
[Supplementary File]
Edge Representation Learning with Hypergraphs

Organization The supplementary file is organized as follows. In section A, we first describe the
structural details of the proposed Edge HyperGraph Neural Network (EHGNN) framework using the
Dual Hypergraph Transformation (DHT) in comparison to those of the existing edge-aware graph
neural networks. Also, we describe the detailed components of the proposed edge pooling methods:
HyperCluster and HyperDrop in section B. We provide the experimental setups in Section C, which
include the detailed descriptions of the models and datasets, as well as the experimental details for
each task. Then, we provide additional experimental results on graph reconstruction and generation
tasks with visualization of examples in Section D. Finally, We discuss the limitations and potential
societal impacts of our work in Section E, and provide the NeurIPS paper Checklist in Section F.

A Edge Representation Learning
In this section, we first describe the detailed formulations of existing edge-aware graph neural
networks (GNNs), and compare them with our methods. Then, we introduce the time complexity of
making connectivity patterns for edges using existing edge-aware GNNs and our Edge HyperGraph
Neural Network (EHGNN). Finally, we discuss the sparse implementation of the proposed EHGNN
along with our Dual Hypergraph Transformation (DHT) at this end of the section.

A.1 Discussion on edge-aware graph neural networks

Here, we first formalize the existing edge-aware GNNs that we used as baselines [17, 14, 33, 15]. We
begin by introducing the basic components of GNNs: X(l) denotes the node features at l-th layer, W
denotes the learnable weight matrix, E denotes the edge features, and N (v) denotes the neighboring
node set of node v in the given graph.

EGCN The node-wise formulation of edge-aware GCN [17] is defined as follows:

X(l+1)
v = W

∑
u∈N (v)∪{v}

nu,v · (X(l)
u +Eu,v) (1)

where nu,v is the normalizing coefficient for two adjacent nodes u and v, and edge feature E is
obtained from the categorical edge features without learning.

MPNN The node-wise formulation of MPNN [14] using edge conditioned convolution [35] is
defined as follows:

X(l+1)
v = WX(l)

v +
∑

u∈N (v)

X(l)
u ·MLP(Eu,v) (2)

where MLP is a linear layer for learning the edge representations to augment the node representations.

R-GCN The node-wise formulation of R-GCN [33] is defined as follows:

X(l+1)
v = WX(l)

v +
∑
r∈R

∑
u∈Nr(v)

1

|Nr(v)|
WrX

(l)
u (3)

whereR is a set of categorical edge types, andNr(v) denotes the neighboring node set of the node v,
having the associated edge type r ∈ R.

EGNN The node-wise formulation of convolution-based edge GNN [15] is defined as follows:

X(l+1)
v = W

∑
u∈N (v)∪{v}

E(l)
u,vX

(l)
u (4)

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

of edges (103) 2 4 8 16 32 64

Line graph 32.78 65.93 131.36 260.92 527.44 1071.31

DHT (ours) 0.13 0.18 0.26 0.45 0.81 1.37

Table 1: Transformation time(s) results of the line graph and
our dual hypergraph. The results are the average of over 100 runs.

Graph Message-passing
Nodes (GCN) Edges (Ours)

Erdos-Renyi 0.0031 0.0034

Barabasi-Albert 0.0029 0.0032

Table 2: Message-passing time(s) on the
original graph and our dual hypergraph.

where the edge features at l-th layer E(l) are obtained by edge-level layers which are differently
designed from node-level layers. The features are used as the attention coefficients for nodes to
enhance the node-level representations.

It is worthwhile to note that all baselines only implicitly capture edge information in the learned
node representations rather than directly using it for downstream graph tasks, while our EHGNN
framework explicitly learns and utilizes the learned edge representations.

A.2 Sparse implementation of the dual hypergraph transformation

Since most graphs have relatively few connections per node, the number of non-zero elements in the
adjacency matrix, which defines the connection among nodes, is smaller than the number of zero
elements. Thus, using the adjacency matrix for message-passing is highly inefficient in terms of
memory usage. To handle this issue, the most dominant approach is to use an edge list, which is a
sparse representation of the adjacency matrix (or the incidence matrix) of the graph. Specifically, each
column of the edge list L ∈ R2×m denotes an edge e, which has two incident nodes (vstart, vend),
where vstart denotes the start node and vend denotes the end node of the edge e.

Similarly, the incidence matrix of a hypergraph can be represented as a sparse form using a hyperedge
list L∗ ∈ R2×D, where D is the sum of degrees of all nodes in the hypergraph. Each column of L∗
indicates a hyperedge e∗ with a (node, hyperedge) pair (v∗, e∗), where v∗ is the node incident to the
hyperedge e∗. If the hyperedge is incident to three nodes, then it will appear on three columns of L∗
paired with each incident node. Compared to this general hypergraph, the dual hypergraph obtained
by DHT is 2-regular, which means each node in the hypergraph has a degree of two, since each edge
in the original graph is incident to exactly two nodes. Thanks to this property, the hyperedge list of
the dual hypergraph has the dimensionality of 2× 2m (i.e., L∗ ∈ R2×2m).

Then, the concrete implementation of DHT with the sparse edge list of the original graph and the
sparse hyperedge list of its dual hypergraph is formalized as follows:

DHT : G =
(
X,L,E

)
7→ G∗ =

(
E,L∗,X

)
, (5)

where the hyperedge list L∗ is obtained by reshaping the edge list L as follows:

L∗1,2i−1 = L∗1,2i = i, (6)

L∗2,2i−1 = L1,i , L∗2,2i = L2,i, (7)

for all 1 ≤ i ≤ m.

A.3 Complexity analysis

In this subsection, we provide the detailed complexity analysis of transformation and message-
passing operations of existing edge-aware GNNs [21, 15, 42] and our DHT. We first introduce the
transformation complexity, and then describe the message-passing complexity.

Transformation complexity To define the adjacency of edges to perform message-passing between
edges, previous works either define the edge neighborhood structure [42], or use the line graph
transformation [21]. Constructing edge neighborhood takes O(m2) for transforming the node
adjacency to the edge adjacency, as, for verifying two edges are adjacent, we need to first sample one
edge among m edges, and then find the other edge that shares the same node among the remaining
m − 1 edges. In a similar manner, the complexity of line graph transformation is quadratic to the
number of edges Monti et al. [26], as, for each pair of edges, we need to verify whether they share
the same node. However, with our sparse implementation of DHT explained in A.2, we can obtain
the hyperedge list – a sparse data structure of the hypergraph – by simply reshaping the given edge
list of the original graph, which takes at most O(m).

2

We further experimentally verify the transformation complexity of the line graph transformation [21]
and the proposed DHT, on Erdos-Renyi graph [8] with 1000 nodes and the number of edges increasing
from 2×103 to 64×103. As shown in Table 1, our DHT is highly efficient compared to the line graph
transformation, especially for large and dense graphs, as the line graph transformation is quadratic to
the number of edges, whereas ours only requires simple tensor-reshape operations.

Message-passing complexity Note that the complexity of message-passing on the graphs depends
only on the number of edges, thus it is enough to focus on the number of edges. When we transform
the original graph into the line graph following Jiang et al. [21], the constructed line graph has
O(m ·dmax) edges, therefore the complexity of message-passing isO(m ·dmax). For instance, when
the input graph is a star graph having one hub node and n other nodes (i.e., the number of edges is n),
the line graph of the star graph has n2 number of edges, thus the message-passing cost is O(n2), as
shown in Table 1 of the main paper. However, with our DHT implemented over the sparse hyperedge
list, we only have 2m number of node-hyperedge pairs as explained in Section A.2, thus we can
perform the message-passing between edges (nodes of the dual hypergraph) with complexity O(m).
This complexity is equal to that of the message-passing between nodes of the original graph. In other
words, the analytical complexity of message-passing between edges in equation 4 of the main paper
is equivalent to the complexity of message-passing between nodes in equation 1 of the main paper.

We experimentally validate the message-passing complexity on the original graph (message-passing
between nodes) and the dual hypergraph (message-passing between edges) in Table 2. We evaluate
the message-passing time on both the Erdos-Renyi graph [8] and the scale-free (Barabasi-Albert)
network [2], with 3000 nodes 11984 edges following the densification law (i.e. m ∝ n1.18 [25]) of
the internet graph. Table 2 shows that message-passing time on the dual hypergraph is almost equal
to the message-passing time on the original graph, which coincides with the previous analysis.

B Details for Edge Pooling Schemes
In this section, we describe the proposed two novel edge pooling schemes: HyperCluster that
coarsens similar edges for global edge representations, and HyperDrop that drops unnecessary edges
for hierarchical graph representations.

B.1 HyperCluster

Our cluster-based edge pooling model, HyperCluster, consists of edge-level message-passing layers
(i.e., EHGNN layers) and HyperCluster layers, which we describe below in detail. Before clustering
edges, we first update the edge features using multiple EHGNN layers as follows:

E(l+1) = EHGNN(X,M ,E(l)), (8)

where E(l) denotes the updated edge features at the l-th layer from the initial edge features E(0) = E,
and we finally obtain E′ = E(L) after L number of EHGNN layers. Then, to obtain the global
edge representation of the entire graph, we cluster the nodes of its dual hypergraph using the node
clustering method. While we can use any off-the-shelf node clustering methods [43, 3, 1], in this
paper, we use the state-of-the-art pooling method, namely GMPool [1]. To apply GMPool on a
hypergraph, we modify the graph multi-head attention block (GMH), which is used to construct key
and value matrices using GNNs for the original graph structure in the GMPool paper [1], for the
hypergraph structure by replacing the adjacency matrix to the incidence matrix. We compress m
nodes in the dual hypergraph into k nodes with the modified GMPoolk, formalized as follows:

Epool = GMPoolk(E′,MT), Mpool = MC, (9)

where C is the cluster assignment matrix generated by GMPool. The overall architecture can be
either global or hierarchical, depending on the downstream task.

B.2 HyperDrop

Our drop-based edge pooling model, HyperDrop, consists of EHGNN layers and HyperDrop layers,
which we describe below in detail. Before dropping unnecessary edges, we first update the edge
features using the proposed EHGNN layer as follows:

E′ = EHGNN(X,M ,E). (10)

3

Then, we drop the nodes of the dual hypergraph based on a learnable score function. While we can
use any off-the-shelf node drop methods [12, 24] with their score functions, in this paper, we use the
self-attention score based node drop method proposed in Lee et al. [24] as follows:

Z = tanh(GNN(E′,MT ,X)) (11)

Based on the output score vector Z ∈ Rm for every m nodes on the dual hypergraph, we select the
top-ranked k nodes to obtain the pooled edge features and the incidence matrix as follows:

Epool = E′
idx , Mpool = ((MT)idx)

T ; idx = topk (Z) . (12)

Thus, we obtain the edge-pooled graphGpool = (X,Mpool,Epool) without loss of node information
of the original graph. Furthermore, we use the self-attention score vector Z as the edge weight for the
node-level message-passing layer, to reflect the relative importance of the neighboring information.
This can be formulated as follows:

X′ = GNN
(
X,Mpool,Zidx

)
, (13)

where we can use simple GCN [23] or edge-aware GNNs for the GNN function.

C Experimental Setup

In this section, we introduce baselines and proposed models that we used for verifying the effective-
ness of our approaches, in two different paragraphs: one for message-passing methods and another
for graph pooling methods, and then provide the information of the computing resources. After that,
we describe the experimental details about four different tasks on which we validate our methods.

Baselines and our model for graph neural networks Here, we describe a set encoding model
that ignores connectivity between nodes, naive graph neural networks that only consider node features
without edge information, edge-aware graph neural networks that use edge features as auxiliary
information for updating node features, and our model that explicitly represents edges as follows:

1. DeepSet. This method [44] is the set encoding baseline that first represents each node with a
linear function, and then aggregates all node representations with sum pooling, which does not
consider connectivity patterns between nodes.

2. GCN. This method [23] is the naive graph neural network baseline that aggregates neighboring
nodes’ information using the mean operation, which does not consider edge information. Also,
we obtain the entire graph representation using the mean pooling of all nodes.

3. GIN. This method [41] is the naive graph neural network baseline that aggregates neighboring
node’s information using the sum operation, which does not consider edge information. Also, we
obtain the entire graph representation using the sum pooling of all nodes.

4. EGCN. This method [16] is the edge-aware graph neural network baseline that uses edges as auxil-
iary information only to augment node-level representations, by adding the edge features between
a node and its neighborhood to the node features (see Section A.1 for detailed formulation).

5. MPNN. This method [14] is the edge-aware graph neural network baseline that uses edges as
auxiliary information only to augment the node-level representations, by multiplying the edge
features between a node and its neighborhood to the node feature (see Section A.1 for details).

6. R-GCN. This method [33] is the edge-aware graph neural network baseline that uses discrete
edge features for considering relation types between nodes, by multiplying the categorical weights
of edges to the node features (see Section A.1 for detailed formulation).

7. EGNN. This method [15] is the edge-aware graph neural network baseline that first obtains explicit
edge representations using differently designed edge-level layer, and then uses them to augment
node-level representations, by multiplying the edge representations to the node representations
(see Section A.1 for detailed formulation).

8. EHGNN. This is our edge representation learning framework that first transforms the given
original graph into its dual hypergraph with Dual Hypergraph Transformation, and then obtain
the explicit edge representations with existing off-the-shelf message-passing schemes for nodes,
which is further directly used for graph-level representation learning.

4

Baselines and our model for graph pooling Here, we explain the global node pooling baselines,
as well as the hierarchical node pooling baselines. Then, we describe the proposed two novel edge
pooling schemes: cluster-based and drop-based methods, for graph-level representation learning.

1. DiffPool. This method [43] is the hierarchical node pooling baseline that coarsens nodes with a
clustering-based approach, where it generates a cluster-assignment matrix for nodes using a GNN.

2. SAGPool. This method [24] is the hierarchical node pooling baseline that drops unnecessary
nodes with a drop-based approach, where it generates scores for nodes with a GNN.

3. TopKPool. This method [12] is the hierarchical node pooling baseline that drops unnecessary
nodes with a drop-based approach, where it generates scores for nodes with MLPs.

4. MinCutPool. This method [3] is the hierarchical node pooling baseline that coarsens nodes with a
clustering-based approach, where it generates a cluster-assignment matrix for nodes using MLPs.

5. ASAP. This method [31] is the hierarchical node pooling baseline that first clusters similar nodes,
then drop unnecessary clusters to coarsen an entire graph.

6. EdgePool. This method [6] is the hierarchical node pooling baseline that computes the edge score
between nodes, then contracts two adjacent nodes with the high edge score into a single node.

7. HaarPool. This method [39] is the hierarchical node pooling baseline that coarsens nodes with
the Haar transformation, which is based on the Haar basis in the Haar wavelet domain [38].

8. SortPool. This method [45] is the global node pooling baseline that first sorts the obtained node
representations at the end of graph convolution layers, then predicts an entire graph representation
with sorted node features.

9. GMPool. This method [1] is the global node pooling baseline that uses self-attention based
operations to compress multiple nodes into a few clusters with learnable cluster assignment
vectors to obtain an entire graph representation.

10. GMT. This method [1] is the global node pooling baseline that stacks self-attention based layers
not only to compress many nodes into a few clusters with learnable cluster assignment vectors, but
also to consider the inter-node (or cluster) relationships to obtain an entire graph representation.

11. HyperCluster. This is our global edge representation learning scheme that coarsens similar edges
into a single edge to obtain a holistic edge-level representation, where we can generate the cluster
assignment matrix for edges using existing clustering-based methods, such as GMPool [1] (see
Section B.1 for more details).

12. HyperDrop. This is our hierarchical edge representation learning scheme that drops unnecessary
edges based on a learnable score function, such as MLPs or GNNs, thereby adjusting the graph
topology for more effective message-passing. Notably, this scheme does not result in the removal
of any nodes. (see Section B.2 for more details).

Computing resources For all experiments, we use PyTorch [29] and PyTorch geometric [11], and
train each model on a single Titan XP, GeForce GTX Titan X, or GeForce RTX 2080 Ti GPU. A
single experiment of each task takes less than 1 day, and for the classification tasks such as node or
graph classification, the single runtime on most datasets of a relatively small size is less than 1 hour.

C.1 Graph reconstruction

Common implementation details Given a set of graphs {G = (X,M ,E)}, the goal of graph
reconstruction is to reconstruct both node and edge features from the compressed representations,
by training two separate autoencoders where one is trained for reconstructing node features and the
other is trained for reconstructing edge features. Formally, we define the node and edge encoders
as ENCnode and ENCedge, respectively, and the node and edge decoders as DECnode and DECedge,
respectively. Then, following the standard architecture setting of graph reconstruction tasks of
existing works [3, 1], the node-level autoencoder which is a pair of the node encoder and node
decoder, ENCnode and DECnode, is defined as follows:

ENCnode(X,M ,E) = GMPool(GNN(GNN(X,M ,E))) = Xpool, (14)

DECnode(X
pool,M ,E) = GNN(GNN(GNN(GMPool−1(Xpool,M ,E)))) = Xrec, (15)

where we use the GMPool [1] for reconstructing node features, as it shows outstanding performance
on node-level reconstruction tasks. GMPool denotes the pooling operation, and GMPool−1 denotes
the unpooling operation following the setting of the original paper [1]. Also, Xrec ∈ Rn×d is the

5

reconstructed node features from the pooled node representations Xpool ∈ Rk×d, where k is the
number of pooled nodes and n is the number of all nodes. We omit the inputs of the GNN, which are
the incidence matrix M and the edge feature matrix E, for simplicity.

However, to reconstruct the entire graph which have both node and edge features, we further need to
define a separate edge-level autoencoder. Thus, similarly to the node-level autoencoder, we define
the edge-level reconstruction module as a pair of the edge encoder and edge decoder, ENCedge and
DECedge, formalized as follows:

ENCedge(X,M ,E) = Pool(GNN(GNN(X,M ,E))) = Epool, (16)

DECedge(X,M ,Epool) = GNN(GNN(GNN(Pool−1(X,M ,Epool)))) = Erec, (17)

where, for our models, we use the EHGNN with the GCN [23] for GNN operations, and HyperCluster
for pooling and unpooling operations which is described in Section B.1 in detail. Meanwhile, for
the baselines, we use the existing edge-aware GNNs [17, 14, 33, 15] for GNN operations, and
GMPool [1] for pooling and unpooling operations, where we obtain the final edge representation
by averaging the two representations of incident nodes for the edge. This is because the baselines
only use edge features as auxiliary information for updating node features. Erec ∈ Rm×d′

is the
reconstructed edge features from the pooled edge representations Epool ∈ Rk′×d′

, where k′ is the
number of pooled edges andm is the number of all edges. Similar to the formulation of the node-level
autoencoder, we omit the inputs of the GNN for simplicity.

Our reconstruction objective is to minimize the discrepancy between the original graph G =
(X,M ,E) and the reconstructed graph Grec = (Xrec,M ,Erec), with a loss function such as
mean squared error or cross-entropy loss for node and edge features. For the edge reconstruction
task, we only use the edge autoencoder without using the node autoencoder. For all reconstruction
experiments, the learning rate of the node autoencoder is set to 5× 10−3, and the learning rate of the
edge autoencoder is set to 1× 10−3. We optimize the full network using an Adam optimizer [22].

Implementation details on synthetic graphs For the edge reconstruction of a synthetic graph,
we use the standard two-moon graph generated by the PyGSP library [5], with node features given
by their coordinates and edge features given by RGB colors of which values range from 0 to 1.
Then, the goal of the edge reconstruction task is to restore all edge colors from the compressed edge
representations after edge pooling. To minimize the discrepancy between original and reconstructed
edge features, we use the mean squared error loss as the learning objective. Also, we use the early
stopping criterion, where we stop the training if there is no further improvement on the training loss
during 1,000 epochs, and the maximum number of epochs is set to 5,000. We set the pooling ratio of
all models as 1% with the hidden dimension of size 16.

Implementation details on molecular graphs Following the experimental setting of the existing
work [7, 1], we use the subset of the full ZINC dataset [20], which consists of 12K molecular graphs,
where node features are atom types and edge features are bond types. The number of atom types is
28, and the number of bond types is 5. We follow the dataset splitting of training, validation, and test
sets from Dwivedi et al. [7]. Then, the goal of the molecular graph reconstruction task is to restore
both atom types and bond types of all nodes and edges from their compressed representations after
pooling. To train the model, we use the cross-entropy loss for molecular graph reconstruction, since
the initial features given for nodes and edges are discrete. We also use the early stopping criterion,
where we stop the training if there is no further improvement on the validation loss during 200 epochs.
For hyperparameters, the maximum number of epochs is set to 500, hidden dimension size is set to
32, and batch size is set to 128. We run five experiments with different random seeds, and report the
average performance with its standard deviation. Following the evaluation setup of Baek et al. [1],
we use the following three metrics: accuracy measures the classification accuracy of all nodes and
edges, validity counts the number of reconstructed molecules which are chemically valid, and exact
match counts the number of reconstructed molecules which are identical to the original molecules.

Implementation details on graph compression We quantitatively compare the relative memory
size of the compressed graph after pooling nodes and edges against the size of the original graph,
which we use the Erdos-Renyi random graph model [8]. We compare our proposed method EHGNN
with HyperCluster, with the node pooling baseline, GMT. The number of nodes is fixed to 103, while
the number of edges is selected from one of 103, 5× 103, and 104. To obtain the features of nodes
and edges, we first randomly assign one of three values to each node (i.e., one among {0, 1, 2}), and

6

then generate edge features using the values of two adjacent nodes for each edge. For example, if two
nodes have the same 0 value for the incident edge, then we assign the zero value to the edge feature.
Since the total number of pairs of node values is six for the undirected graph, the number of edge
features is six. The node pooling ratio is equally fixed to 15% for both GMT and our model, and we
report the relative size of the entire graph with the edge reconstruction accuracy higher than 95% or
75%, where the edge pooling ratio is decided according to its accuracy.

C.2 Graph generation

Implementation details on MolGAN architectures We use the QM9 dataset [30] that contains
133,885 organic compounds, where each molecular graph consists of carbon (C), oxygen (O), nitrogen
(N), and fluorine (F) with up to nine non-hydrogen atoms. To evaluate the generated molecular graphs,
we use the normalized Synthetic Accessibility (SA) and Druglikeness (QED) scores following the
evaluation setup of the original paper [4]. Also, we use the categorical re-parameterization trick with
the Gumbel-softmax function during the discretization process of molecule generation, to train the
model in an end-to-end fashion, which adapts the learning scheme of the original paper [4].

In the original MolGAN [4], R-GCNs [33] are used to encode feature representations of nodes for
the discriminator and reward networks. Learning rates of the generator, the discriminator, and the
reward network are equally set to 1× 10−3, and hidden sizes of the two-layer R-GCNs are 128 and
64. For the MolGAN with GMPool (MolGAN + GMPool) setting, the GMPool, which is the global
node pooling baseline, is additionally used to obtain the compact node-level representations. The
tanh activation function is used for GMPool. For the MolGAN with the proposed EHGNN (MolGAN
+ EHGNN) setting, we use two EHGNN layers to encode the feature representations of the edges,
wherein we use the GCN as the edge-level message-passing function. The hidden sizes are set to 32
and 16. After obtaining the edge-level representations, we use mean pooling to obtain the global edge
representation, which is forwarded to the discriminator and reward networks. We further combine the
GMPool with the MolGAN + EHGNN combination (MolGAN + GMPool + EHGNN) to additionally
enhance the global graph representation with both node and edge representations. The learning rate
of the EHGNN parameters in the discriminator and reward networks is set to 1 × 10−2. Also, all
the models use Adam optimizer [22] for training. Regarding other settings, we strictly follow the
original MolGAN paper [4], and use the available code1.

Table 3: Statistics of fragment vo-
cabularies of ZINC15 and ChEMBL
datasets on MARS experiments.

ZINC15 ChEMBL
of node types 9 9
Avg # of nodes 7.68 7.35
of edge types 4 4
Avg # of edges 7.54 7.08

Implementation details on MARS architectures For the ex-
periments using the MARS architecture, we use the ZINC15 [36,
18] dataset, which contains 2 million molecules, and we use the
available data2 from Hu et al. [18]. Further, we provide additional
experimental results on the ChEMBL [13] dataset, which con-
sists of 1,488,640 molecules, in Section D.2. As the fragments
of molecular graphs are the basic building blocks for molecular
graph generation in the MARS [40], we build the fragment vo-
cabularies following the same procedure of the original MARS paper: fragments are built by breaking
a single bond of molecules from the given dataset, limiting the size of fragments to 10 atoms (see the
original paper [40] for more details on the generation process of fragment vocabularies). We report
the statistics of generated fragments from each dataset in Table 3.

The MARS model sequentially generates molecules by taking one of the addition or deletion actions
at each step, especially where this model uses the explicit edge representation on the deletion
actions. For a set of given graphs {G = (X,M ,E)}, the original MARS model obtains the edge
representation for the deletion actions as follows:

X′ = MPNN(X,M ,E)

E′
e = Concat(X′

u,X
′
v,MLP(Ee))

(18)

where MPNN is the edge-aware graph neural network described in the subsection C, an edge e is
incident to two nodes u and v, and E′

e is the output edge representation of the edge e. Compared to
this baseline that implicitly captures the edge representation on the learned node representation X′

with the concatenated edge representation through the naive MLP layer, for our model, we replace

1https://github.com/yongqyu/MolGAN-pytorch
2http://snap.stanford.edu/gnn-pretrain/data/

7

the MLP layer with the proposed EHGNN to explicitly learn the edge representation via edge-level
message-passing. For a fair comparison in terms of the number of parameters, we use the same
number of layers and embedding size for both MLP and EHGNN.

Following the experimental setup of the original MARS paper [40], we train the models to maximize
the sum of multiple scores: QED, SA, and target protein inhibition scores against GSK3β and JNK3,
respectively. For evaluation metrics, we measure the percentage of the generated molecules having
scores above a certain threshold for each property: QED≥ 0.67, SA≥ 0.67, and the inhibition scores
against GSK3β ≥ 0.6 and JNK3 ≥ 0.6. The success rate can measure the overall multi-objective
score by calculating the percentage of the generated molecules satisfying all four objectives. We also
report the suggested easier threshold from the original MARS paper [40]: QED ≥ 0.6, SA ≥ 0.67,
and the inhibition scores against GSK3β ≥ 0.5 and JNK3 ≥ 0.5, in Section D.2, where we see the
same tendency for the results of baseline and our model. For the experiment on ZINC15, we set the
learning rate of EHGNN parameters to 5× 10−3 with a cosine scheduler for learning rate warmup.
For the experiment on ChEMBL, we set the learning rate of EHGNN parameters to 3× 10−4. The
learning rate of other parameters in MARS is set to 3× 10−4, following the original paper [40]. We
use the available code4 from the original MARS paper.

C.3 Graph classification

Datasets We validate our models on ten different benchmark datasets including six from the TU
datasets [27] and four from the OGB datasets [16]. For a fair comparison of baselines and our model,
following the standard experimental setting of Errica et al. [9], we use the one-hot encoding of
atom types as initial node features in TU bio-chemical datasets (D&D, PROTEINS, MUTAG) and
one-hot encoding of node degrees as initial node features in TU social datasets (IMDB-B, IMDB-M,
COLLAB), if initial node features are not given in advance. Furthermore, if the initial edge features
are not given in advance, we set them to one uniformly. For the dataset splitting of the TU datasets,
we follow the standard training/test splits from Niepert et al. [28], Zhang et al. [45], Baek et al. [1],
and further divide the training set into training and validation sets by using the 10 percent of the
training data as validation data, as suggested by the fair comparison setup of Errica et al. [9]. For the
OGB datasets (HIV, Tox21, ToxCast), following the original dataset paper [17], we use the additional
atom and bond features for each graph, and follow the performance evaluation and data split setting
of Hu et al. [17]. The statistics of each dataset are provided in Table 3 of the main paper.

Implementation details We follow the standard experiment setting from Baek et al. [1] with the
same base architectures and hyperparameters for all models on all datasets3. Notably, we stack three
number of GCN layers as node-level message-passing for all pooling models, including ours. For our
model, we use the GCN for the EHGNN layer, where we equally stack three number of EHGNN
layers to obtain the explicit edge representations, in parallel with node-level layers. Also, from the
explicitly learned edge representations, we drop edges with their scores at each edge-level layer,
which is described in section B.2 in detail. For the model HyperDrop + GMT, we apply the global
node pooling layer GMPool [1] after the HyperDrop layers to obtain the global representation. For
the hyperparameters of our HyperDrop, we set the hidden dimension of edges as 128 except the
COLLAB dataset, on which we set the hidden dimension as 16, since the COLLAB dataset has a large
number of edges compared to other datasets. Also, we randomly search for the edge drop ratio by
increasing the drop ratios from 5% to 75% with 5% increments. We report the average performances
and standard deviations of 10 runs with different random seeds on test datasets.

C.4 Node classification

To demonstrate HyperDrop’s effectiveness in alleviating the over-smoothing problem in deep GNNs,
we validate it on the semi-supervised node classification tasks.

Datasets We experiment on two benchmark datasets [34], namely Cora and Citeseer, which is the
citation network where nodes are documents and edges are citation links between documents. The
goal of the node classification task is to predict the class of the documents (nodes). The Cora dataset
consists of 2,708 nodes and 5,429 edges with 7 classes. Also, the Citesser dataset consists of 3,327
nodes and 4,732 edges with 6 classes. Node features for each dataset consist of bag-of-words for

3https://github.com/JinheonBaek/GMT

8

Figure 1: Additional edge reconstruction results with TopKPool on the ZINC dataset by varying the
compression ratio. Along with the results of Figure 3 in the main paper, we additionally report the average
performance of the baselines using TopKPool over 5 different runs with the standard deviation.

1 5 10 15
Pooling ratio (%)

70

80

90

100 Accuracy (%)

1 5 10 15
Pooling ratio (%)

40

60

80

100 Validity (%)

1 5 10 15
Pooling ratio (%)

0

25

50

75

100 Exact Match (%)

EGCN+TopKPool
EGCN+GMPool
HyperCluster (ours)

MPNN+TopKPool
MPNN+GMPool

RGCN+TopKPool
RGCN+GMPool

EGNN+TopKPool
EGNN+GMPool

1 5 10 15
Pooling ratio (%)

70

80

90

100 Accuracy (%)

1 5 10 15
Pooling ratio (%)

40

60

80

100 Validity (%)

1 5 10 15
Pooling ratio (%)

0

25

50

75

100 Exact Match (%)

EGCN+TopKPool
EGCN+GMPool
HyperCluster (ours)

MPNN+TopKPool
MPNN+GMPool

RGCN+TopKPool
RGCN+GMPool

EGNN+TopKPool
EGNN+GMPool

Figure 2: Additional graph reconstruction results with TopKPool on the ZINC dataset by varying the
compression ratio. Along with the results of Figure 5 in the main paper, we additionally report the average
performance of the baselines using TopKPool over 5 different runs with the standard deviation.

each document. As the initial edge features are not given, we set them by concatenating the features
of two endpoints of the edge. We use the classification accuracy as an evaluation metric.

Implementation details For a fair evaluation of the semi-supervised node classification task, we
follow the standard experimental setting of existing works [23, 37, 10], from the node features to the
dataset splitting. Regarding baselines, we use the naive GCN [23], GCN with batch normalization [19],
and random edge drop scheme [32]. Specifically, for the GCN with batch normalization, we use the
batch normalization layer between every GCN layer to normalize the features of nodes. Also, for
the random edge drop baseline, we randomly drop the partial number of edges before the first layer
of GNNs, following the setting of Rong et al. [32], where we do not use the batch normalization to
directly see the effect of random drop on the over-smoothing problem. For our model, we use the
HyperDrop with EHGNN (see section B.2 for detailed architectures), where we drop edges when
passing through every four GNN layers starting from the second layer, and we do not use the batch
normalization. Finally, we use the GCN as the node-level message-passing layers for all models, and
also use it as the edge-level message-passing layers for our HyperDrop with EHGNN.

Following the hyperparameters of the existing semi-supervised node classification work [10], for the
Cora dataset, we set the dropout rate as 0.5, hidden size as 32, and learning rate as 0.01. Also, for the
Citeseer dataset, we use the same setting from the Cora dataset except for the dropout rate which is
set to 0.2. For the random drop and our models, we drop 20% of edges at each drop step.

D Additional Experimental Results
In this section, we provide the additional experimental results on graph reconstruction and generation
tasks, with examples of reconstructed or generated molecules. Then, to further qualitatively evaluate
the performances of our model, we visualize the edge pooling process of the proposed HyperDrop.

D.1 Graph reconstruction

Additional graph reconstruction results To see the effect of the pooling method on edge and
graph reconstruction tasks, we additionally provide the performance of the TopKPool, a representative
node drop method, with existing edge-aware GNN baselines as well as the performance of the
GMPool, a node clustering method used in our main paper. For the comparison of the pooling methods,

9

Figure 3: Molecule reconstruction examples. Molecules shown in the left column are the original molecules
with an assigned cluster on each edge, where each cluster is represented as color. The clusters are generated by
our method, HyperCluster. The molecules shown in the right column are the reconstructed molecules with our
method, where red circles and squares indicate the incorrect prediction of edges and nodes, respectively.

we report the performances of both TopKPool and GMPool, in Figure 1 for edge reconstruction and
in Figure 2 for graph reconstruction. As shown in Figure 1 and Figure 2, the proposed EHGNN with
HyperCluster largely outperforms all the baselines, which suggests that accurately learning the edge
representations is more important than choosing which pooling methods to use, in order to obtain the
global graph-level representations. Moreover, we observe that the node drop method (TopKPool) for
reconstruction is inferior to the node clustering method (GMPool) in terms of accuracy and exact
match, since drop methods result in the removal of nodes and edges. The performance gain in validity
with the TopKPool mostly comes from its reconstruction of a graph with a single bond, which makes
them valid but far different from the desired reconstructed molecules.

Additional examples of molecular graph reconstruction We provide additional examples of
reconstructed molecular graphs on the ZINC dataset in Figure 3. Molecules on the left side are the
original molecules with each edge color indicating the assigned cluster, obtained by our HyperCluster.
Molecules on the right side are the reconstructed molecules, where red circles and squares denote
the incorrect predictions of edges and nodes, respectively. As shown in Figure 3, we can see that
the clusters are meaningfully assigned with respect to the underlying substructures considering both
edges and nodes. For example, edges in the hexagonal ring are assigned to orange and blue colors,
where their color patterns are generally determined by the number of adjacent edges with their bond
type. Moreover, triple bonds connected to the nitrogen (N) are assigned to the silver-colored cluster.

10

Figure 4: Graph generation results on MolGAN. Along with the results of Figure 8 in the main paper, we
additionally report the performance of the combination of MolGAN, EHGNN, and GMPool. Solid lines denote
the mean, and shaded areas denote the standard deviation of 3 different runs.

0 500 1000 1500
Discriminator Iteration

0.0

0.1

0.2

0.3
SA

MolGAN
MolGAN+GMPool
MolGAN+EHGNN (Ours)
MolGAN+GMPool+EHGNN (Ours)

0 500 1000 1500
Discriminator Iteration

0.0

0.2

0.4

0.6

QE
D

MolGAN
MolGAN+GMPool
MolGAN+EHGNN (Ours)
MolGAN+GMPool+EHGNN (Ours)

Datasets Metrics MARS MARS + EHGNN (Ours)

ZINC15

Success Rate 59.53 ± 2.11 64.30 ± 1.54
QED (≥ 0.67) 95.71 ± 0.09 96.36 ± 0.49
SA (≥ 0.67) 99.99 ± 0.01 99.99 ± 0.02

GSK3β (≥ 0.6) 86.52 ± 1.67 90.63 ± 2.57
JNK3 (≥ 0.6) 71.52 ± 4.15 73.60 ± 1.29

ChEMBL

Success Rate 56.64 ± 5.79 58.25 ± 6.07
QED (≥ 0.67) 91.01 ± 2.79 91.13 ± 4.84
SA (≥ 0.67) 99.99 ± 0.01 100.00 ± 0.00

GSK3β (≥ 0.6) 87.45 ± 1.73 90.34 ± 2.65
JNK3 (≥ 0.6) 70.57 ± 4.75 70.01 ± 4.83

Table 4: Graph generation results on MARS in-
cluding all evaluation metrics. The results are the
mean and standard deviation of 3 runs.

Datasets Metrics MARS MARS + EHGNN (Ours)

ZINC15

Success Rate 95.65 ± 0.90 97.28 ± 1.14
QED (≥ 0.6) 99.07 ± 0.29 99.45 ± 0.15
SA (≥ 0.67) 99.99 ± 0.01 99.99 ± 0.02

GSK3β (≥ 0.5) 99.13 ± 0.12 99.52 ± 0.23
JNK3 (≥ 0.5) 97.33 ± 1.30 98.21 ± 0.89

ChEMBL

Success Rate 92.03 ± 3.83 91.88 ± 3.50
QED (≥ 0.6) 96.76 ± 1.44 96.43 ± 2.83
SA (≥ 0.67) 99.99 ± 0.01 100.00 ± 0.00

GSK3β (≥ 0.5) 99.19 ± 0.31 99.39 ± 0.23
JNK3 (≥ 0.5) 95.83 ± 2.30 95.85 ± 0.92

Table 5: Graph generation results on MARS under
the setting of original success thresholds. The results
are the mean and standard deviation of 3 runs.

D.2 Graph generation

MolGAN Since the EHGNN framework can be jointly used with the node-level representation
learning methods, we can further combine the EHGNN framework with the node pooling method,
for obtaining holistic graph-level representation from both node and edge representations. Thus,
we additionally couple the MolGAN + EHGNN with the state-of-the-art node pooling method,
namely GMPool. As shown in Figure 4, compared to the large performance gain obtained by our
EHGNN, the performance gain obtained from using both GMPool and EHGNN is relatively small,
and also the training using both architectures is unstable. This might be because, we can already
obtain the effective graph-level representation only with the combination of MolGAN and EHGNN,
and additionally using more layers makes the training of the MolGAN architecture difficult since
this scheme also increases the number of parameters. On the other perspective, since the original
MolGAN architecture is already able to utilize the node representations, albeit, by simple R-GCN,
the remaining performance gain comes from the explicit edge representations via our EHGNN.

MARS Here, we provide the additional experimental results using the MARS architecture on the
ChEMBL dataset, where we used the available data4 from Xie et al. [40]. As shown in Table 4,
MARS equipped with our EHGNN outperforms the baseline model, showing the same tendency
as in the results on the ZINC15 dataset. Also, the original MARS and the MARS with EHGNN
models successfully generate the high-quality molecules in terms of SA, and there is not much
significant difference between those two models on this metric. However, the performance gain with
our EHGNN against the naive MARS comes from other metrics, such as QED and GNK3β, resulting
in the successful generation of molecules having all desired properties.

On the other hand, we also report the success rate with individual evaluation metrics according to
thresholds used in the MARS paper [40] in Table 5. As shown in Table 5, our MARS + EHGNN
model still outperforms the baseline on most of the metrics, and the performance tendency is highly
similar to the result of different thresholds in Table 4. Those two results demonstrate that accurate
learning of edge representation is important to generate desirable molecules.

4https://github.com/yutxie/mars

11

0.95, 0.87, 0.71, 0.68 0.95, 0.82, 0.47, 0.69 0.94, 0.85, 0.74, 0.68 0.94, 0.86, 0.69, 0.60 0.94, 0.82, 0.51, 0.68

0.94, 0.87, 0.69, 0.56 0.94, 0.84, 0.65, 0.54 0.94, 0.80, 0.72, 0.65 0.94, 0.89, 0.64, 0.62 0.93, 0.87, 0.70, 0.61

Figure 5: 10 generated molecules with the highest QED scores. The numbers are QED, SA, GSK3β, and
JNK3 scores, respectively. We highlight the QED score in red among four different scores.

0.76, 0.93, 0.95, 0.75 0.76, 0.93, 0.55, 0.61 0.75, 0.93, 0.53, 0.52 0.75, 0.93, 0.52, 0.97 0.75, 0.93, 0.49, 0.57

0.75, 0.93, 0.56, 0.95 0.78, 0.93, 0.90, 0.83 0.78, 0.92, 0.92, 0.73 0.75, 0.92, 0.58, 0.66 0.75, 0.92, 0.63, 0.59

Figure 6: 10 generated molecules with the highest SA scores. The numbers are QED, SA, GSK3β, and
JNK3 scores, respectively. We highlight the SA score in red among four different scores.

0.76, 0.93, 0.95, 0.75 0.75, 0.88, 0.95, 0.76 0.74, 0.88, 0.94, 0.71 0.72, 0.86, 0.94, 0.73 0.75, 0.88, 0.93, 0.79

0.60, 0.88, 0.93, 0.61 0.75, 0.86, 0.93, 0.71 0.78, 0.92, 0.92, 0.73 0.75, 0.84, 0.92, 0.66 0.75, 0.91, 0.92, 0.55

Figure 7: 10 generated molecules with the highest GSK3β scores. The numbers are QED, SA, GSK3β, and
JNK3 scores, respectively. We highlight the GSK3β score in red among four different scores.

0.75, 0.92, 0.58, 0.98 0.75, 0.93, 0.52, 0.97 0.75, 0.93, 0.56, 0.95 0.75, 0.84, 0.57, 0.93 0.72, 0.87, 0.53, 0.93

0.78, 0.90, 0.64, 0.92 0.74, 0.90, 0.60, 0.92 0.77, 0.83, 0.60, 0.92 0.76, 0.88, 0.52, 0.91 0.75, 0.91, 0.48, 0.91

Figure 8: 10 generated molecules with the highest JNK3 scores. The numbers are QED, SA, GSK3β, and
JNK3 scores, respectively. We highlight the JNK3 score in red among four different scores.

Visualization of the generated molecular graphs We further provide the examples of generated
molecules using our EHGNN on MARS in Figure 5, 6, 7, and 8. We hope that these examples are to
be helpful for the chemists to get an insight into the molecules generated with our framework.

12

Figure 9: Edge pooling results on the COLLAB dataset. Each row represents the pooling process of a graph.
Colors denote connected components.

Figure 10: Edge pooling results on the PROTEINS dataset. Each row represents the pooling process of a
graph. Colors denote connected components.

D.3 Graph classification

Additional examples of HyperDrop process We provide additional examples of HyperDrop
processes on the COLLAB and PROTEINS datasets in Figure 9 and Figure 10, respectively. Colors
represent the resulting connected components in the final graph after dropping edges, and we represent
isolated nodes as gray. Arrows indicate the layer-wise progressive pooling processes. We can see that
by dropping unnecessary edges, a large graph is divided into smaller connected components, which
we assume to be effective for message-passing between the relevant nodes.

13

E Limitations and Potential Societal Impacts

In this section, we discuss the limitations and potential societal impacts of our work.

Limitations In this work, we propose to learn edge representations with hypergraphs, using the
dual hypergraph transformation that allows us to apply off-the-shelf node-level message-passing
schemes designed for node representation learning to edges. While we can learn accurate edge
representations using the proposed framework, we need two separate GNNs to learn node and edge
representations independently. Combining these two GNNs into one, by learning node and edge
representations jointly using a single GNN, may be more effective for learning graph representations,
while saving the memory as well. We leave this as future work.

Potential societal impacts The system for generating target molecules is significantly important
to our society, since it can be used to generate vaccines or drugs for diseases, even for the newly
emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the conventional
development of beneficial molecules requires a huge amount of time and resources with a significant
number of trial-and-error processes, before actually applying the generated molecules, since we have
to check potential outcomes those molecules can have.

In this paper, we show that the proposed edge representation learning framework can accurately
represent the edges of the given graph, for the holistic graph-level representation learning, which has
been extensively validated on graph generation and classification tasks with biochemical molecules.
Therefore, this approach can meaningfully aid the development of target molecules in the following
ways. First, the generation system described in Section 4.2 of the main paper is effective for
generating molecules with desirable properties, since it can generate more drug-like molecules that
can effectively inhibit multiple target proteins. Also, the classification system described in Section
4.3 of the main paper is beneficial for examining the toxicity of generated molecules, which is an
essential step before human clinical trials or being deployed on a commercial scale. Therefore, our
method allows us to reduce time and resources for generating and validating target molecules, for
example in the domain of de novo drug design compared to synthesizing drugs by trial-and-error.

As described above, while our method has huge potential impacts for discovering novel molecules
in our real-life, anyone can maliciously use our system, aiming to develop harmful compounds for
humans, such as synthesizing toxic or addictive substances. Thus, we strongly hope that our method
would not be applied for generating harmful molecules that may have negative impacts on our society.

F Checklist

Additionally, we include the NeurIPS Paper Checklist.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] We discuss them in section E of the

supplementary file.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] We describe the

potential societal impacts in section E of the supplementary file.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?

[Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results (either in the supplemental material or as a URL)? [Yes] We provide the code, data,
and instructions in the supplementary materials, with detailed experimental setups in section
C of the supplementary file.

14

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes] We specify them in section C of the supplementary file.

(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes] All of our main results contain variances or standard deviations of
multiple runs.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We provide the details of computing
resources in section C of the supplementary file.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A] If the assets that we used are brought from

the public repository on the web, then we do our best to specify them with links in the section
C of the supplementary file.

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A] We
do not additionally curate the new assets, but follow the standard settings of existing works
on each task.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] Since we do not curate new datasets, we cite the dataset paper. Please
see the original dataset paper for details.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] Since we do not curate new datasets, we cite the
dataset paper. Please see the original dataset paper for details.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if applica-

ble? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review Board

(IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount spent on

participant compensation? [N/A]

15

References
[1] Jinheon Baek, Minki Kang, and Sung Ju Hwang. Accurate learning of graph representations

with graph multiset pooling. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[2] Albert-Laszlo Barabasi and Reka Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

[3] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph
neural networks for graph pooling. arXiv preprint, arXiv:1907.00481, 2019.

[4] Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular
graphs. arXiv preprint, arXiv:1805.11973, 2018.

[5] Michaël Defferrard, Lionel Martin, Rodrigo Pena, and Nathanaël Perraudin. Pygsp: Graph
signal processing in python, 10 2017. URL https://doi.org/10.5281/zenodo.1003158.

[6] Frederik Diehl. Edge contraction pooling for graph neural networks. arXiv preprint
arXiv:1905.10990, 2019.

[7] Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking graph neural networks. arXiv preprint, arXiv:2003.00982, 2020.

[8] P. Erdős and A Rényi. On the evolution of random graphs. In PUBLICATION OF THE
MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES, pages
17–61, 1960.

[9] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of
graph neural networks for graph classification. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

[10] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang,
Evgeny Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning
on graphs. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020.

[11] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[12] Hongyang Gao and Shuiwang Ji. Graph u-nets. In Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pages 2083–2092. PMLR, 2019.

[13] Anna Gaulton, Anne Hersey, Michał Nowotka, A Patricia Bento, Jon Chambers, David Mendez,
Prudence Mutowo, Francis Atkinson, Louisa J Bellis, Elena Cibrián-Uhalte, et al. The chembl
database in 2017. Nucleic acids research, 45(D1):D945–D954, 2017.

[14] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,
volume 70 of Proceedings of Machine Learning Research, pages 1263–1272. PMLR, 2017.

[15] Liyu Gong and Qiang Cheng. Exploiting edge features for graph neural networks. In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA,
June 16-20, 2019, pages 9211–9219. Computer Vision Foundation / IEEE, 2019.

[16] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv preprint, arXiv:2005.00687, 2020.

16

https://doi.org/10.5281/zenodo.1003158

[17] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay S. Pande, and
Jure Leskovec. Strategies for pre-training graph neural networks. In 8th International Con-
ference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

[18] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Vijay S. Pande Percy Liang, and
Jure Leskovec. Strategies for pre-training graph neural networks. In 8th International Con-
ference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

[19] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Francis R. Bach and David M. Blei, editors, Proceedings
of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July
2015, volume 37 of JMLR Workshop and Conference Proceedings, pages 448–456. JMLR.org,
2015.

[20] John J. Irwin, Teague Sterling, Michael M. Mysinger, Erin S. Bolstad, and Ryan G. Coleman.
ZINC: A free tool to discover chemistry for biology. J. Chem. Inf. Model., 52(7):1757–1768,
2012.

[21] Xiaodong Jiang, Pengsheng Ji, and Sheng Li. Censnet: Convolution with edge-node switching
in graph neural networks. In Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pages 2656–2662.
ijcai.org, 2019.

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint,
arXiv:1412.6980, 2014.

[23] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings, 2017.

[24] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In Proceedings of the
36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Research, pages 3734–3743.
PMLR, 2019.

[25] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graphs over time: densification laws,
shrinking diameters and possible explanations. In Proceedings of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Chicago, Illinois, USA,
August 21-24, 2005, pages 177–187. ACM, 2005.

[26] Federico Monti, Oleksandr Shchur, Aleksandar Bojchevski, Or Litany, Stephan Günnemann,
and Michael M. Bronstein. Dual-primal graph convolutional networks. arXiv preprint,
arXiv:1806.00770, 2018.

[27] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv
preprint, arXiv:2007.08663, 2020.

[28] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural
networks for graphs. In Proceedings of the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and
Conference Proceedings, pages 2014–2023. JMLR.org, 2016.

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc., 2019.

17

[30] Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld.
Quantum chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7,
2014.

[31] Ekagra Ranjan, Soumya Sanyal, and Partha P. Talukdar. ASAP: adaptive structure aware
pooling for learning hierarchical graph representations. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 5470–5477.
AAAI Press, 2020.

[32] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[33] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In The Semantic
Web - 15th International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3-7, 2018,
Proceedings, volume 10843 of Lecture Notes in Computer Science, pages 593–607. Springer,
2018.

[34] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-
Rad. Collective classification in network data. AI Mag., 29(3):93–106, 2008.

[35] Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolutional
neural networks on graphs. In 2017 IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 29–38. IEEE Computer Society,
2017.

[36] Teague Sterling and John Irwin. Zinc 15 - ligand discovery for everyone. Journal of chemical
information and modeling, 55, 10 2015. doi: 10.1021/acs.jcim.5b00559.

[37] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings,
2018.

[38] Yu Guang Wang and Xiaosheng Zhuang. Tight framelets on graphs for multiscale data analysis.
In Dimitri Van De Ville, Manos Papadakis, and Yue M. Lu, editors, Wavelets and Sparsity XVIII,
volume 11138, pages 100 – 111. International Society for Optics and Photonics, SPIE, 2019.

[39] Yu Guang Wang, Ming Li, Zheng Ma, Guido Montúfar, Xiaosheng Zhuang, and Yanan Fan.
Haarpooling: Graph pooling with compressive haar basis. arXiv preprint arXiv:1909.11580,
2019.

[40] Yutong Xie, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu, and Lei Li.
Mars: Markov molecular sampling for multi-objective drug discovery. arXiv preprint,
arXiv:2103.10432, 2021.

[41] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[42] Yulei Yang and Dongsheng Li. NENN: incorporate node and edge features in graph neural
networks. In Proceedings of The 12th Asian Conference on Machine Learning, ACML 2020,
18-20 November 2020, Bangkok, Thailand, volume 129 of Proceedings of Machine Learning
Research, pages 593–608. PMLR, 2020.

[43] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and Jure
Leskovec. Hierarchical graph representation learning with differentiable pooling. In Advances
in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada, pages 4805–
4815, 2018.

18

[44] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan Salakhutdinov,
and Alexander J. Smola. Deep sets. In Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long
Beach, CA, USA, pages 3391–3401, 2017.

[45] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence
(IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 4438–4445. AAAI Press,
2018.

19

	Edge Representation Learning
	Discussion on edge-aware graph neural networks
	Sparse implementation of the dual hypergraph transformation
	Complexity analysis

	Details for Edge Pooling Schemes
	HyperCluster
	HyperDrop

	Experimental Setup
	Graph reconstruction
	Graph generation
	Graph classification
	Node classification

	Additional Experimental Results
	Graph reconstruction
	Graph generation
	Graph classification

	Limitations and Potential Societal Impacts
	Checklist

