) finetuning task.610

On the 3-way finetuning task (between animals, plants, and fungi), we observed similar peaking611

behavior as in earlier experiments, indicating yet again the importance of tuning to the right complex-612

ity. In addition, as in prior results, we found a similar trend that greater n tended to allow greater613

complexity (lower MSE) but induced worse finetuning performance. For example, in Figure 13 b, the614

orange line, corresponding to n = 1 stays above and to the right of the green (n = 2) and red (n = 4)615

lines. Intuitively, this seems to indicate that the more combinatorial representations, with greater616

n, were somewhat of a midpoint between the continuous β-VAE representations and the discrete617

representations used by VQ-VIBC for n = 1.618

Results from the 34-way finetuning followed similar patterns as before as well. Just as in CIFAR100619

wherein we tested both a 2-way and 20-way finetuning task, this 34-way finetuning task for iNat620

showed that VQ-VIBC continued to outperform VQ-VIBN and β-VAE for more complex finetuning621

tasks, although the performance gap shrank as k increased.622

Most interestingly, perhaps, we conducted yet another iNat finetuning experiment, this time using623

the 1010 low-level labels that had originally been used during pre-training. As before, we used very624

small amounts of data in finetuning (e.g., for k = 1, only 1 example from each class, so 1010 labeled625

examples total). Results from those experiments are shown in Figure 15.626

For small k, we again see that VQ-VIBC outperforms other model types. For larger k, however,627

we see one of the limitations of VQ-VIBC . Because the discrete encoders learned less complex628

representations than β-VAEs (as shown by the fact that they never reach lower MSE values), with629

enough finetuning data, β-VAEs are able to capture distinctions between classes that VQ-VIBC models630

cannot. Thus, in the particular case of large amounts of finetuning data and complex finetuning tasks,631

more complex, continuous encoders continue to outperform our method.632
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Figure 13: iNat 3-way finetuning results for varying k.
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Figure 14: iNat 34-way finetuning results for varying k.
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Figure 15: iNat 1010-way finetuning results for varying k.
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(a) Epoch 40 (b) Epoch 60

(c) Epoch 70 (d) Epoch 199

Figure 16: The evolution of the distribution over prototypes during annealing for VQ-VIBC in
the FashionMNIST domain. In early epochs, VQ-VIBC uses many prototypes, with a long-tailed
distribution. Over the course of annealing the entropy, the probability distribution becomes more
concentrated (b and c) before collapsing to a single prototype (d).

9 Prototype Utilization: Further Visualizations633

Here, we include some further visualizations that we omitted from the main paper due to space634

constraints. These visualization primarily illustrate the importance of entropy-regulated representation635

learning (for VQ-VIBC) vs. complexity-regulated (for VQ-VIBN ).636

Figures 16 and 17 shows the prototypes for VQ-VIBC and VQ-VIBN , respectively, in the FashionM-637

NIST domain over the course of training. Each subfigure consists of a top row of decoded prototypes,638

with associated probabilities (frequency of use measured when passing through images from the test639

set) below. The 30 most frequent prototypes are visualized, or fewer prototypes if fewer were used.640

There is an important trend in Figures 16 and 17: the entropy-based annealing for VQ-VIBC caused641

models to use fewer prototypes, while the complexity-based annealing for VQ-VIBN did not. At642

epoch 40, just as both methods begin annealing, VQ-VIBC and VQ-VIBN use a large number of643

prototypes, as seen by the long-tailed distributions. Over the course of annealing, however, VQ-VIBC644

uses fewer prototypes, and merges images of different classes into the same prototype. Thus, the645

degenerate encoder at the end of annealing (epoch 199) uses just a single prototype to represent all646

possible inputs (Figure 16). At the same time, VQ-VIBN , during annealing, does not use fewer647

prototypes. Rather, the complexity-penalization term seems to induce the model to make the mapping648

from input to prototype more stochastic (Figure 17). Thus, the degenerate VQ-VIBN encoder uses649

many prototypes, each of which is blurry because it could correspond to any input.650

Visualizations of decoded prototypes for the CIFAR100 domain is more challenging. In richer image651

domains, prototype-based methods often use training examples as prototypes [3, 20, 4], which can652

make it more difficult to understand when a single prototype represents more than one concept.653

Nevertheless, by visualizing the distribution over prototypes (without decoding them), we see the654

same pattern that VQ-VIBC tends to learn to use fewer prototypes over the course of annealing than655

VQ-VIBN . Snapshots of the categorical distributions for CIFAR100 are included in Figure 18.656

10 Ablation Study: Entropy vs. Complexity657

Here, we present results motivating penalizing entropy, as opposed to complexity, in VQ-VIBC .658

Appendix 9 showed how annealing entropy in VQ-VIBC caused models to use fewer prototypes,659

whereas penalizing complexity in VQ-VIBN did not induce similar reductions in effective codebook660
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(a) Epoch 40 (b) Epoch 60

(c) Epoch 70 (d) Epoch 199

Figure 17: The evolution of the distribution over prototypes during annealing for VQ-VIBN in
the FashionMNIST domain. Unlike annealing entropy for VQ-VIBC , annealing the complexity in
VQ-VIB did not result in fewer prototypes being used. Instead, each prototype became blurrier,
indicating that each prototype became more likely regardless of class.

(a) VQ-VIBC Epoch 50 (b) VQ-VIBC Epoch 399

(c) VQ-VIBN Epoch 50 (d) VQ-VIBN Epoch 399

Figure 18: Categorical distribution over prototypes while annealing in the CIFAR100 domain at the
start of annealing (Epoch 50) and at the end (Epoch 399) for VQ-VIBC (top row) and VQ-VIB N
(bottom row). Annealing the entropy in VQ-VIBC caused the model to use fewer prototypes (note
the degenerate categorical distribution over only one prototype at Epoch 399), whereas annealing
complexity for VQ-VIBN did not cause similar concentration.
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Figure 19: FashionMNIST finetuning results for varying k, comparing annealing by entropy (VQ-
VIBC) and annealing by complexity (VQ-VIBC Comp.). Annealing by complexity resulted in worse
finetuning performance.

size. Further experiments corroborate our findings that penalizing entropy was the key to this661

difference in behavior.662

We trained VQ-VIBC agents on the FashionMNIST task, using the same pre-training and finetuning663

procedures as in the main paper, with the only difference being that we annealed the complexity of664

representations instead of the entropy. Results from finetuning such models are included in Figure 19.665

Figure 19 shows that annealing by entropy, as opposed to complexity, was the key factor in improving666

VQ-VIBC finetuning performance. The difference in performance when penalizing entropy vs. com-667

plexity closely matches the difference in performance between VQ-VIBC and VQ-VIBN examined668

in the main paper. Thus, the entropy-regularization term seems to explain much of the difference669

between VQ-VIBC and VQ-VIBN .670

In subsequent experiments in the CIFAR100 and iNat domains, therefore, we tested whether penaliz-671

ing the estimated entropy of VQ-VIBN models matched VQ-VIBC results from the main paper. We672

note that Tucker et al. [27] advocate for a small positive λH to penalize entropy, but the authors also673

acknowledge that exactly computing this entropy is impossible given the VQ-VIBN architecture.674

Finetuning results for CIFAR100 (on the 2-way and 20-way finetuning tasks) and iNat (on the 3-way675

and 34-way finetuning tasks), for VQ-VIBC trained by varying λC and VQ-VIBN trained by varying676

λH , are included in Figures 20, 21, 22, and 23. Several important trends emerge from viewing these677

plots, especially compared to results from our main paper for VQ-VIBC controlled via λH .678

First, finetuning performance is noisier using these models compared to results from the main text.679

This likely arises, for VQ-VIBN models, because increasing λH failed to consistently reduce the680

number of discrete representations used. Thus, for a given MSE value, different models used different681

numbers of representations, and therefore exhibited different finetuning performance.682

Second, varying λH , instead of λC , seemed to somewhat improve VQ-VIBN performance, but683

not as much as when varying λH for VQ-VIBC , as presented in our main paper. For example,684

consider Figure 21 a. The best-performing model, VQ-VIBN , n = 1, peaks at finetuning accuracy of685

approximately 0.16, outperforming VQ-VIBC models when varying λC . However, in Figure 12 a, we686

found that VQ-VIBC models in the exact same setting achieved a mean accuracy of approximately687

0.38: more than double the VQ-VIBN performance. Thus, varying λH seemed to improve VQ-VIBN688

performance somewhat, but VQ-VIBC better supports penalizing entropy, and therefore achieves689

higher performance.690
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Figure 20: Ablation study results for the CIFAR100 2-way finetuning task. Tuning λC for VQ-VIBC
or λH for VQ-VIBN led to worse results than in our main paper.
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Figure 21: Ablation study results for the CIFAR100 20-way finetuning task. Tuning λC for VQ-VIBC
or λH for VQ-VIBN led to worse results than in our main paper.
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Figure 22: Ablation study results for the iNat 3-way finetuning task. Tuning λC for VQ-VIBC or λH

for VQ-VIBN led to worse results than in our main paper.
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Figure 23: Ablation study results for the iNat 34-way finetuning task. Tuning λC for VQ-VIBC or
λH for VQ-VIBN led to worse results than in our main paper.
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Third, varying λC , instead of λH , for VQ-VIBC worsened finetuning performance. Once again,691

by comparing finetuning performance for VQ-VIBC models in Figure 21 a (achieving a maximum692

accuracy around 0.14), to results from our main paper, we note the importance of penalizing the693

entropy of representations.694

Thus, in general these ablation studies support many of the design decisions made in the main paper.695

1. Varying λH , instead of λC for VQ-VIBC improves finetuning performance by decreasing696

the number of discrete representations used.697

2. VQ-VIBN benefits somewhat from penalizing entropy, but because it is architecturally698

unable to support exact calculations of entropy, we were unable to match VQ-VIBN perfor-699

mance.700

It is certainly possible that some optimal combination of λH and λC might further improve VQ-VIBN701

or VQ-VIBC performance; initial explorations of such combinations with fixed λH values while702

annealing λC did not yield obvious results. Most importantly, our current findings are enough to703

indicate that controlling the entropy of discrete representations appears important for data-efficient704

finetuning.705
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11 User Study706

In the subsequent pages, we have included the exact pdf document shared with participants of the707

user study, edited only to preserve anonymity during peer-review. Following standard user study708

procedure, we initial briefed users by telling them how long the study was and that they were free709

to leave at anytime. Demographic information was collected in person. After the study, users were710

debriefed and given the email of the study designer to contact if they had any questions.711

27



����������������� 4XDOWULFV�6XUYH\�6RIWZDUH

KWWSV���PLW�FR��TXDOWULFV�FRP�4�(GLW6HFWLRQ�%ORFNV�$MD[�*HW6XUYH\3ULQW3UHYLHZ"&RQWH[W6XUYH\,' 69B�YUVQ�P�2�0%K*H	&RQWH[W/LEUDU\,' 85B�\(:�/8]S« ���

)SVJR��

)YPLM

@V\�HYL�MYLL�[V�SLH]L�[OPZ�Z[\K`�H[�HU`�[PTL�

0[�^PSS�[HRL�SLZZ�[OHU��TPUZ�

;OHUR�`V\�MVY�`V\Y�WHY[PJPWH[PVU�

°

)SVJR��

0U[YVK\J[PVU

(�MHJ[VY`�OHZ�JYLH[LK�H�YVIV[�[OH[�PZ�NVVK�H[�ZVY[PUN�JSV[OLZ�PU[V�[OLZL����JH[LNVYPLZ

;�ZOPY[
°;YV\ZLY
°7\SSV]LY
°+YLZZ
°*VH[
°:HUKHS
°:OPY[
°:ULHRLY
°)HN
°(URSLIVV[

°
:LL�ILSV^�MVY�L_HTWSLZ�VM�[OLZL����JH[LNVYPLZ

712



����������������� 4XDOWULFV�6XUYH\�6RIWZDUH

KWWSV���PLW�FR��TXDOWULFV�FRP�4�(GLW6HFWLRQ�%ORFNV�$MD[�*HW6XUYH\3ULQW3UHYLHZ"&RQWH[W6XUYH\,' 69B�YUVQ�P�2�0%K*H	&RQWH[W/LEUDU\,' 85B�\(:�/8]S« ���

)SVJR��

0U[YVK\J[PVU

/V^L]LY��PU�`V\Y�OVTL�`V\�KVU»[�JHYL�HIV\[�[OLZL����JH[LNVYPLZ�

@V\�VUS`�ZVY[�`V\Y�JSV[OLZ�PU[V�[OLZL���JH[LNVYPLZ!

:OPY[Z
:OVLZ
;YV\ZLYZ�)HNZ

:V��^L�^HU[�[V�[LHJO�[OL�YVIV[�[V�IL�TVYL�NLULYHS�HUK�VUS`�JHYL�HIV\[�[OLZL�[OYLL�OPNO
SL]LS�JH[LNVYPLZ�

)SVJR���

0U[YVK\J[PVU

0U�KVPUN�ZV��^L�HYL�NVPUN�[V�YL�[YHPU�[^V�KPɈLYLU[�YVIV[Z�V]LY�H�WLYPVK�VM�[PTL�

([�H�JLY[HPU�WVPU[�K\YPUN�[OPZ�YL�[YHPUPUN��[OL`�^PSS�IL�HISL�[V�ZVY[�[OLZL�JSV[OLZ�PU[V�[OLZL
[OYLL�UL^�JH[LNVYPLZ�ILZ[�

@V\Y�[HZR�PZ�[V�WPJR�[OL�WVPU[�PU�^OPJO�[OL`�HYL�NVPUN�[V�JH[LNVYPaL�[OLZL�[OYLL�OPNO�
SL]LS�JH[LNVYPLZ�ILZ[�

713



����������������� 4XDOWULFV�6XUYH\�6RIWZDUH

KWWSV���PLW�FR��TXDOWULFV�FRP�4�(GLW6HFWLRQ�%ORFNV�$MD[�*HW6XUYH\3ULQW3UHYLHZ"&RQWH[W6XUYH\,' 69B�YUVQ�P�2�0%K*H	&RQWH[W/LEUDU\,' 85B�\(:�/8]S« ���

)SVJR��

0U[YVK\J[PVU

@V\�^PSS�OH]L�[V�HUZ^LY�VUL�X\LZ[PVU�HIV\[�LHJO�YVIV[�

-PYZ[��`V\�^PSS�IL�ZOV^U�VUL�YVIV[�^OPJO�VUS`�JVTT\UPJH[LZ�^P[O�P[Z�LYYVY�ZJVYL��;OL
SV^LY�[OL�ZJVYL��[OL�IL[[LY�[OL�YVIV[�PZ�H[�JSHZZPM`PUN�[OL����JH[LNVYPLZ�°

:LJVUKS`��`V\�^PSS�IL�ZOV^U�HUV[OLY°YVIV[��;OPZ�YVIV[�OHZ�SLHYULK�[V�JVTT\UPJH[L�^OH[
P[�OHZ�SLHYULK�[OV\NO�]PZ\HSPaPUN�[OL�TVZ[�PTWVY[HU[�PTHNLZ�P[�\ZLZ�MVY�JH[LNVYPaPUN�[OL��
OPNO�SL]LS�JVUJLW[Z��@V\�OH]L�[V�KLJPKL�^OPJO�]PZ\HSPaH[PVU�JVYYLZWVUKZ�[V�[OL�YVIV[
ILPUN�HISL�[V�JH[LNVYPaL�[OL�[OYLL�UL^�OPNO�SL]LS�JH[LNVYPLZ�ILZ[��°
°
.LULYHSS �̀�[OL�TVYL�PTHNLZ�[OL�ZLJVUK�YVIV[�PZ�\ZPUN��[OL�SLZZ�NLULYHS�P[�^PSS�IL��HUK

[OL�^VYZL�P[�^PSS�KV�H[�JH[LNVYPaPUN�[OL���UL^�OPNO�SL]LS�JH[LNVYPLZ�

)SVJR��

9VIV[��

/LYL�PZ�HU�L_HTWSL�VM�[OL�ÄYZ[�YVIV[�JVTT\UPJH[PUN�P[Z�LYYVY�ZJVYLZ�V]LY�[YHPUPUN�

@V\�^PSS�OH]L�[V�WPJR�H�ZJVYL�MYVT���ZHTWSLK�VW[PVUZ�`V\�[OPUR�^PSS�WLYMVYT�ILZ[�VU�`V\Y
KLZPYLK�[HZR�VM�SLHYUPUN�[OL���JSV[OPUN�JVUJLW[Z��(�SV^LY�ZJVYL�PZ�[`WPJHSS`�ZLLU�HZ
IL[[LY��^OPJO�JVYYLZWVUKZ�[V�H�SV^LY�WVPU[�VU�[OL�IS\L�J\Y]L�ILSV^��

@V\Y�[HZR�PZ�[V�WPJR�[OL�WVPU[�^OPJO�`V\�[OPUR�^PSS�WLYMVYT�ILZ[�H[�YLWYLZLU[PUN
[OLZL�[OYLL�JH[LNVYPLZ�

714



����������������� 4XDOWULFV�6XUYH\�6RIWZDUH

KWWSV���PLW�FR��TXDOWULFV�FRP�4�(GLW6HFWLRQ�%ORFNV�$MD[�*HW6XUYH\3ULQW3UHYLHZ"&RQWH[W6XUYH\,' 69B�YUVQ�P�2�0%K*H	&RQWH[W/LEUDU\,' 85B�\(:�/8]S« ���

)SVJR��

9VIV[��

;OLU�`V\�^PSS�IL�ZOV^U�]PZ\HSPaH[PVUZ�SPRL�[OPZ��^OPJO�PZ�ZLJVUK�YVIV[»Z�TL[OVK�VM
JVTT\UPJH[PUN�P[Z�SLHYULK�JVUJLW[Z�

0M�[OL�]PZ\HSPaH[PVU°ZOV^Z�[OH[�����[OL�YVIV[�PZ�UV[�\ZPUN�THU`�PTHNLZ��HUK�����[OL`�YV\NOS`
YLWYLZLU[�[OL�[OYLL�OPNO�SL]LS�JH[LNVYPLZ��ZOPY[Z��ZOVLZ��[YV\ZLYZ�IHNZ���[OLU�[OL�YVIV[
ZOV\SK�WLYMVYT�^LSS�PU�[OL�[HZR�VM�ZVY[PUN�JSV[OLZ�PU[V�[OLZL�[OYLL�JH[LNVYPLZ�

@V\Y�[HZR�PZ�[V�WPJR�[OL�]PZ\HSPaH[PVU°^OPJO�`V\�[OPUR�^PSS�WLYMVYT�ILZ[�H[�ZVY[PUN�[OL
JSV[OLZ�PU[V�[OLZL���OPNO�SL]LS�JH[LNVYPLZ�
°

-VY�L_HTWSL��OLYL�PZ�VUL�YVIV[�Z�]PZ\HSPZH[PVU�^OPJO�PZ�WLYOHWZ�[VV�NLULYHS��HZ�[OLYL�PZ
UV[�L]LU�[OYLL�JH[LNVYPLZ�ILPUN�\ZLK�°

715



����������������� 4XDOWULFV�6XUYH\�6RIWZDUH

KWWSV���PLW�FR��TXDOWULFV�FRP�4�(GLW6HFWLRQ�%ORFNV�$MD[�*HW6XUYH\3ULQW3UHYLHZ"&RQWH[W6XUYH\,' 69B�YUVQ�P�2�0%K*H	&RQWH[W/LEUDU\,' 85B�\(:�/8]S« ���

(UK�OLYL�PZ�VUL�^OPJO�JV\SK�IL�[VV�ZWLJPÄJ��ILJH\ZL�[OLYL�PZ�H�SV[�VM�KL[HPS�

0TWVY[HU[!�>L�^HU[�[OL�YVIV[�[V�SLHYU�[OL�[OYLL�OPNO�SL]LS�JVUJLW[Z��I\[�UV�TVYL�VY
UV�SLZZ�

)SVJR���

*SPJR�UL_[�[V�ILNPU�[OL�Z[\K`
)SVJR��

8\LZ[PVU��!°

,HJO�JPYJSLK�YLNPVU�YLWYLZLU[Z�[OL�YVIV[�[YHPULK�^P[O�H�KPɈLYLU[�LYYVY�ZJVYL��9LTLTILY
[OPZ�LYYVY�PZ�VU�[OL����^H`�JSV[OPUN�JSHZZPÄJH[PVU�[HZR�

°*OVVZL�[OL�WVPU[�[OH[�`V\�[OPUR�[OL�YVIV[�PZ�NVPUN�[V�WLYMVYT�[OL�ILZ[�H[�JSHZZPM`PUN�[OL
OPNO�SL]LS�JH[LNVYPLZ�

°:OPY[Z
°:OVLZ
°;YV\ZLYZ�)HNZ

716



����������������� 4XDOWULFV�6XUYH\�6RIWZDUH

KWWSV���PLW�FR��TXDOWULFV�FRP�4�(GLW6HFWLRQ�%ORFNV�$MD[�*HW6XUYH\3ULQW3UHYLHZ"&RQWH[W6XUYH\,' 69B�YUVQ�P�2�0%K*H	&RQWH[W/LEUDU\,' 85B�\(:�/8]S« ���

°

*OVVZL�[OL�YVIV[�UV^!

)SVJR��

8\LZ[PVU��!

,HJO�]PZ\HSPaH[PVU�YLWYLZLU[Z�[OL�YVIV[�[YHPULK�^P[O�KPɈLYLU[�OPNO�SL]LS�JH[LNVYPLZ�

�
�
�
�

717



����������������� 4XDOWULFV�6XUYH\�6RIWZDUH

KWWSV���PLW�FR��TXDOWULFV�FRP�4�(GLW6HFWLRQ�%ORFNV�$MD[�*HW6XUYH\3ULQW3UHYLHZ"&RQWH[W6XUYH\,' 69B�YUVQ�P�2�0%K*H	&RQWH[W/LEUDU\,' 85B�\(:�/8]S« ���

°*OVVZL�[OL�]PZ\HSPaH[PVU�[OH[�`V\�[OPUR�^PSS�OLSW�[OL�YVIV[�WLYMVYT�ILZ[�H[�ZVY[PUN�`V\Y
JSV[OLZ�PU[V�[OLZL�[OYLL�OPNO�SL]LS�JH[LNVYPLZ!

°:OPY[Z
°:OVLZ
°;YV\ZLYZ�)HNZ

;OL�ÄYZ[�VW[PVU�PZ°

;OL�ZLJVUK�VW[PVU�PZ°

;OL�;OPYK�6W[PVU�PZ

;OL�-V\Y[O�VW[PVU�PZ°

718



����������������� 4XDOWULFV�6XUYH\�6RIWZDUH

KWWSV���PLW�FR��TXDOWULFV�FRP�4�(GLW6HFWLRQ�%ORFNV�$MD[�*HW6XUYH\3ULQW3UHYLHZ"&RQWH[W6XUYH\,' 69B�YUVQ�P�2�0%K*H	&RQWH[W/LEUDU\,' 85B�\(:�/8]S« ���

*SPJR�[V�^YP[L�[OL�X\LZ[PVU�[L_[

)SVJR� 

+LIYPLM�7HNL
;OHUR�`V\�MVY�`V\Y�WHY[PJPWH[PVU��[OPZ�Z[\K`�^HZ�KLZPNULK�[V�L]HS\H[L�WLVWSL»Z�HIPSP[`�[V
\ZL�HU�L_WSHPUHISL�HY[PÄJPHS�PU[LSSPNLUJL�Z`Z[LT�[V�OLSW�ÄUL�[\UPUN�[V^HYKZ�KV^U�Z[YLHT
[HZRZ�

PM�`V\�OH]L�HU`�X\LZ[PVUZ�WSLHZL�JVU[HJ[�

°*SPJR�UL_[�[V�ÄUPZO

-PYZ[�VW[PVU
:LJVUK�VW[PVU
;OPYK�VW[PVU
-V\Y[O�VW[PVU

719


	Implementation details
	Pretraining
	Finetuning
	Hyperparameters
	FashionMNIST
	CIFAR100
	iNaturalist


	Further Finetuning Results
	FashionMNIST
	CIFAR100
	iNaturalist

	Prototype Utilization: Further Visualizations
	Ablation Study: Entropy vs. Complexity
	User Study

