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I. RELATED WORKS

Scene graphs [1, 2] represent objects and their relations [3–
5] in a scene via a graph structure. Previous studies generate
scene graphs from images [6, 2] or 3D scenes [7] with
hierarchical and semantic information, and further with
the assistance of large language models (LLMs) [8]. They
leverage scene graphs for image captioning [9, 10], image
retrieval and generation [1, 11], visual-language tasks [3, 12],
navigation [13, 14] and task planning [15–17]. While previous
works model scene graphs in static 2D or 3D scenes, we
generate action-conditioned scene graphs that integrate actions
as core elements, depicting interactive relationships between
objects and actions. This action-centric approach opens
avenues for physical exploration and diverse downstream
robotics tasks.

Neuro-symbolic representations integrates neural net-
works’ perceptual abilities with the symbolic reasoning for
robots in complex and dynamic environments. Prior works
explored understanding scenes and describing robotic skills
in symbolic texts to interpret demonstrations [18, 19], ground
abstract actions for robotic primitives [20] and generate
action plans [21–24]. Our proposed framework also constructs
symbolic representations of the environment, but in the form
of action-conditioned scene graphs for robotic manipulation.

Robotic exploration aims to autonomously navigate,
interact with, and gather information from environments it
has never encountered before. It is applicable in search and

rescue [25–33], planetary exploration [34–37], object goal
navigation [38–57], and mobile manipulation [58–63]. The
primary guiding principle behind robotic exploration is to
reduce the uncertainty of the environment [64, 65, 27, 66–68],
making uncertainty quantification key for robotic exploration
tasks. Curiosity-driven exploration has recently emerged as a
promising approach, showing effective results in various con-
texts [69–72]. Most past works have focused on exploration
in the context of mobility [73, 25–31, 38–54, 58–63], with
the primary goal of modeling and understanding the static
environment to complete specific tasks. Recently, exploration
has also been studied in the context of manipulation [74–
79], aiming to better understand the scene by changing the
state of the environment. Our work introduces a new active
exploration strategy for manipulation, uniquely defining a
novel scene graph-guided objective to guide the exploration
process.

Active perception aims to select specific actions for an
agent to improve its ability to perceive and understand the
environment [80, 81]. Unlike passive perception, actions offer
more flexibility, such as control over better viewpoints [82–
84], sensor configurations [85, 86], or adjustments to environ-
mental configurations [87]. It can also reveal certain scene
properties that cannot be perceived in a passive manner, such
as dynamic parameters [69, 88] or articulation [89, 77, 90].
Previous studies have explored active perception in 3D
reconstruction [91, 92, 79, 93, 94], object recognition [95–97],
camera localization [98], and robotic manipulation [99, 100].
Our work falls into the category of actively exploring the
environment to reveal what’s inside or underneath objects. Dif-
fering from most previous active perception efforts, which are
driven by handcrafted rules [101], information gain [102, 103],
or reinforcement learning [69, 104], our approach to active
perception is guided by grounding the rich commonsense
knowledge encoded in a large language model into an explicit
scene graph representation.

Language models for robotics. Large language mod-
els (LLMs) [105–107] and large multimodality models
(LMMs) [108, 109] are bringing overwhelming influence into
the robotics field, for their strong capacity in common-sense
knowledge and long-horizon reasoning. Previous studies have
harnessed the common-sense knowledge of such large models
to generate action candidates [110] and action sequences for
task planning [111, 107, 112, 57], and generate code for
robotic control and manipulation [113–115]. More recently,
VILA [116] utilized GPT-4V [108, 109] for vision-language



planning. In our RoboEXP system, we leverage GPT-4V for
decision-making in two crucial roles. First, as the action
proposer, it ensures both effectiveness and efficiency in
proposing appropriate strategies to expand potential nodes
in our action-conditioned 3D scene graph. Second, as the
action verifier, it ensures the plausibility and smoothness of
actions and operations in our system. Moreover, instead of
memorizing everything using large models in a brute force
way, our system employs explicit memory to enhance the
decision-making process.

II. ADDITIONAL DETAILS OF PROBLEM STATEMENT

We provide more details on the definition of our action-
conditioned 3D scene graph and our interactive scene explo-
ration in this section.

A. Action-Conditioned 3D Scene Graph

An action-conditioned 3D scene graph (ACSG) is an
actionable, spatial-topological representation that models
objects and their interactive and spatial relations in a scene.
Formally, ACSG is a directed acyclic graph G = (V,E)
where each node represents either an object (e.g., a door) or
an action (e.g., open), and edges E represent their interaction
relations. The object node oi = (si,pi) ∈ V encodes the
semantics and geometry of each object (e.g., the semantic
embedding of a fridge si, and its shape in the form of a
point cloud pi), whereas the action node ak = (ak,Tk) ∈ V
encodes high-level action type ak and low-level primitives
Tk to perform the actions. Between the nodes are edges
encoding their relations, which we categorize into four types:
1) between objects eo→o (e.g., the door handle belongs to
the fridge), 2) from objects to actions eo→a (e.g., toy can be
picked up), 3) from action to objects ea→o (e.g., a banana
can be reached if we open the cabinet), or 4) from one action
to another ea→a (e.g., the cabinet can be opened only if
we move away the condiment). Our action-conditioned 3D
scene graph greatly enhances existing 3D scene graphs, as
it explicitly models the action-conditioned relations between
objects.

B. Interactive Exploration

We formulate the interactive scene exploration task into an
active perception and exploration problem to construct the
action-conditioned 3D scene graph (ACSG) (see Algorithm 1).

The Algorithm 1 simply mentions “add spatial relations”
and “add action preconditions” as part of the function of
the memory module, but without detailed explanation. In the
algorithm, we have demonstrated how to construct the edges
from objects to actions eo→a and from actions to objects
eo→a; however, there is a lack of description for the other
two types of edges.

Add Spatial Relations. The logic involves analyzing the
spatial relationships among objects using spatial heuristics
and incorporating the resulting spatial relation edges between
objects eo→o (see Algorithm 2).

Add Action Preconditions. The approach is to assess
the feasibility of implementing the actions. We utilize the

Algorithm 1 Interactive Exploration

1: input: O0, G0 = (V0,E0),U0 ← V0

2: while |Ut−1| ≠ 0 do
3: if choose object oi ∈ Ut−1 then % explore object
4: add spatial relations % memory
5: obtain action a to explore oi % decision-making
6: if action a /∈ Vt−1 then
7: Vt,Ut = Vt−1 ∪ {a},Ut−1 ∪ {a} % add node
8: Et = Et−1 ∪ {eoi→a} % add edge
9: Ut = Ut \ oi % mark as explored

10: end if
11: else choose action ak ∈ Ut−1

12: if no obstruction then % decision-making
13: take action ak % action
14: obtain new observation Ot % perception
15: if found new objects O ̸⊂ Vt−1 then
16: Vt,Ut = Vt ∪ {O},Ut−1 ∪ {O} % add

nodes
17: Et = Et ∪ {eak→O} % add edges
18: Ut = Ut \ ak % mark as explored
19: end if
20: else
21: add action preconditions % memory
22: end if
23: end if
24: end while
25: output: Gt % final scene graph

Algorithm 2 Add Spatial Relations

1: input: Gt−1 = (Vt−1,Et−1)
2: Et = Et−1

3: for o ∈ Vt−1 do % check relations
4: if relation from o to oi then % memory
5: Et = Et ∪ {eo→oi

} % add edge
6: end if
7: if relation from oi to o then
8: Et = Et ∪ {eoi→o} % add edge
9: end if

10: end for
11: output: Gt % new scene graph

Algorithm 3 Add Action Preconditions

1: input: Gt−1 = (Vt−1,Et−1),Ut−1

2: if object o obstruct then % decision-making
3: choose action a
4: Vt = Vt−1 ∪ {a}, Ut−1 ∪ {a} % add node
5: Et = Et−1 ∪ {eo→a} % add edge
6: Et = Et−1 ∪ {ea→ak

} % add edge
7: end if
8: output: Gt,Ut % new scene graph & plan



System: You are an assistant tasked with aiding in the construction of a complete scene graph for a tabletop environment. The objective is to identify all objects 
hidden from the current observation in the tabletop setting. Your role involves selecting appropriate actions or opting not to take any action based on commonsense 
knowledge in response to queries with current observations. Your responses will guide a robot in efficiently exploring the environment. Approach each step 
thoughtfully, and analyze the fundamental problem deeply, considering the potential vagueness or inaccuracy in the queries. Adhere to the provided formats in your 
instructions.

User: Analyze and provide your final answer for each new query object/part category, considering the given surrounding objects and observations in the tabletop 
scene from different viewpoints. The query object/part will be enclosed in a green bounding box, though it may not always be fully accurate. Format your responses 
as follows: "[Analysis]: <your reasoning process>; \n\n [Final Answer]: <skill>". Be comprehensive and avoid repeating my question. Choose from three skills: 1. Open 
the doors or drawers. 2. Pick up / Open the top object. 3. No action. The primary goal is to select an action that has the potential to reveal hidden objects. The 
secondary goal is to act efficiently, performing only necessary actions to uncover hidden objects. For example, if an object contains doors or drawers and can 
potentially store something inside, opt for the first skill "Open the doors or drawers". If an object has no bottom side and can potentially cover something beneath it, 
choose the second skill " Pick up / Open the top object"; otherwise, select the third skill "No action" to ensure efficiency.

Assistant: Got it. I will output the reasoning process step-by-step, explain why I choose the skill but not others and follow the output format.

User: [Query Object] + [Query Images]

Assistant: [Reply from GPT-4V]

System: You are an assistant tasked with evaluating the feasibility of actions within a tabletop environment. Your role is to select suitable objects that could obstruct 
open actions based on queries and current observations. Provide guidance for a robot's planning process. Approach each step thoughtfully, analyzing the underlying 
problem thoroughly while considering potential vagueness or inaccuracy in the queries. Follow the provided formats in your instructions.

User: Provide an analysis and your final answer each time I present a new query object/part category, the list of surrounding objects you need to consider and 
observations of the corresponding in the tabletop scene from different viewpoints. The query object/part is enclosed in a green bounding box, which may not always 
be fully accurate. Present your reasoning process and final answer in the format "[Analysis]: <your reasoning process>; \n\n [Final Answer]: <list of objects>". Be 
comprehensive and avoid repeating my question. Use the given list of surrounding objects, maintaining the provided names. Only consider the surrounding objects in 
the given list. The objective is to identify all objects that could potentially block open actions. If an object obstructs the door or drawer from opening, include it in the 
final list of objects. Analyze the action movement and identify the blocking objects. 

Assistant: Got it. I will output the reasoning process step-by-step, explain why I choose the object but not others and follow the output format.
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User: [Query Object] + [Query Images]

Assistant: [Reply from GPT-4V]

Fig. 1: Prompts of the Decision-Making module. We present the full prompts for the two pivotal roles of our decision-making module,
proposer in (a), verifier in (b). The prompts are used for all our experiments without modification and extra examples.

Fig. 2: All Testing Objects. We present various objects utilized
in our work, encompassing different types of cabinets, fruits, dolls,
condiments, beverages, food items, tapes, tableware, and fabric.

decision-making module to verify whether there are any
prerequisite actions that need to be completed beforehand,
and then adjust the plan accordingly (see Algorithm 3).

For the reward defined in the main paper, intuitively, to
maximize this reward at each discrete timestamp, we should
prioritize exploring the unexplored nodes in the current scene
graph that are likely to lead to the discovery of new nodes
(e.g., opening a cabinet that has not been opened, or lifting
a piece of clothing that might cover a small object). The
key challenge lies in how we can perceive the objects in
the scene, infer possible actions and their relations from the

sensory data, and take actions with the current scene graph.

III. ADDITIONAL DETAILS OF ROBOEXP SYSTEM

In this section, we outline the detailed structure of our
RoboEXP system, including perception, memory, decision-
making, and action modules, in Sec. III-A. We then discuss
our system’s design for the interactive scene exploration task
and the usage of our system in following sections, focusing
on its application in closed-loop exploration processes that
may require multi-step or recursive reasoning and handle
potential interventions.

A. RoboEXP System

Our system comprises four key components: perception,
memory, decision-making, and action modules. Raw RGBD
images are captured through the wrist camera in different
viewpoints and processed by the perception module to extract
scene semantics, including object labels, 2D bounding boxes,
segmentations, and semantic features. The obtained semantic
information is then transmitted to the memory module, where
the 2D data is merged into the 3D representation. Such 3D
information serves as a valuable guide for the decision module,
aiding in the selection of appropriate actions to further interact
or observe the environment and unveil hidden objects. The
action module is activated to execute the planned action,
generating new observations for the perception modules. This
closed-loop system ensures the thoroughness of our task in
interactive scene exploration.

Perception Module. Given multiple RGBD observations
from different viewpoints, the objective of the perception



module is to detect and segment objects while extracting their
semantic features. To enhance generality, we opt for the open-
vocabulary detector GroundingDINO [117] and the Segment
Anything in High Quality (SAM-HQ) [118], an advanced
version of SAM [119]. For the extraction of semantic features
used in subsequent instance merging within the memory
module, we employ CLIP [120]. To obtain per-instance CLIP
features, we implement a strategy similar to the one proposed
by Jatavallabhula et al. [121]. Specifically, we extend the
local-global image feature merging approach by incorporating
additional label text features to augment the semantic CLIP
feature for each instance. Furthermore, we exclusively focus
on instance-level features, disregarding pixel-level features,
thereby accelerating the entire semantic feature extraction
process.

Memory Module. The memory module is designed to
construct our ACSG of the environment by assimilating
observations over time. For the low-level memory, to ensure
stable instance merging from 2D to 3D, we employ a
similar instance merging strategy as presented in Lu et al.
[122], consolidating observations from diverse RGBD sources
across various viewpoints and time steps. In contrast to
the original algorithm, which considers only 3D IoU and
semantic feature similarity we additionally incorporate label
similarity and instance confidence. To enhance algorithm
efficiency, we represent low-level memory using a voxel-based
representation, which allows for more efficient computation
and memory updates. Meanwhile, given the crowded nature
of objects in our tabletop setting, we have implemented voxel-
based filtering designs to obtain a cleaner and more complete
representation of the objects for storage in our memory.

The memory module handles merging across different
viewpoints and time steps. To merge across different view-
points, we project 2D information (RGBD, semantic features,
mask, bounding box) to 3D and leverage the instance merging
strategy mentioned earlier to attain consistent 3D information.
Addressing memory updates across time steps presents a
challenge due to dynamic changes in the environment. For
instance, a closed door in the previous time step may be
opened by our robot in the current time step. To accurately
reflect such changes, our algorithm evaluates whether ele-
ments within our memory have become outdated, primarily
through depth tests based on the most recent observations.
This process ensures that the memory accurately represents the
environment’s current state, effectively managing scenarios
where objects may change positions or states across different
time steps.

For the high-level graph of our ACSG, the memory module
analyzes the relationships between objects and the logical
associations between actions and objects. Depending on
changes in low-level memory and relationships, the memory
module is tasked with updating the graph. This involves
adding, deleting, or modifying nodes and edges within our
graph.

Decision-Making Module. The primary goal of the
decision module is to identify the appropriate object and
corresponding skill to enhance the effectiveness and efficiency

of interactive scene exploration. In the context of our task,
distinct objects may necessitate distinct exploration strategies.
While humans can easily discern the most suitable skill to
apply (e.g., picking up the top Matryoshka doll to inspect
its contents), achieving such decisions through heuristic-
based methods is challenging. The utilization of a Large
Multi-Modal Model (LMM), such as GPT-4V [108, 109],
shows instrumental in addressing this difficulty, as it captures
commonsense knowledge that facilitates decision-making.

The LMM brings commonsense knowledge to our decision-
making process and serves in two pivotal roles. Firstly, it
functions as an action proposer (Fig. 1a). Given the current
digital environment from the memory module, GPT-4V is
tasked with selecting the appropriate skill for unexplored
objects in our system. For instance, when presented with
a visual prompt of an object within a green bounding box
from various viewpoints, GPT-4V can discern the suitable
“pick up” skill for the Matryoshka doll in the environment.
For unexplored objects, our ACSG includes the attribute of
whether each object node is explored or unexplored. GPT-4V,
in its role as the proposer, also functions to assess whether
the object holds value for further exploration. If not, the
corresponding node is marked as explored, indicating that no
further actions are needed.

Secondly, the LMM also serves as the action verifier
(Fig. 1b). For the proposer role, it analyzes the object-centric
attributes and doesn’t consider surrounding information when
choosing the proper skill. For example, if the proposed action
involves opening a door, the proposer alone may struggle
with cases where obstructions exist in front of the door (e.g.,
a condiment bottle). To address this, we use another LMM
program to verify the feasibility of the action and identify
any objects in the scene that may impede the action based
on information from our ACSG.

In summary, the decision module, with its dual roles,
effectively guides our system to choose efficient actions that
minimize uncertainty in the environment and successfully
locate all relevant objects.

Action Module. In the action module, our primary focus
is on autonomously constructing the ACSG through effective
and efficient interaction with the environment. We employ
heuristic-based action primitives within our action module,
leveraging the geometry cues in our ACSG. These primitives
encompass seven categories: “open the door”, “open the
drawer”, “close the door”, “close the drawer”, “pick object
to idle space”, “pick back object”, “move wrist camera to
position”. Strategic utilization of these skills plays a pivotal
role in accomplishing intricate tasks seamlessly within our
system.

For the door and drawer relevant primitives, engagement
with handles is required. In our implementation, we exploit
the handle’s position and geometry to discern its motion type
(prismatic or revolute) and motion parameters (motion axis
and motion origin). Executing this action involves utilizing
the detected handle and its geometry to adeptly open doors or
drawers. Upon identifying the specific handle to be operated,
our system retrieves the point cloud converted from our



System: You are an assistant tasked with aiding in the construction of a complete scene graph for a tabletop environment. The objective is to identify all objects 
hidden from the current observation in the tabletop setting. Your role involves selecting appropriate actions or opting not to take any action based on commonsense 
knowledge in response to queries with current observations. Your responses will guide a robot in efficiently exploring the environment. Approach each step thoughtfully, 
and analyze the fundamental problem deeply, considering the potential vagueness or inaccuracy in the queries. Adhere to the provided formats in your instructions.

User: Analyze and provide the current scene graph and your final answer for the next action given the latest observations in the tabletop scene from different 
viewpoints. Each time you need to pick an action to do or choose "Done" to terminate. The action you can choose should be composed of (<object/part>, <skill>). Be 
specific on which object or part you refer to. The skills you can choose: [1. Open the door. 2. Close the door. 3. Open the drawer. 4. Close the drawer. 5. Pick up the 
object to idle space. 6. Pick back the object from the idle space].  Each time after you choose an action, you will receive the new observations after the action. Format 
your responses as follows: "[Analysis]: <your reasoning process>; \n\n [Scene Graph]: <current scene graph> \n\n [Final Answer]: <skill>". Be comprehensive and 
avoid repeating my question. The primary goal is to select an action that has the potential to reveal hidden objects. The secondary goal is to act efficiently, performing 
only necessary actions to uncover hidden objects. The third goal is to make the object go back to the initial state after exploration. For the output scene graph, you 
need to output all the objects in the scene, including those found during the exploration process.

Assistant: Got it. I will output the reasoning process step-by-step, explain why I choose the skill but not others and follow the output format.

User: [Query Images]

Assistant: [Reply from GPT-4V]

User: [Query Images]

Assistant: [Reply from GPT-4V]
...

Fig. 3: Prompts of the GPT-4V baseline. To ensure fairness in comparison to this baseline, we choose to use similar prompts, employing
the chain-of-thoughts technique to enhance its performance.

voxel-based representation corresponding to that handle from
our memory module. Subsequently, we employ Principal
Component Analysis (PCA) to determine the principal
direction of the handle, aiding in aligning the gripper for
optimal engagement. Additionally, understanding the opening
direction is pivotal for effectively handling doors or drawers.
To ascertain this, we analyze neighboring points and deduce
the most common normal as the opening direction. The
combined information of the handle direction and the opening
direction provides sufficient guidance for our robot arm to
grasp the handle and open the prismatic part. However, in the
case of a revolute joint, the motion becomes more intricate.
Therefore, we further utilize the motion parameters inferred
from the geometry to simulate the evolving opening direction
based on the revolute joint’s opening process. This well-
designed heuristic empowers our system to reliably open
drawers or doors in our tabletop setting.

For the pickup-related primitives, we simplify the pickup
logic to exclusively consider a top-down direction. Con-
sequently, our focus narrows down to acquiring essential
information such as the object’s height and xy location.
We achieve this by extracting the object’s point cloud from
its associated voxel-based representation. Subsequently, we
pinpoint the highest points within the cloud, calculating their
mean to determine the optimal pickup point. This calculated
point serves as a precise reference for our gripping mechanism,
facilitating the successful grasping of objects in the specified
direction.

Regarding viewpoint change, the primitive is parameterized
with the expected pose. For example, after opening the
door/drawer, to see inside, we develop the heuristic to choose
the proper viewpoint from the open direction as the parameter
for the primitive, allowing for the implementation of the action
primitive.

B. Other Design in Interactive Exploration

One desiderata for robot exploration is the ability to handle
scenarios that necessitate multi-step or recursive reasoning.
An example of this is the Matryoshka doll case (Fig. 5b),

which cannot be addressed using previous one-step LLM-
based code generation approaches [116, 114]. In contrast, our
modular design allows agents to dynamically plan and adapt
in a closed-loop manner, enabling continuous LLM-based
exploration based on environmental feedback.

To manage multi-step reasoning, our system incorporates
an action stack as a simple but effective “planning” module.
Guided by decisions from the decision module, the stack
structure adeptly organizes the order of actions. For instance,
upon picking up the top Matryoshka doll, if the perception
and memory modules identify another smaller Matryoshka
doll in the environment, the decision module determines to
pick it up. Our action stack dynamically adds this pickup
action to the top of the stack, prioritizing the new action over
picking back the previous, larger Matryoshka doll. This stack
structure facilitates multi-step reasoning and constructs the
system’s logic in a deep and coherent structure.

Moreover, for the interactive scene exploration task,
maintaining scene consistency is crucial in practice (e.g.,
the agent should close the fridge after exploring it). We
employ a greedy strategy returning objects to their original
states. This approach keeps the environment close to its
pre-exploration state, making RoboEXP more practical for
real-world applications.

C. Usage of ACSG

The ACSG constructed during the exploration stage shows
beneficial for scenarios that require a comprehensive under-
standing of scene content and structure, such as household
environments like kitchens and living rooms, office environ-
ments, etc. We list several examples illustrating the potential
usage of the scene graph in various tasks.

Judging Object Existence. A direct application of our
ACSG is to determine the presence or absence of specific
objects in the current environment. For instance, during the
exploitation stage of the scenario to set the dining table, if the
spoon is missing, the robot can further seek human assistance.

Object Retrieval. One notable advantage of our ACSG
is its ability to capture all actions and their preconditions.



TABLE I: Quantitative Results on Different Tasks. We compare the performance of both the GPT-4V baseline and our system across
various tasks. We assess the outcomes using five distinct metrics to illustrate diverse facets of the interactive exploration process. Our
system consistently outperforms the baseline across all tasks and metrics.

Task (10 variance for each) Drawer-Only Door-Only Drawer-Door Recursive Occlusion

Metric GPT-4V Ours GPT-4V Ours GPT-4V Ours GPT-4V Ours GPT-4V Ours

Success % ↑ 20±13.3 90±10.0 30±15.2 90±10.0 10±10.0 70±15.3 0±0.0 70±15.3 0±0.0 50±16.7
Object Recovery % ↑ 83±11.0 97±3.3 50±16.7 100±0.0 62±10.7 91±4.7 20±13.3 80±11.7 17±11.4 67±14.9
State Recovery % ↑ 60±16.3 100±0.0 80±13.3 100±0.0 70±15.3 100±0.0 70±15.3 100±0.0 10±10.0 70±15.3
Unexplored Space % ↓ 15±7.6 0±0.0 40±14.5 0±0.0 25±6.5 0±0.0 63±15.3 15±8.9 85±7.6 30±15.3
Graph Edit Dist. ↓ 2.8±1.04 0.2±0.20 4.4±1.42 0.1±0.10 5.6±1.46 0.5±0.27 8.8±2.06 2.1±1.49 7.3±0.97 2.5±1.15
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(a) Action-object Graph (b) Error Breakdown

Fig. 4: Visualization of Quantitative Results. (a) The action-object graph captures the change in the number of discovered objects
relative to the number of actions taken. Our RoboEXP efficiently discovers all objects. Sometimes, the object count doesn’t increase
during actions due to the absence of objects in storage after opening. Additionally, some actions are employed to restore the scene state
(e.g., closing the door after exploration). (b) The error breakdown of all our quantitative experiments includes 5 task settings with 10
variations each. We categorize errors into perception, decision, action, and no-error cases. For the GPT-4V baseline, manual assistance in
action execution eliminates failure cases, serving as an upper bound for baseline performance. Even in this scenario, our RoboEXP largely
outperforms the baseline.

Utilizing this information, retrieving any object becomes
straightforward by following the graph structure and executing
actions in topological order along the paths from the root
to the target object node. For example, in the obstruction
scenario, the ACSG can provide the sequence of actions
required to fetch the tape: 1) removing the condiment blocking
the cabinet door, 2) opening the cabinet via the door handle,
and 3) retrieving the tape. Such insights are crucial for tasks
like cooking.

Advanced Usage. The high-level representation of the
environment provided by our ACSG serves as a simplified
yet effective model. Similar to the approach proposed by Gu
et al. [123], integrating the scene graph with Large Language
Models (LLM) or Large Multi-modal Models (LMM) offers
enhanced capabilities, including natural language interaction.
This enables the robot to respond to human preferences
expressed in natural language (e.g., fetching a coke when the
person is thirsty) or through visual cues (e.g., fetching a mug
when the table is dirty).

IV. ADDITIONAL DETAILS OF EXPERIMENTS

In this section, we assess the performance of our system
across a variety of tabletop scenarios in the interactive scene
exploration setting. Our primary objective is to address
two key questions through experiments: 1) How does our
system effectively and efficiently deal with diverse exploration
scenarios and successfully construct comprehensive ACSG?

2) What is the utility of our ACSG in facilitating downstream
tasks?

A. Robot and Environment Setups

All our experiments are conducted in a real-world setting.
In these scenarios, we mount one RealSense-D455 camera on
the wrist of the robot arm to collect RGBD observations, with
the execution of actions performed by the UFACTORY xArm
7. The end effector for our robot arm is the soft gripper. Our
experimental setup encompasses a diverse range of objects, as
illustrated in Fig. 2. To assess the effectiveness of our system,
we devised five types of experiments, each encompassing
10 distinct settings. These settings vary in terms of object
number, type, and layout, as illustrated in Fig. 7.

B. Interactive Exploration and Scene Graph Building

Baseline. We employ the pure GPT-4V as our baseline
model along with the chain-of-thoughts (CoT) to enhance its
capabilities, as outlined in a method similar to that proposed
by Hu et al. [116]. This baseline operates in a closed-loop
fashion, receiving three RGB observations from different
viewpoints during each iteration. At each turn, it generates
the current scene graph, encompassing hidden objects, and
suggests the next action to be taken. Upon determining that all
tasks are completed, the model outputs “Done” (refer to the
complete prompts in the Appendix). To ensure the baseline is
robust, we utilize manual actions as ground truth references
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Fig. 5: Qualitative Results on Different Scenarios. We visualize the interactive exploration process and the corresponding constructed
ACSG. (a) This scenario involves a tabletop environment with two articulated objects, accompanied by additional items either on the table
or concealed in storage space. The constructed scene graph demonstrates the success of our system in identifying all objects within the
environment through a series of physical interactions. (b) This scenario includes nested objects, five Matryoshka dolls, with only the top
one being directly observable. Our system autonomously decides to explore the contents through a recursive reasoning process, showcasing
its ability to construct deep ACSG. (c) This scenario involves a fabric covering a mouse, showcasing exploration scenarios that involve a
deformable object. Our system interacts with the fabric and successfully uncovers what lies beneath it.

for the proposed actions. For instance, if the baseline suggests
opening a specific drawer, we manually perform the action
and prompt the model with the new observation to generate
another action. In contrast, in the exploration experiments
described below, all actions from our system are automatically
executed by our action module on the physical robot. The
full prompt of the GPT-4V baseline is illustrated in Fig. 3.

Evaluation. As mentioned in the main paper, we have
designed five key metrics. To assess the effectiveness and
efficiency of ACSG, we engage human evaluators in the tasks
to construct the ground truth version of ACSG. The five main
metrics employed for evaluation are as follows:

1) Success: This metric evaluates the success percentage
across 10 variants for each task. We define success for each
experiment as 1 when the final outputted ACSG exactly
matches the GT version, and 0 otherwise.

2) Object Recovery: This metric quantifies the percentage
of hidden objects successfully identified.

3) State Recovery: A binary value indicates whether the
final state resembles the original state before exploration. This
includes considerations for partial states and object positions
(e.g., in the top drawer of a cabinet or on the table).

4) Unexplored Space: Evaluating the percentage of
successfully explored need-to-explore space to reduce the
robot’s uncertainty about the scene. The identification of the
need-to-explore space relies on human annotation.

5) Graph Edit Distance (GED): GED measures the
disparity between the outputted graph and the GT graph. We
adopt a simplified version of GED with six operations—three
for nodes (add, delete, edit) and three for edges (add, delete,
edit), with each operation incurring a cost of 1.

These metrics provide a comprehensive evaluation of the
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Fig. 6: Qualitative Results on Different Intervention Scenarios. (a) This scenario involves adding a cabinet to the tabletop setting, and
our system can auto-detect the new cabinet and explore the objects inside. (b) This scenario includes removing and adding objects from
and into the cabinet. Our system can monitor hand interactions and re-explore the corresponding doors.

method’s performance. Additionally, we visualize the number
of objects and actions during the exploration process to show
the exploration strategies employed by different methods.

Comparison. Tab. I shows the quantitative results of our
system and the strong baseline. The quantitative findings
underscore the superior performance of our system compared
to the baseline method across all metrics. It is essential to
highlight that in the case of object recovery, the baseline
method may occasionally choose to randomly open certain
drawers or doors to unveil objects. This randomness con-
tributes to a seemingly higher object recovery rate for the
baseline, which may not necessarily correlate with its overall
success. The unexplored space metric shows that our system
is much more stable in exploring all need-to-explore spaces.

Fig. 4a provides additional insights, illustrating that as
the number of actions increases, so does the number of
objects. Specifically, we present the ground truth object
number alongside the directly observable object number that
can be represented by the traditional 3D scene graph. Fig. 5
shows the effectiveness of our system in different scenarios.

Human Intervention Our RoboEXP system possesses
the capability to autonomously adapt to changes in the
environment. We employ two types of human interventions
to demonstrate these points.

The first type of intervention (Fig. 6a) involves adding
new cabinets to the scene. In this scenario, we add a cabinet
to the explored area, allowing our system to automatically
explore the newly added cabinets and update the ACSG.

The second type of intervention (Fig. 6b) involves adding

new objects to or removing existing ones from the cabi-
nets in the current scene. Our system can monitor human
interactions and discern which objects require re-exploration.
Subsequently, it autonomously updates the ACSG based on
re-exploration.

V. VIDEO TIMELINE

See our video in https://www.youtube.com/watch?v=
xZ1gfLRXSOE.

Scenario A. Exploration-Exploitation
Exploration: 00:43 - 01:16
Exploitation: 01:17 - 01:37
Scenario B. Recursive Reasoning
Exploration: 01:49 - 02:26 (Two scenarios)
Scenario C. Obstruction
Exploration: 02:33 - 02:59
Scenario D. Intervention
Exploration: 03:05 - 04:09 (Two scenarios)

https://www.youtube.com/watch?v=xZ1gfLRXSOE
https://www.youtube.com/watch?v=xZ1gfLRXSOE
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Fig. 7: Experiment Settings. Varied object numbers, types, and layouts in our experimental settings of the quantitative results.

REFERENCES

[1] Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia
Li, David Shamma, Michael Bernstein, and Li Fei-Fei.

Image retrieval using scene graphs. In CVPR, 2015. 1



[2] Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-
Fei. Scene graph generation by iterative message
passing. In CVPR, 2017. 1

[3] Cewu Lu, Ranjay Krishna, Michael Bernstein, and
Li Fei-Fei. Visual relationship detection with language
priors. In ECCV, 2016. 1

[4] Ruihai Wu, Kehan Xu, Chenchen Liu, Nan Zhuang,
and Yadong Mu. Localize, assemble, and predicate:
Contextual object proposal embedding for visual rela-
tion detection. In AAAI, 2020.

[5] Hanwang Zhang, Zawlin Kyaw, Shih-Fu Chang, and
Tat-Seng Chua. Visual translation embedding network
for visual relation detection. In CVPR, 2017. 1

[6] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and
Devi Parikh. Graph r-cnn for scene graph generation.
In ECCV, 2018. 1

[7] Iro Armeni, Zhi-Yang He, JunYoung Gwak, Amir R
Zamir, Martin Fischer, Jitendra Malik, and Silvio
Savarese. 3d scene graph: A structure for unified
semantics, 3d space, and camera. In ICCV, 2019. 1

[8] Jared Strader, Nathan Hughes, William Chen, Alberto
Speranzon, and Luca Carlone. Indoor and outdoor 3d
scene graph generation via language-enabled spatial
ontologies. arXiv preprint arXiv:2312.11713, 2023. 1

[9] Xu Yang, Kaihua Tang, Hanwang Zhang, and Jianfei
Cai. Auto-encoding scene graphs for image captioning.
In CVPR, 2019. 1

[10] Jonathan Krause, Justin Johnson, Ranjay Krishna, and
Li Fei-Fei. A hierarchical approach for generating
descriptive image paragraphs. In CVPR, 2017. 1

[11] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image
generation from scene graphs. In CVPR, 2018. 1

[12] Marcel Hildebrandt, Hang Li, Rajat Koner, Volker
Tresp, and Stephan Günnemann. Scene graph rea-
soning for visual question answering. arXiv preprint
arXiv:2007.01072, 2020. 1

[13] Zachary Ravichandran, Lisa Peng, Nathan Hughes,
J Daniel Griffith, and Luca Carlone. Hierarchical
representations and explicit memory: Learning effective
navigation policies on 3d scene graphs using graph
neural networks. In ICRA, 2022. 1

[14] Zachary Seymour, Niluthpol Chowdhury Mithun, Han-
Pang Chiu, Supun Samarasekera, and Rakesh Kumar.
Graphmapper: Efficient visual navigation by scene
graph generation. In ICPR, 2022. 1

[15] Krishan Rana, Jesse Haviland, Sourav Garg, Jad Abou-
Chakra, Ian Reid, and Niko Suenderhauf. Sayplan:
Grounding large language models using 3d scene
graphs for scalable task planning. arXiv preprint
arXiv:2307.06135, 2023. 1

[16] Christopher Agia, Krishna Murthy Jatavallabhula,
Mohamed Khodeir, Ondrej Miksik, Vibhav Vineet,
Mustafa Mukadam, Liam Paull, and Florian Shkurti.
Taskography: Evaluating robot task planning over large
3d scene graphs. In CoRL, 2022.

[17] Ziyuan Jiao, Yida Niu, Zeyu Zhang, Song-Chun Zhu,
Yixin Zhu, and Hangxin Liu. Sequential manipulation

planning on scene graph. In IROS, 2022. 1
[18] Jiayuan Mao, Tomás Lozano-Pérez, Joshua B Tenen-

baum, and Leslie Pack Kaelbling. Learning reusable
manipulation strategies. In CoRL, 2023. 1

[19] Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli,
Jiajun Wu, Antonio Torralba, and Joshua B Tenenbaum.
Clevrer: Collision events for video representation and
reasoning. arXiv preprint arXiv:1910.01442, 2019. 1

[20] Renhao Wang, Jiayuan Mao, Joy Hsu, Hang Zhao,
Jiajun Wu, and Yang Gao. Programmatically grounded,
compositionally generalizable robotic manipulation.
ICLR, 2023. 1

[21] Zhutian Yang, Jiayuan Mao, Yilun Du, Jiajun Wu,
Joshua B. Tenenbaum, Tomás Lozano-Pérez, and
Leslie Pack Kaelbling. Compositional Diffusion-Based
Continuous Constraint Solvers. In CoRL, 2023. 1

[22] Weiyu Liu, Jiayuan Mao, Joy Hsu, Tucker Hermans,
Animesh Garg, and Jiajun Wu. Composable part-based
manipulation. In CoRL, 2023.

[23] Zhenfang Chen, Kexin Yi, Yunzhu Li, Mingyu Ding,
Antonio Torralba, Joshua B Tenenbaum, and Chuang
Gan. Comphy: Compositional physical reasoning of
objects and events from videos. In ICLR, 2022.

[24] Jiayuan Mao, Tomas Lozano-Perez, Joshua B. Tenen-
baum, and Leslie Pack Kaelbing. PDSketch: Integrated
Domain Programming, Learning, and Planning. In
NeurIPS, 2022. 1

[25] Farzad Niroui, Kaicheng Zhang, Zendai Kashino, and
Goldie Nejat. Deep reinforcement learning robot for
search and rescue applications: Exploration in unknown
cluttered environments. RA-L, 2019. 1

[26] Yugang Liu and Goldie Nejat. Robotic urban search
and rescue: A survey from the control perspective.
Journal of Intelligent & Robotic Systems, 2013.

[27] Farzad Niroui, Ben Sprenger, and Goldie Nejat. Robot
exploration in unknown cluttered environments when
dealing with uncertainty. In IRIS, 2017. 1

[28] Barzin Doroodgar, Yugang Liu, and Goldie Nejat. A
learning-based semi-autonomous controller for robotic
exploration of unknown disaster scenes while searching
for victims. IEEE Transactions on Cybernetics, 2014.

[29] Nicola Basilico and Francesco Amigoni. Exploration
strategies based on multi-criteria decision making for
searching environments in rescue operations. Au-
tonomous Robots, 2011.

[30] Yongguo Mei, Yung-Hsiang Lu, CS George Lee,
and Y Charlie Hu. Energy-efficient mobile robot
exploration. In ICRA, 2006.

[31] Stefan Oßwald, Maren Bennewitz, Wolfram Burgard,
and Cyrill Stachniss. Speeding-up robot exploration
by exploiting background information. RA-L, 2016. 1

[32] Matej Petrlik, Pavel Petracek, Vit Kratky, Tomas
Musil, Yurii Stasinchuk, Matous Vrba, Tomas Baca,
Daniel Hert, Martin Pecka, Tomas Svoboda, et al.
Uavs beneath the surface: Cooperative autonomy for
subterranean search and rescue in darpa subt. arXiv
preprint arXiv:2206.08185, 2022.



[33] Marco Tranzatto, Takahiro Miki, Mihir Dharmadhikari,
Lukas Bernreiter, Mihir Kulkarni, Frank Mascarich,
Olov Andersson, Shehryar Khattak, Marco Hutter,
Roland Siegwart, et al. Cerberus in the darpa sub-
terranean challenge. Science Robotics, 2022. 1

[34] Philip Arm, Gabriel Waibel, Jan Preisig, Turcan Tuna,
Ruyi Zhou, Valentin Bickel, Gabriela Ligeza, Takahiro
Miki, Florian Kehl, Hendrik Kolvenbach, et al. Sci-
entific exploration of challenging planetary analog
environments with a team of legged robots. Science
robotics, 2023. 1

[35] Martin J Schuster, Marcus G Müller, Sebastian G
Brunner, Hannah Lehner, Peter Lehner, Ryo Sakagami,
Andreas Dömel, Lukas Meyer, Bernhard Vodermayer,
Riccardo Giubilato, et al. The arches space-analogue
demonstration mission: Towards heterogeneous teams
of autonomous robots for collaborative scientific sam-
pling in planetary exploration. RA-L, 2020.

[36] Florian Cordes, Ingo Ahrns, Sebastian Bartsch, Timo
Birnschein, Alexander Dettmann, Stéphane Estable,
Stefan Haase, Jens Hilljegerdes, David Koebel, Steffen
Planthaber, et al. Lunares: Lunar crater exploration
with heterogeneous multi robot systems. Intelligent
Service Robotics, 2011.

[37] Takahiro Sasaki, Kyohei Otsu, Rohan Thakker, Sofie
Haesaert, and Ali-akbar Agha-mohammadi. Where
to map? iterative rover-copter path planning for mars
exploration. RA-L, 2020. 1

[38] KAI-QING Zhou, Kai Zheng, Connor Pryor, Yilin
Shen, Hongxia Jin, L. Getoor, and X. Wang. Esc:
Exploration with soft commonsense constraints for
zero-shot object navigation. ICML, 2023. 1

[39] Ram Ramrakhya, Eric Undersander, Dhruv Batra, and
Abhishek Das. Habitat-web: Learning embodied object-
search strategies from human demonstrations at scale.
In CVPR, 2022.

[40] Albert J Zhai and Shenlong Wang. Peanut: predicting
and navigating to unseen targets. In ICCV, 2023.

[41] Wei Yang, Xiaolong Wang, Ali Farhadi, Abhinav
Gupta, and Roozbeh Mottaghi. Visual seman-
tic navigation using scene priors. arXiv preprint
arXiv:1810.06543, 2018.

[42] Oleksandr Maksymets, Vincent Cartillier, Aaron
Gokaslan, Erik Wijmans, Wojciech Galuba, Stefan
Lee, and Dhruv Batra. Thda: Treasure hunt data
augmentation for semantic navigation. In ICCV, 2021.

[43] Apoorv Khandelwal, Luca Weihs, Roozbeh Mottaghi,
and Aniruddha Kembhavi. Simple but effective: Clip
embeddings for embodied ai. In CVPR, 2022.

[44] Karmesh Yadav, Ram Ramrakhya, Arjun Majumdar,
Vincent-Pierre Berges, Sachit Kuhar, Dhruv Batra,
Alexei Baevski, and Oleksandr Maksymets. Offline
visual representation learning for embodied navigation.
arXiv preprint arXiv:2204.13226, 2022.

[45] Heming Du, Xin Yu, and Liang Zheng. Learning object
relation graph and tentative policy for visual navigation.
In ECCV, 2020.

[46] Joel Ye, Dhruv Batra, Abhishek Das, and Erik Wijmans.
Auxiliary tasks and exploration enable objectgoal
navigation. In ICCV, 2021.

[47] Matthew Chang, Arjun Gupta, and Saurabh Gupta.
Semantic visual navigation by watching youtube videos.
NeurIPS, 2020.

[48] Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca
Weihs, Kiana Ehsani, Jordi Salvador, Winson Han, Eric
Kolve, Aniruddha Kembhavi, and Roozbeh Mottaghi.
Procthor: Large-scale embodied ai using procedural
generation. NeurIPS, 2022.

[49] Abhishek Kadian, Joanne Truong, Aaron Gokaslan,
Alexander Clegg, Erik Wijmans, Stefan Lee, Manolis
Savva, Sonia Chernova, and Dhruv Batra. Sim2real
predictivity: Does evaluation in simulation predict real-
world performance? RA-L, 2020.

[50] Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan
Lee, Irfan Essa, Devi Parikh, Manolis Savva, and
Dhruv Batra. Dd-ppo: Learning near-perfect pointgoal
navigators from 2.5 billion frames. arXiv preprint
arXiv:1911.00357, 2019.

[51] Georgios Georgakis, Bernadette Bucher, Karl Schmeck-
peper, Siddharth Singh, and Kostas Daniilidis. Learning
to map for active semantic goal navigation. arXiv
preprint arXiv:2106.15648, 2021.

[52] Santhosh K Ramakrishnan, Aaron Gokaslan, Erik
Wijmans, Oleksandr Maksymets, Alex Clegg, John
Turner, Eric Undersander, Wojciech Galuba, Andrew
Westbury, Angel X Chang, et al. Habitat-matterport 3d
dataset (hm3d): 1000 large-scale 3d environments for
embodied ai. arXiv preprint arXiv:2109.08238, 2021.

[53] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh
Gupta, Abhinav Gupta, and Ruslan Salakhutdinov.
Learning to explore using active neural slam. arXiv
preprint arXiv:2004.05155, 2020.

[54] Haokuan Luo, Albert Yue, Zhang-Wei Hong, and Pulkit
Agrawal. Stubborn: A strong baseline for indoor object
navigation. In IROS, 2022. 1

[55] Santhosh Kumar Ramakrishnan, Devendra Singh Chap-
lot, Ziad Al-Halah, Jitendra Malik, and Kristen Grau-
man. Poni: Potential functions for objectgoal navigation
with interaction-free learning. In CVPR, 2022.

[56] Naoki Yokoyama, Sehoon Ha, Dhruv Batra, Jiuguang
Wang, and Bernadette Bucher. Vlfm: Vision-language
frontier maps for zero-shot semantic navigation. arXiv
preprint arXiv:2312.03275, 2023.

[57] Yinpei Dai, Run Peng, Sikai Li, and Joyce Chai. Think,
act, and ask: Open-world interactive personalized robot
navigation. arXiv preprint arXiv:2310.07968, 2023. 1

[58] Dipendra Misra, Andrew Bennett, Valts Blukis, Eyvind
Niklasson, Max Shatkhin, and Yoav Artzi. Mapping
instructions to actions in 3d environments with visual
goal prediction. arXiv preprint arXiv:1809.00786, 2018.
1

[59] Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer, and Dieter Fox. Alfred: A benchmark for



interpreting grounded instructions for everyday tasks.
In CVPR, 2020.

[60] Luca Weihs, Matt Deitke, Aniruddha Kembhavi, and
Roozbeh Mottaghi. Visual room rearrangement. In
CVPR, 2021.

[61] Dhruv Batra, Angel X Chang, Sonia Chernova, An-
drew J Davison, Jia Deng, Vladlen Koltun, Sergey
Levine, Jitendra Malik, Igor Mordatch, Roozbeh Mot-
taghi, et al. Rearrangement: A challenge for embodied
ai. arXiv preprint arXiv:2011.01975, 2020.

[62] Fei Xia, Chengshu Li, Roberto Martín-Martín,
Or Litany, Alexander Toshev, and Silvio Savarese.
Relmogen: Leveraging motion generation in reinforce-
ment learning for mobile manipulation. arXiv preprint
arXiv:2008.07792, 2020.

[63] Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli Van-
derBilt, Luca Weihs, Eric Kolve, Aniruddha Kembhavi,
and Roozbeh Mottaghi. Manipulathor: A framework
for visual object manipulation. In CVPR, 2021. 1

[64] Cyrill Stachniss, Giorgio Grisetti, and Wolfram Bur-
gard. Information gain-based exploration using rao-
blackwellized particle filters. In RSS, 2005. 1

[65] Benjamin Charrow, Gregory Kahn, Sachin Patil, Sikang
Liu, Ken Goldberg, Pieter Abbeel, Nathan Michael,
and Vijay Kumar. Information-theoretic planning with
trajectory optimization for dense 3d mapping. In RSS,
2015. 1

[66] Georgios Georgakis, Bernadette Bucher, Anton Ara-
pin, Karl Schmeckpeper, Nikolai Matni, and Kostas
Daniilidis. Uncertainty-driven planner for exploration
and navigation. In ICRA, 2022. 1

[67] Christos Papachristos, Shehryar Khattak, and Kostas
Alexis. Uncertainty-aware receding horizon exploration
and mapping using aerial robots. In ICRA, 2017.

[68] Fanfei Chen, John D Martin, Yewei Huang, Jinkun
Wang, and Brendan Englot. Autonomous exploration
under uncertainty via deep reinforcement learning on
graphs. In IROS, 2020. 1

[69] Tushar Nagarajan and Kristen Grauman. Learning
affordance landscapes for interaction exploration in 3d
environments. In NeurIPS, 2020. 1

[70] Yuri Burda, Harri Edwards, Deepak Pathak, Amos
Storkey, Trevor Darrell, and Alexei A. Efros. Large-
scale study of curiosity-driven learning. In ICLR, 2019.

[71] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and
Trevor Darrell. Curiosity-driven exploration by self-
supervised prediction. In ICML, 2017.

[72] Simone Parisi, Victoria Dean, Deepak Pathak, and
Abhinav Gupta. Interesting object, curious agent:
Learning task-agnostic exploration. In NeurIPS, 2021.
1

[73] C Cao, H Zhu, Z Ren, H Choset, and J Zhang. Repre-
sentation granularity enables time-efficient autonomous
exploration in large, complex worlds. Science Robotics,
2023. 1

[74] Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra
Malik, and Sergey Levine. Learning to poke by poking:

Experiential learning of intuitive physics. NeurIPS,
2016. 1

[75] Lerrel Pinto and Abhinav Gupta. Learning to push by
grasping: Using multiple tasks for effective learning.
In ICRA, 2017.

[76] Tim Schneider, Boris Belousov, Georgia Chalvatzaki,
Diego Romeres, Devesh K Jha, and Jan Peters. Active
exploration for robotic manipulation. In IROS, 2022.

[77] Neil Nie, Samir Yitzhak Gadre, Kiana Ehsani, and
Shuran Song. Structure from action: Learning inter-
actions for articulated object 3d structure discovery.
arXiv preprint arXiv:2207.08997, 2022. 1

[78] Cheng-Chun Hsu, Zhenyu Jiang, and Yuke Zhu. Ditto
in the house: Building articulation models of indoor
scenes through interactive perception. arXiv preprint
arXiv:2302.01295, 2023.

[79] Linghao Chen, Yunzhou Song, Hujun Bao, and Xi-
aowei Zhou. Perceiving unseen 3d objects by poking
the objects. In ICRA, 2023. 1

[80] R. Bajcsy. Active perception. Proceedings of the IEEE,
1988. 1

[81] Active perception vs. passive perception. In Proc. of
IEEE Workshop on Computer Vision, 1985. 1

[82] Andreas Bircher, Mina Kamel, Kostas Alexis, Helen
Oleynikova, and Roland Siegwart. Receding horizon"
next-best-view" planner for 3d exploration. In ICRA,
2016. 1

[83] Ana Batinovic, Antun Ivanovic, Tamara Petrovic, and
Stjepan Bogdan. A shadowcasting-based next-best-
view planner for autonomous 3d exploration. RA-L,
2022.

[84] Menaka Naazare, Francisco Garcia Rosas, and Dirk
Schulz. Online next-best-view planner for 3d-
exploration and inspection with a mobile manipulator
robot. RA-L, 2022. 1

[85] Shengyong Chen, Youfu F Li, Wanliang Wang, and
Jianwei Zhang. Active sensor planning for multiview
vision tasks. 2008. 1

[86] Peihao Chen, Dongyu Ji, Kunyang Lin, Weiwen
Hu, Wenbing Huang, Thomas Li, Mingkui Tan, and
Chuang Gan. Learning active camera for multi-object
navigation. NeurIPS, 2022. 1

[87] Mahsa Ghasemi, Erdem Bulgur, and Ufuk Topcu. Task-
oriented active perception and planning in environ-
ments with partially known semantics. In ICML, 2020.
1

[88] Yian Wang, Ruihai Wu, Kaichun Mo, Jiaqi Ke, Qing-
nan Fan, Leonidas Guibas, and Hao Dong. AdaAfford:
Learning to adapt manipulation affordance for 3d
articulated objects via few-shot interactions. In ECCV,
2022. 1

[89] Roberto Martín-Martín and Oliver Brock. Building
kinematic and dynamic models of articulated objects
with multi-modal interactive perception. In 2017 AAAI
Spring Symposium Series, 2017. 1

[90] Zhenyu Jiang, Cheng-Chun Hsu, and Yuke Zhu. Ditto:
Building digital twins of articulated objects from



interaction. In CVPR, 2022. 1
[91] Christopher Collander, William J Beksi, and Manfred

Huber. Learning the next best view for 3d point clouds
via topological features. In ICRA, 2021. 1

[92] Daryl Peralta, Joel Casimiro, Aldrin Michael Nilles,
Justine Aletta Aguilar, Rowel Atienza, and Rhandley
Cajote. Next-best view policy for 3d reconstruction.
In ECCV Workshops. Springer, 2020. 1

[93] Muzhi Han, Zeyu Zhang, Ziyuan Jiao, Xu Xie, Yixin
Zhu, Song-Chun Zhu, and Hangxin Liu. Reconstructing
interactive 3d scenes by panoptic mapping and cad
model alignments. In ICRA, 2021. 1

[94] Muzhi Han, Zeyu Zhang, Ziyuan Jiao, Xu Xie, Yixin
Zhu, Song-Chun Zhu, and Hangxin Liu. Scene recon-
struction with functional objects for robot autonomy.
IJCV, 2022. 1

[95] Zhirong Wu, Shuran Song, Aditya Khosla, Xiaoou
Tang, and Jianxiong Xiao. 3d shapenets for 2.5 d
object recognition and next-best-view prediction. arXiv
preprint arXiv:1406.5670, 2014. 1

[96] Yiheng Han, Irvin Haozhe Zhan, Wang Zhao, and
Yong-Jin Liu. A double branch next-best-view network
and novel robot system for active object reconstruction.
In ICRA, 2022.

[97] Björn Browatzki, Vadim Tikhanoff, Giorgio Metta,
Heinrich H Bülthoff, and Christian Wallraven. Active
in-hand object recognition on a humanoid robot. IEEE
Transactions on Robotics, 2014. 1

[98] Qihang Fang, Yingda Yin, Qingnan Fan, Fei Xia,
Siyan Dong, Sheng Wang, Jue Wang, Leonidas Guibas,
and Baoquan Chen. Towards accurate active camera
localization. In ECCV, 2022. 1

[99] Jun Lv, Yunhai Feng, Cheng Zhang, Shuang Zhao, Lin
Shao, and Cewu Lu. Sam-rl: Sensing-aware model-
based reinforcement learning via differentiable physics-
based simulation and rendering. RSS, 2023. 1

[100] Youssef Zaky, Gaurav Paruthi, Bryan Tripp, and James
Bergstra. Active perception and representation for
robotic manipulation. arXiv preprint arXiv:2003.06734,
2020. 1

[101] Quoc V Le, Ashutosh Saxena, and Andrew Y Ng. Ac-
tive perception: Interactive manipulation for improving
object detection. Standford University Journal, 2008.
1

[102] Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan
Lee, Devi Parikh, and Dhruv Batra. Embodied question
answering. In CVPR, 2018. 1

[103] Snehal Jauhri, Sophie Lueth, and Georgia Chalvatzaki.
Active-perceptive motion generation for mobile ma-
nipulation. arXiv preprint arXiv:2310.00433, 2023.
1

[104] Steven D Whitehead and Dana H Ballard. Active
perception and reinforcement learning. In Machine
Learning Proceedings 1990. 1990. 1

[105] John Schulman, Barret Zoph, Christina Kim, Jacob
Hilton, Jacob Menick, Jiayi Weng, Juan Felipe Ceron
Uribe, Liam Fedus, Luke Metz, Michael Pokorny, et al.

Chatgpt: Optimizing language models for dialogue.
OpenAI blog, 2022. 1

[106] R OpenAI. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[107] Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey
Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu,
Wenlong Huang, Yevgen Chebotar, Pierre Sermanet,
Daniel Duckworth, Sergey Levine, Vincent Vanhoucke,
Karol Hausman, Marc Toussaint, Klaus Greff, Andy
Zeng, Igor Mordatch, and Pete Florence. Palm-e:
An embodied multimodal language model. In arXiv
preprint arXiv:2303.03378, 2023. 1

[108] OpenAI. Gpt-4v(ision) system card.
https://cdn.openai.com/papers/GPTV System Card.pdf,
2023. 1, 4

[109] Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang,
Chung-Ching Lin, Zicheng Liu, and Lijuan Wang.
The dawn of lmms: Preliminary explorations with gpt-
4v(ision). arXiv preprint arXiv: 2309.17421, 2023. 1,
4

[110] Michael Ahn, Anthony Brohan, Noah Brown, Yev-
gen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol
Hausman, et al. Do as i can, not as i say: Ground-
ing language in robotic affordances. arXiv preprint
arXiv:2204.01691, 2022. 1

[111] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan,
Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner
monologue: Embodied reasoning through planning with
language models. arXiv preprint arXiv:2207.05608,
2022. 1

[112] Jianing Yang, Xuweiyi Chen, Shengyi Qian, Nikhil
Madaan, Madhavan Iyengar, David F Fouhey, and
Joyce Chai. Llm-grounder: Open-vocabulary 3d visual
grounding with large language model as an agent. arXiv
preprint arXiv:2309.12311, 2023. 1

[113] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu,
Karol Hausman, Brian Ichter, Pete Florence, and Andy
Zeng. Code as policies: Language model programs for
embodied control. In ICRA, 2023. 1

[114] Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu
Li, Jiajun Wu, and Li Fei-Fei. Voxposer: Composable
3d value maps for robotic manipulation with language
models. arXiv preprint arXiv:2307.05973, 2023. 5

[115] William Shen, Ge Yang, Alan Yu, Jansen Wong,
Leslie Pack Kaelbling, and Phillip Isola. Distilled
feature fields enable few-shot language-guided manip-
ulation. In CoRL, 2023. 1

[116] Yingdong Hu, Fanqi Lin, Tong Zhang, Li Yi, and Yang
Gao. Look before you leap: Unveiling the power of gpt-
4v in robotic vision-language planning. arXiv preprint
arXiv: 2311.17842, 2023. 1, 5, 6

[117] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li,
Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang,
Hang Su, Jun Zhu, et al. Grounding dino: Marrying



dino with grounded pre-training for open-set object
detection. arXiv preprint arXiv:2303.05499, 2023. 4

[118] Lei Ke, Mingqiao Ye, Martin Danelljan, Yifan Liu,
Yu-Wing Tai, Chi-Keung Tang, and Fisher Yu. Seg-
ment anything in high quality. arXiv preprint arXiv:
2306.01567, 2023. 4

[119] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo,
Piotr Dollár, and Ross Girshick. Segment anything.
arXiv:2304.02643, 2023. 4

[120] Alec Radford, Jong Wook Kim, Chris Hallacy,
A. Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language
supervision. ICML, 2021. 4

[121] Krishna Murthy Jatavallabhula, Alihusein Kuwajerwala,
Qiao Gu, Mohd Omama, Tao Chen, Shuang Li, Ganesh
Iyer, Soroush Saryazdi, Nikhil Keetha, Ayush Tewari,
et al. Conceptfusion: Open-set multimodal 3d mapping.
arXiv preprint arXiv:2302.07241, 2023. 4

[122] Shiyang Lu, Haonan Chang, Eric Pu Jing, Ab-
deslam Boularias, and Kostas Bekris. Ovir-3d: Open-
vocabulary 3d instance retrieval without training on 3d
data. In CoRL, 2023. 4

[123] Qiao Gu, Alihusein Kuwajerwala, Sacha Morin, Kr-
ishna Murthy Jatavallabhula, Bipasha Sen, Aditya Agar-
wal, Corban Rivera, William Paul, Kirsty Ellis, Rama
Chellappa, Chuang Gan, Celso Miguel de Melo, Joshua
B. Tenenbaum, Antonio Torralba, Florian Shkurti, and
Liam Paull. Conceptgraphs: Open-vocabulary 3d scene
graphs for perception and planning. arXiv preprint
arXiv: 2309.16650, 2023. 6


	Related Works
	Additional Details of Problem Statement
	Action-Conditioned 3D Scene Graph
	Interactive Exploration

	Additional Details of RoboEXP system
	RoboEXP System
	Other Design in Interactive Exploration
	Usage of ACSG

	Additional Details of Experiments
	Robot and Environment Setups
	Interactive Exploration and Scene Graph Building

	Video Timeline

