A Method reference

In this section, we list the methods considered in this work in two forms: a form with momentum and correction terms and a form with the
auxiliary iterates. The momentum and correction terms of an iteration are loosely defined as

+

Tpr = oy + ax(a) — o) +bulal —an).

momentum term

correction term

In the proximal-point and prox-grad setup, similar definitions are made with the 7 and :(:? terms. One of our main points is that the form
with the auxiliary iterates has the advantage of better revealing the parallel and collinear structure, although the form with momentum and
correction terms is more commonly presented in the accelerated methods literature. We separate the tables into existing methods and the
novel methods we present.

A.1 Existing Methods

Method name
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With auxiliary iterates
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Method name With momentum With auxiliary iterates
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Method name With momentum With auxiliary iterates
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A.2 Novel methods

Method name

With momentum

With auxiliary iterates
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Method name

With momentum

With auxiliary iterates
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B Omitted proofs of geometric observation and form of algorithm

In this section, we formally establish the basic geometric claims made in the main body.

First, we state parallel lemma (left) and Menelaus’s lemma (right), which are classical results in Euclidean
geometry:

C

Parallel lemma

C/

BC' || B'C" if and only if ?BB, = c/*‘ig' A’, B’,C’ is on line if and only if ﬁ . g - g/cé =1

B.1 Omitted proofs of observations

Proof of Observation|I] Figure[I] (left) depicts the plane of iteration of FGM. In the plane of iteration of
FGM,

= i ) leif — it et — ot
low =il O =1 Gl g ComBOa=D gy — 2l ||+ 2k — 2]l s — 2|
by definition of zj, 141, zx+1. Then the result comes from [parallel Temma] O

Proof of Observation|2| Figure|l|(middle) depicts the plane of iteration of OGM. By extending xﬁflxﬁ and
defining new point B that meets with §kzk+ , observation can also be shown by [parallel lemma O

Proof of Observation[3] Figure 2] (left) depicts the plane of iteration of SC-FGM. Apply [Menelaus’s Temma)
for Az xpz; and zpzppiz T, that
Iz —af ol e —afll Jaf —al _ VEE1 VE-1 G
lze =kl llzepr =gl =™ =2l Ve VE -1

=1.

O

Proof of Observation[d] Figure 2| (middle) depicts the plane of iteration of TMM. By extending xﬁxlﬁ_l
—

and defining new point () that meets with x;ﬁ_lxk, Observation [4|can be shown by lMenelaus’s lemmal for

AkaxZ' and zkzk+1x;'+. O

B.2 Parallel structure from momentum-based iteration

Lemma 1. An iteration of the form

ak—l

Tho1 = x;r + (ac;r — x;r_l) + bk+1(xz — k)

Q41
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Figure 5: Lemma|l|and Lemma

fork=0,1,... . K — 1, wherel < ag, 1 <apfork=1,2,..., K —1,and 1 < ag, can be equivalently
expressed as

T = @k*lx;ﬂk_l —+ <1 — sOkl) Zk
Pk Pk

b
Ok + Qg410k41 V()

Zk+1 = 2k 7

fork =0,1,..., K, where 0 = p_1, 0 < ¢y, %=t = 2= fork = 1,2,..., K, and px < oo. (If
¢ = 00, we define px—1/px =0.)

Proof. First, suppose z, is not a minimizer which implies V f (x1,) # 0 and neither z;_,, 2y, 2, are not the
same. From first iteration of algorithm with auxiliary iterates, we know x;l, Ty, 21 are collinear. Set A on

A E— R — _
the z;  xf that Ay, | zxz; . Let B on the z;f A that 2B | zxx;. Lastly, we set 41 := 2y, §ﬂxzaﬁk+1.
Then, the condition for parallel term style is satisfied. We will show that the formula above also holds.

Since :ck:c$ || zx B, parallel lemmalindicates that

|21 — 2] |B -z || k-1

o =2l ~ Tled =]l o= onn

Since Az || szﬂ,lparallel lemmgl indicates that

leens =]l _ [1B—aill _ onn
oo — || |[A—2f]  wrr1 —er
Then,
(A=l _an—1_ ora—en er
i — i ak+1 Ph+1 Pk~ Pk-1
and this relation holds if a1 = % = a’;}:i:l = wf—il. (This strong condition is for easy

Lyapunov analysis).
Lastly, by and previous condition,

_ sz+1 - x?”

41— B =
0 o = |

(Tht1 — A) = agprbry (3 — 1)
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since [|zx11 — Al = b1 |2 — x| and

2 — @i |

B — , =
F T e

() —ap) = ar(af — ),
which indicates
1
Zit1 = 2k — (ak + ak+1bk+1)zvf(73k)-

If 2, is a minimizer which implies V f(x) = Oand 211 — 25 = x;r — x, = 0, this is degenerate case. In
this case, proof is trivial. O

Lemma 2. An iteration of the form

Tp = ka_lxﬁ_l + (1 - wk_l) 2k
Pk Pk

Zht1 = 2 — %Vf(xk)

fork=0,1,..., K, where {gpk}kK:_l is a nonnegative increasing sequence, can be equivalently expressed
as
4, PR~ Pk Pr—1 L 4 Okl — Pk ( Ok ) n
Th1 = X, + : xp —x] )+ ———— | op — —— | (&) —
" r Pr+1 Pk — <Pk71( 4§ i) Pr+1 Pr — PE-1 (=i )

fork=0,1,..., K.

. S D < P
Proof. Suppose j, is not a minimizer which implies V f () # 0. Set A on the x}}_,z; that Azy41 || zex) .

¥ oA Qi F U Band Arr < Il Bar o
Let B onthe x_ 2} NZpZp11. Since xpx) || 2B and Axpi1 || B2y,

A—azf=B-a)—(B—A)=(B-a]) - 2 (B-a])

Pr+1
Pr+1 — Pk + Pr+1 — Pk Pk—1 + +
Pk+1 ( ) Pk+1 Pk — @k—l( k k)
In addition, since z;x} || 2, B and Azj11 || Bzt1,
k41 — Pk k1 — Pk
gy — A= P G By = PR (e — 2) — (B - )
Pk+1 Pr+1
_ Qky1 — Pk n Ok n )
= | ¢p(x] —ap) — ——— () — =
Prt1 <¢ (i ) Pk —sakfl( F )
_ P41 Pk (¢k_ Pk ) (aF — op).
Phk+1 Pr — Pk—1

If z), is a minimizer which implies V f(z) = Oand zx+1 — 2k = m$ =z, = 0, this is degenerate case. In
this case, proof is trivial. O

By Lemmas [T|and [2] there is a correspondence between the two algorithm forms.
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Figure 6: Lemma3|and Lemma E|

B.3 Collinear structure from momentum-based iteration

Lemma 3. An iteration of the form

Trr = oy + an(@) —a_y) +bp(a) — ),
where 0 < ay and 0 < by, fork =0,1,.... can be equivalently expressed as

T = (1 — (Pk)m:_l + Yr2k
Ak Pk ++ Ak Pk
Zp1=(1—-—"— 2, T+ ———— 2
- ( (1- @k)@kﬂ) b (1 — or)ort1

fork=0,1,..., where pp1 = (ak—l—bk)-ﬁ—&- fﬁi’; -ﬁ,providedthatl > >0fork=0,1,....

Proof. Suppose x, is not a minimizer which implies V f () # 0 and neither x:_l, T, 2§ are not the same.
From first iteration of algorithm with auxiliary iterates, we know x;_l, Tk, 21 are collinear. We inductively

+ + + ++ + P
set 2, and we set Q := x| 2, Nz} Tpqq and 24 = 2] Ty N2 " 25 Set Aonthe x|z that Axy
— — —_—

is parallel to xkx;. Set R := z:_lzk N Azjy1. Set P on the xﬁ_lzk that Pz is parallel to xko:;;

By |parallel lemmal

o —onll _ ot —afyl 3
[A— R [A=af Il 1+ak
and N )
lef —all e a1

zksr = Rl oo — Al +[[A =R 1+ap+b
Then, we have

lon =@l llef-wd 1
IR—zill R =zl — o) —axl  ax+be
and
ok — 2l ol llww =2y [R—anll  loe —aall JA=afll ax+by
e QI IR=zxll llow QI [R—axll  af -2 a
Also implies
IR — il _ lowes —afl _ orrn
[P=Rll  llzrt1 —zpsall 1= @41
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Applying |Menelaus’s lemmal to AQgz; and zkzk_s_le'Jr,
s =t llst =l - QI _
21 = QU Mt ™ =2l N2k — @l
. _ .t _ ++_ _ .
Uing 52— Yot Bl P revions o, ve g
1z APk L
k+1 = (ak +bi) - + . :
Furthermore, parallel lemma and “Z’“_ﬁ"'u = 1=%& implies
szka71|\ Pk
e =0 ek~ 1
IR — x| HA—x;rH ag
and .
—Pk+1
1P —R[ _ U=y
_ T l-pr 1—@rt1 ’
e =PIl on ar( Ereeai 1)
Therefore, we have
ot —znall NP —all @ Pk
lzeer =zl Mo = Pl 252 — 2 (1= o) onsn — ans

If z;, is a minimizer which implies V f(xx) = Oand 2341 = 2z = :cZJr, this is degenerate case. In this case,
proof is trivial. O

Lemma 4. An iteration of the form
zr = (1= or)a;_y + orzi
zipr = (1= p)a ™ + drz,
where 0 < i and 0 < ¢y, for k = 0,1, ... can be equivalently expressed as

r1((k = D(L — ¢r)or — @) (o

(1 - @k)()ok+1¢k (.Z‘+ + F xk:)

-, )+
o k h—1) o

Te4+1 =

fork=0,1,....

Proof. Suppose xj, is not a minimizer which implies V f (z)) # 0. Set A on the xz_lx: that Azgyq || xkx;.
— - s N
Set P on the a::_lzk. that Pzj41 || xkx;. Set N := z:A N gzkﬂ. Lastly, set R := :cz_lzk N Az

By [parallel lemmal we have

1P — il _ 28" =zl _ %
ll2e — Pl 241 — 2 1 — ¢
and N
[R—zell Mz =zl ki
[P =Rl llzktr — 2ol 1= @r
_ ot
Als ”T;Zkf;;ﬁu = 72 and previous formula implies
s — 234 _ Pk
1P =kl (Ll — k)
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and

lox— il g
| R — ol (1= or)Pr+10%
Furthermore, we get
A—af | R — x| (1 — or)orr10k
A—x*znika:*—* N | + ot — 2t ).
k Hx; _ 33;,1”( k ktfl) ||m]€ _ .T;71||( k k*l) Ok ( k kfl)
By [arallel Temma) we have
o " =@l le T -zl 1
lzet1 = Pl Nz — 2l 1 — %
and N
[N — P _ [P — a4l _ et (1— or)or
ot =l len — a2y | P
: lof —2all _ 1
Using =1 = =
z - P
Prn =Pl - gn)
zg — x|

and previous formula implies

l2et1 = NI _ llzker =PI = IN =P _ (s =1)(1 — ¢x)or — S%
o — @l i — | Pk

Finally, we get

lzk+1 = Nl llze+1 — Al 4 r+1((k = 1)1 — dr)or — dk) , 4+
Tpy1 — A= (x] —xx) = (z] — xk).
Iz — zill l2ne = NJ ¥ Pk F

If 21, is a minimizer which implies V f(z),) = Oand 241 = 21, = 2, T, this is degenerate case. In this case,
proof is trivial. O

By Lemmas [3|and 4] there is a correspondence between the two algorithm forms.

C OGM-G analysis

Using Lemmam we can write OGM-G [47] as
0% 0%
T = ’;IlmzA + (1 — ’;Il) 2k
k k
O

Zk4+1 = 2k — fvf(xk)v

where zp = xg and 21 = z9 — %—lef(xo) fork=1,2,... K.
Theorem 5. Consider (P) with g = 0. OGM-G’s x ic exhibits the rate
4L

IV @) < 5 (F(a0) = £) € e paTa0) = 1)
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Proof. Fork =1,2,..., K, define
U = g (GE IV AR + IV A@OIR + Fo) = Fan) = (V). =) )

L
Tz (zk —af_y, 2 — o)
k

and 2 /1
Uy = % <2L||Vf(xK)|2 + f(zo) — f(xK)> :

We can show that {Uy}+_, is nonincreasing. Using 5|V f(zx)|? < f(zx) — f(zk) < flak) — fo
which follows from L-smoothness, we conclude with the rate

TIV @) = Uk < Uo < 2 (7o) ~ )
0

and the bound 6, > % [47, Theorem 6.1]. Now, we complete the proof by showing that {Uj }5_, is

nonincreasing. As we already showed U; > Uy > --- > Uk in Section@, all that remains is to show
Uo Z Uli
Uy — U
1 2 1 2 11 1 2 1
- i - = _77v 2 _ - = 7v 2
o)+ )+ (2 - ) fon) = oapI V50l - (G - g2 ) IVl
1 L
+ @ (Vf(z1),21 —xd) — o (z1 —af, 21 —ak)

=~ (@) = flow) = (V(@ryor = afy + IV H@)IP + G100l
- (ol } 923 ) (f (@) = ) = (V@) 20 =) + 57 IV F o)l + ;anmﬁ)
1 1\ 1 1 2 L
+ (- ) 2ol = (2 = ) (VS odan = o) = (o =20 = o)

1 1 1 1 2 L
> (72— ) IV - (G~ g3 ) (T aohzo = k) = g or = 21 =)

Oo+1 1 9 1 L +
= Wzllvf(xo)\\ - 9%790 <Vf($0)>$0 - x;r<> - 9711 <Zl —Tps”1 T $}>
=0
where the inequality follows from the cocoercivity inequalities. U

D Several preliminary inequalities
Lemma 5 ([60, 2.1.11D)]). If f: R™ — R is convex and L-smooth, then
1
F@) = f@) + (Vf(@),y =) + 57 V(@) = VIWI* <0 Va,y e R,

f) < f@)+ (Vf@hy -2+ Sla—yl? Ve R
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Lemma 6. If g: R™ — RU {oo} is p-strongly convex, then for all u € 0g(x),
9@) + wy—a)+ Elr—ylP <gly)  VayeR".
Lemma 7 ([11, lemma 2.2]). Consider (P) in the prox-grad setup. Then for some u € dg(z®),

ViF(z)=Vf(z)+u Vo € R™.

Proof. Optimality condition for strongly convex function implies that there exist u € 9g(x®) such that
Vf(x)+u+ L(z®—2)=0. O

Lemma 8 ([43] (2.8)]). Consider (P) in the prox-grad setup. Then for some v € OF (z%),
ol <2|[ViF@)||  veern

Proof. By Lemma VLF(x) = Vf(z) + u for some u € dg(x?). And there exist v € F (z®) such that
v =V f(2?®) + u. Thus we have

[oll <V F(@®) = V@) + [V f(x)+ull (1)
< |L(z — 2®) | + [|[VLF(2)]| 2)
—9 H@LF@)H . 3)

follows from triangle inequality and (2) follows from L-smootheness of f, and (3) follows from the
definition of V F'(z). O

Lemma 9 ([59] Theorem 1]). Consider (P) in the prox-grad setup. Then

o er@| < P@) - Pe)  veer

Proof. By Lemmaf] for some u € dg(2®), we have

F(2®) < f(x) + <Vf(:r),ac69 - ac> + g ||x@ - :v||2 +g(z®) )
L
Sf(x)+<L(x—x@)—u,x@—a:>+§Hx@—xHQ—i—g(x@) )
= f(2) + 9(2®) + (u,z — 2®) - g |2® —
<F(gc)—EHQU@—JCHQZF(JE)—L ‘@LF(JU)HQ 6)
- 2 2L ’
(Ell} follows from L-smootheness of f, follows from the definition of V L F(x), and (EI) follows from
convexity of g. O

Lemma 10 ([11} lemma 2.3]). Consider (P) in the prox-grad setup. Then

o [9er)|" (- 2. 90Pw)) < F@) - F4®) Vryer
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Proof. By L-smootheness of f, we have

L 2
F(y®) < f) + (VFW)v® —v) + 5 [v® =yl + 9.
Using convexity of f and g and Lemma for some u € dg(y?), we have
fW)+(Vfy),z—y) < f(z)
9(y®) + (u,z —y®) < g(@).
Summing above three inequality, we obtain the lemma. O

E Onmitted proofs of Section 2]

We present (G-FISTA-G) for the prox-grad setup:

T = Sﬁk+1I2971 + <1 — wk“) Zk

Pk Pk
TPk — Th+1Pk+1 &
Zk+1 = 2k — 17 Vi F(zx)
fork =0,1,..., K, where zg = xg, L is smoothness constant of f, and the nonnegative sequence {@k}kK:JBl

and the nondecreasing nonnegative sequence {Tk}fzo satisfy o1 =0, o = 7k = 1, and

Tk+1

TPk — Tht1Pk+1 = Pht1(Th1 — Tlc) +1, (Thr — Tk+190k+1)(7k+1 - Tk) < N

fork=0,1,..., K - 1.
Theorem 6. Consider (P). G-FISTA-G’s x i exhibits the rate

H@LF(:CK)H2 < 2L7y (F(zo) — Fy).

Proof. Fork =0,1,..., K, define
1§~ 2 -
U, = 7 <2L HVLF(xk)H + F(x,ie) — F(x??) — <VLF(xk)7xk — x§_1>>
L
+ — <zk — x?ﬁl,zk — x%) .
Pk

(Note that zx = x.) By plugging in the definitions and performing direct calculations, we get

- 2 1 (1~ 2
Uk ‘VLF(zk)" and  Up=r1o <2L HVLF(IQ)H +F(x39)F(z;‘§)>.

_ 1 ‘
- 2L
We can show that {Uk}kK:() is nonincreasing. Using Lemma@, we conclude the rate with

% H@LF(”J’“)HQ = Uk < Uy <79 (F(w0) — F(2})) <710 (F(xo) — F).
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Now we complete the proof by showing that {Uj } & is nonincreasing. For k = 0,1,..., K — 1, we have

. 1 1= 2
0> Tht1 (F(xieﬂ) — F(zy) - <VLF($k+1)7$k+1 - $§> 57 ‘VLF(karl)H )

+ (Thg1 — 1) (F(xf) ~ F(z®) - <@LF(:E,€), Ty — xi';> + % ‘@LF(%)H2>

=i (5 [Fer @[+ FeEa) - Fe) - (FuF(aren) on - af) )
. (;L H@LF(Q;,C)HQ +F@) — Fa) — (FoF (), o - x§1>>

2

b

~ 1 ~
— <VLF(.Z‘]€),T]€+1LL'Z® — Tkl']?_l — (Tk+1 — Tk) :L‘?é> — TkJrli HVLF(xk>‘

=T

where the inequality follows from the Lemma [T0] Finally, we analyze T" with the following geometric
argument. Let ¢ € R"™ be the projection of x% onto the plane of iteration. Then,

Zk+1

Figure 7: Plane of iteration of G-FISTA-G

1o /2% 3 Tht1
T = <kak o (Th1 — i)ty +Tk$?711‘? 2+ Tk g>
(ii) 3 — 2 > 2\ Thtl &
ii <mkxk R (Tk-‘rl — Tk) (tzk+1 — ZkZg+1 — TRk + TRy, ) + Tk ($?71$k + xk;l‘k) - T—i_kak >
(iii) 3 — E
= <$k33k (o1 — To)tze1 — (Tog1 — 7o) (ThPl — Th1 941 — 1)

LTIy,
3 Tk+1 — Pk —
+ TRTRx), — 2+ xkx,? — (Thw1 — Tk) Tg2h + T (SD - 1) J;kzk>
k+1

— TPk — Tk+1Pk+1 —>
<wkxk (Th1 — Te) t2pgr + T2k

(i)
>

Pr+1

v 1 = 7 — —
=3 <xfzk+1 - Wk,tZk+1> +
k+1

k+1
vy 1

P
<t2k+1 — tzg, $k2k>

1
= orn (i1 — 2f 2k — 2% ) — o {2k — 2P|, 2 — 2%)
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where (i) follows from the definition of ¢ and the fact that we can replace m% with ¢, the projection of x i
onto the glane of iteration, without affecting the inner products, (ii) from vector addition, (iii) from the fact

that z,z,” and 23z, are parallel and their lengths satisfy (7,¢r — Tht19k+1)TkT), = ZK2ky1 and x? 1Tk

H —>
and 721, xyzi; are parallel and their lengths satisfy ( “’il — 1) T2k = xf 1%k, (iv) from vector addition and

Tk+1

5 (ThPr — Tkt 1Pk+1) (Th1 — k) > 0, @)

s ) (e —
(v) from distributing the product and substituting r,z;” = (Thok — Tkt1Pk+1 — 1) Ty Zhyl — T2k ) =

-1 —\ . -1 —
(0k+1(Tht1 — Tk)) (ac?z;.ﬂ_l - :ckzk) into the first term and xkx? = (TkPk — Th+t1Pk+1)  2kZk+1 =

_ s —\ . . .
(Tkk — Tkt1Pk+1) ! (tzkH — tzk) into the second term, and (vi) from cancelling out the cross terms,
—_—

using cp,;l:r?_lzk = gogilxkzk, and by replacing ¢ with :c?é in the inner products. In (v), we also used
TPk — Tht1Pk+1 = Ph41 (Thr1 — 7)) + 1. ®)

Thus we conclude Uy 41 < Uy fork=0,1,2,..., K — 1. O

Proo@of Theorem[l] The conclusion of Theorem ] follows from plugging FISTA-G’s ¢, and 7, into Theo-

rem|6f If 7, = —=£*=1;. we can check condition (8), condition (7), and

Pk
Pk — PEk+1
Then using Lemma 2} we get the iteration of the form of FISTA-G. Furthermore, by Lemma [§] ||v| <
2 H@LF(J:)H for some v € F (z®). Thus we have

OkTh — Tht1Pk+1 = Pht1(The1 — k) + 1=

min [|0F(2)| < 4 H@LF(;EK)HQ < 2L b - F).
KA = T (K +2)?
Finally, it remains to show 7y < 0 +2)2 in the setup of Theoreml
First, TPk — Tk+1Pk+1 = Pk+1 (Tk+1 — Tk) + 1 and (Tksﬁk — Tk+180k+1)(7_k+1 — Tk) — Tk% =0 implies
1 T
Pk+1 = ( ias - 1) .
Tl — Tk \2(Tht1 — Tk)
By substitution and direct calculation, we get
k41 = af + (ax — ar-1)ax )
\/ai —apag—1 +a;_,
where 75, = axl,k
— Q- 1
Gkl _ gy (ar — ar—1) e Il _ g
k V(ak —ar1)? + agag “* \/1 TR +—£k s
Ak —1
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Letbk:a(’;—:l.Then,bo=1+%byTK:<pK:1,and

1 1 1 1
bk::1+ = — 1+ )+(bk171)2

1+ 1 . (b —1)2 (bp—1—1
[ )

Let ¢, = bk%l Then

cz = ci_l +cp—1+1
where ¢y = V3. Also, by definition,

1 1 1
ak+1bkbk_1...b0(l+> (1+ )<1+>
Ck Ck—1 Co

2 _
Usingci =c2_ | +cop1+1 <= i’;—lflJr

k—1
<Ck+1)<ck1+l> (co+1)_6i+1—1ci—l 2 -1
Ck Ck_1 Co N cﬁ ci_l G
(k1 +1 cr+1 c1+1 Ck+1 — 1 cr, — 1 c1—1
(=) (55) - () (=) () - (%)
And after reduction of fraction, we get
ck+1 +1 Cry1— 1 cp — 1 c—1
(o) (=) () - () -
= G —1=(fg-1) (c:i1> (c,:klil) <COCEI>.

> ¢ > cp—2 + Lsince ¢ = (cx—1 + 3)* + 3 implies ¢, > cx—1 + 3. Therefore,

we have

Ck—1’

Crp—2+1 Ck—2
Ck = crp—1

(ck—i—l) (ck1+1> (CO+1) > (e + D(ck—1+1) (a1 —1)(00—1)( 5

c —1).
Ck Cp_1 co CLClh—1 ciep(cd — 1) k+1 )

Furthermore, we can show ¢, > 543 by induction. (co = v3 > 2 andif ¢, > 552 ¢y > ¢ + 5 > 52

1

2

Finally

(Cl — 1)(60 — 1)
cico(cd — 1)

Fork=K —1, i = 79 and we get wanted result.

L

>
Bht1 = 33

(i1 —1) 2 oo (kb +3)%

F Omitted proofs of Section[3]

We present (G-FGM-G) for the smooth convex setup
T = Pret 33;;1 + (1 - <pk+1> 2k
Pk Pk

TPk — Tk+1Pk+1
Vv
7 f(zr)

Zk+1 = 2k —
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fork =0,1,..., K where zg = xg, L is smootheness constant of f, and the nonnegative sequence {(pk}f:t)l

and the nondecreasing nonnegative sequence {Tk}fzo satisfy o411 =0, px = 7k = 1, and
Tkl = Tht1Ph+1 = Pha1(Torr — k) + 1, (Thok — Tor1@h41) (Tha1 — 7o) < Thgr-
fork=0,1,..., K — 1.

Note that G-FISTA-G had the parameter requirement < T’“; L while G-FGM-G (and later G-Giiler G) has
< Tk+1. The parameter requirements are otherwise identical.

Theorem 7. Consider (P) with g = 0. G-FGM-G’s x i exhibits the rate

IV f@)l* < 2L7o(f(20) — fu).

Proof. Fork =0,1,..., K, define

1 1
=1 (S IVl + 7 VAN + Fox) = o) (VS ax)on = o))
+£<zk—w+ zk—x+>.
o k-1 K
(Note that zx = xx.) By plugging in the definitions and performing direct calculations, we get
1 2 1 2 1 2
Uk = = [V (@]l and U =70 ( o7 IV (@)l + 5= [V (@) I + f(zo) = flzk) | -
L 2L 2L
We can show that {U} }/—, is nonincreasing. Using 57 ||V f(zk)||*> < f(zk) — f(zk) < flzk) — f(zs)

and ig}Vf(xo)W < f(wo) — f(xd) < f(x0) — fx, which follows from L-smoothness, we conclude the
rate wit

LIV i) = U < Uo < 270 (o) ~ ).
Now we complete the proof by showing that {U; }5_, is nonincreasing. For k = 0,1, ... K — 1, we have
02 s (fonsn) = Fo) = (T arsn)onsn =) + 5 96 ons) = Vo)l
s =) (£ = Flow) = (TF @, = o) + 5 VS n) = V)|
= s (VI + SV )|+ o) = Fo1) = (S ) — o)

~ e SEIV @RI + IV AP + 1) ~ Sare) ~ (TH o~ o) )

— <Vf(wk), T;Hlx;' — Tkl‘zll — (Thx1 — Tx) x}'{>,

=T

where the inequality follows from the cocoercivity inequalities. Finally, we analyze T" with the following
geometric argument. Let ¢ € R™ be the projection of z}; onto the plane of iteration. Then,
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Figure 8: Plane of iteration of G-FGM-G

1 6/ —= — _
ZT = <:1:kx2', (Th+1 — Tk)tx'k" + Tkxg_1x2'>

o — — _

@ e ——

= <xkx$, (Tht1 — Tk) (tzk_H — ZpZk+l — Tk2k + :cka' + T xﬁ_lxk + xksc;:

(iii) —

= <5Ck$$7 (Tht1 — Te)t2e1 — (Thr1 — ) (TP — Thr 191 — D)zpxy

—
— Pk —
+ Tkxkx; — (Tht1 — T) T2k + Tk ( — 1) xkzk>
Pr+1
@) u —— | TPk ~ Th1Pktl —
> <$k$z, (Tht1 — T) 241 + T2
Pk+1
) 1 — —_— — —
= <m22k+1 - wkzk7t3k+1> + <t2k+1 — 12k, Tk 2k
PE+1 Pr+1
w) 1

1
= o (Zht1 — @35 21 — $;r<> " on (2 —x_y 20 — x}}} ,

where (i) follows from the definition of ¢ and the fact that we can replace x; with ¢, the projection of x i
onto the glane of iteration, without affecting the inner products, (ii) from vector addition, (iii) from the fact

that xjz; and z 211 are parallel and their lengths satisfy (Tx¢k — Th19k+1)TkT) = Zk2hti and 2, T

—_
and xzf, are parallel and their lengths satisfy ( Ok _ 1) TRzl = 37:719%’ (iv) from vector addition and

Pk+1
Tht1 — (ThPk — Tht1Pk+1) (Th1 — Tk) > 0, )
e oo T —1( ¥ N
(v) from distributing the product and substituting xyx, = (Teok — Thr19k+1 — 1) (xk Zk+1 — xkzk) =

—1 —\ . -1 —3
(Pr+1(Th+1 — 7)) (x',jzkH — xkzk> into the first term and xkaﬁ = (ThPrk — Tht1Pk+1)  Zk2ktl =

1 . . .
(Tkk — Th1Pk+1) ! (tzkH — tzk) into the second term, and (vi) from cancelling out the cross terms,

using o7 'z =@ L T2, and b lacing ¢t with 27 in the i ducts.] 1 d
g ¥y Ty 12k = P11 TkZk, and by replacing ¢ with - in the inner produc s.In (v), we also use

ThPk — Tht1Pk+1 = Ph+1 (Tey1 — 7)) + L. (10)
Thus we conclude Uy < Uy fork =0,1,..., K — 1. O
Theorem 8. Consider (P) with g = 0. FGM-G'’s x i exhibits the rate
2 66L
IVf(zr)|™ < K122 (f(zo) = fi)-
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Proof. This follows from plugging FGM-G’s ¢, and (W«Q—ﬁ%k)z into Theorem s o and 7. We can check
condition (9), condition (TI0), and
Pk
Pk — Pry1
Then using Lemma[2] we get the iteration of the form of FGM-G O

OkTh — Th1Pk+1 = Pht1(Thy1 — Tk) +1 =

We present (G-Giiler-G) for the proximal-point setup:

£y, = wkﬂffzfl i (1 _ <Pk+1) o

Pk Pk
2kt = 2k — (TkPk — Tkt 19k41) AV1/29(2k)
for k =0,1,..., K where 2y = z( and the nonnegative sequence {@k}szng and the nondecreasing nonnega-
tive sequence {Tk}kK:O satisfy 11 =0, o = 7 = 1, and
TPk = Tht1Pk+1 = Prt1(Thr1 — k) + 1, (Tror — Thr19k+1) (Th1 — ) < Tht1-
fork=0,1,..., K — 1.
Theorem 9. Consdier (P) with f = 0. G-Giiler-G’s i exhibits the rate

~ T
V1 /a9l < 2 (9(0) = 94)
Proof. Fork =0,1,..., K, define

= 2 o o = o 1 o o
Uy =711 <)\ HVUA!J(%)H +g(xy) — g(2%) — Vipag(ze) - (v — xk—l))+m (2 — a1, 20 — 2% ) -

(Note that zx = x.) By plugging in the definitions and performing direct calculations, we get

Uk = A H@u,\g(xK)Hz and Uy =19 ()\ ‘Wl/xg(ﬂ?o)HZ + g(z5) — g(x%)) :

. 2
We can show that {Uy }X_ is nonincreasing. Using A Hvl/,\g(mo) H < g(zo) — g(xg), we conclude the rate
with )
Mg = Uk < Uo <70 (9(20) — 9(25)) < 70 (9(20) — g2).

Now we complete the proof by showing that {Uk}kK:() is nonincreasing. For k = 0,1,..., K — 1, we have
02 rias (9(aiin) = 966D — (Tupglonsa) s = a2) + 3| Fapaatansn)] )
+ = m) (sa) - glei0) = (Tupgton). o - aic) + 3| Fyaata)]|)
= (M[Fupatonn)| + ataiin) = o(ei) = Fuppotaiin) - (one - ) )
= (A [Fupnaten)| +ateh) - o050~ Fupaate) - (o - i)

—(Vipr9@R) mena} = meaf s — (e — ) o),

=T
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Figure 9: Plane of iteration of G-Giiler-G

where the inequality follows from the convexity inequalities. Finally, we analyze T' with the following
geometric argument. Let ¢ € R™ be the projection of x4 onto the plane of iteration. Then

1o /=2 =3
ZT = <:z:k:17k, (Th+1 — Tk)@ + Tkx}i_lzk>
(ii) T —  — 3 2
= <a:kxk, (Th+1 — Tk) (tzk+1 — 2pZk+l — Tk + :zzkxk) + 7 (xz_lmk + xk:vk)>

(i) /—2 —
4 <.’L‘]g$ka (Thtr1 — Tk)tzka1 — (Tha1 — To) (TPl — Thtr1Pht1 — 1)kak3

—3 — k —
+ gy, — (Th41 — T) Thzk + Tk < Pr__ 1) xkzk>

Pk+1
(iv) — TPk — Tk+1Pk+1 ——
> <«Tk$k7 (k1 — Th) 241 + T2k
PE+1
m 1 5= 5 — — =
= <$22k+1 — Tk 2k, tzk+1> + — <t2k+1 - t2k7$k2k>
Pk+1 Pr+1
wp 1 1

[e] o (e} o
Zhal — Loy Zhdl — Xge) — — (2K — X1 1,2k — T
Oht1 < +1 ks ~k+1 K> Ok < k—1> K>a

where (i) follows from the definition of ¢ and the fact that we can replace x% with ¢, the projection of x x
onto the plane of iteration, without affecting the inner products, (ii) from vector addition, (iii) from the fact

that xz; and z, 2,11 are parallel and their lengths satisfy (T,pr — Tht19r+1)ThT), = Zk2k+1 and z5_ Tk

and xzf, are parallel and their lengths satisfy (ij»l - 1) T2l = Tp_, Tk, (iv) from vector addition and

Tl — (TePk — Thr19k+1) (Tht1 — k) = 0, 11
e e T 1 —
(v) from distributing the product and substituting x5z}, = (Tek — Th+19k+1 — 1) ! (szkH — xkzk) =
-1 (o, _ ==\ — -1 —
(0k+1(Tht1 — Tk)) (xZZk+1 — mkzk) into the first term and 2y = (ThPr — Thp1Pk+1)  ZkZktl =
1 T\ . . .
(Tkk — Tht1Pk+1) (tzkH — tzk> into the second term, and (vi) from cancelling out the cross terms,
using cp,jlxz_lzk = w,;ilxkzk, and by replacing ¢ with x} in the inner products.

TPk — Tht1Pht+1 = Prt1 (Th41 — 7)) + 1. (12)

Thus we conclude Uy 1 < Uy fork =0,1,..., K — 1. O
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Proof of Theorem[2] The conclusion of Theorem [2]follows from plugging Giiler-G’s ¢y, and 7, into Theorem
El If 7, = 0, % and ¢}, = 0}, we can check conditions (1) and (T2). Then using Lemma we get the
iteration of the form of Giiler-G. Combining the g(x%,) — g < ||zo — 24||? /MK + 2)? rate of Giiler’s second

method [37, Theorem 6.1] with rate of Giiler-G, we get the rate of Giiler+Giiler-G:

. 2 4 i 4
HVU/\Q(@K)H < m(g(%{) —gx) < (K12 lzo — 2|

O
G Omitted proofs of Section {4
Proof of Theorem[3] In the setup of Theorem[3] define
Uk = g(af 1) = 9. = Sllafy — 2l + pllox — 2.
fork =0,1,.... By plugging in the definitions and performing direct calculations, we get
Uo = 9(wo) = g. + Sllwo — .|
We can show that Uy 1 < (1 — %) ’ Uy for k = —1,0,. ... Using strong convexity, we conclude the rate

with
pllze — 2l|* < Up < Uy < 2(g(z0) — g4)-

2
Now we complete the proof by showing that U4 < (1 — i) Ug fork=-1,0,....Fork=0,1,...,

Va
we have
1 2
Upi1 — (1 — ) Uy
! NG
1 1)? Iz
= (ste) =92 = 5l — ) = (1= 7= ) (o6oio0) = = §lof — )
1 2
tullzg — 2l — g (1 - ﬂ) ek —

For calculating the last term of difference, we use (¢ — 1)xx, — (1 — \/q)?z5_; = 2(,/q — 1)z. Since

pllzesr—z.? = H\}EI <$k - (; + >\> 61/,\9($k)> + <1 - \2) 2k — T

1 . 2 1\?2
o — (um) V1 glan) — +u(1—\/a) ek —

+2 (1 - \2) % <:vk - <; +A) Viag(ar) — .y, 2 x*>,

2

we get

2
1
Wl — 2] — g (1 - ) ek —
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1 B 2
=£ Tp — ( + >\> Viag(wr) — o
q I
1 -
+L <x - (M + A) Fyng@n) — 2o (@ — Dan — 22) — (1 — V@) (@1 x*>>
1 ~ 1 -
-2 <xk _ (M ; A) 1 g(n) — 2 (M ; A) 1 ag(wn) + aek —22) — (1— VD251 — x*>>
1 -
-2 <xk - (u ; A) Vaya0(n) — 20 a(a5 — ) — (1 — DR (5_y — w*>>
(= st = st =o. ) (1= 22) (s~ 2Fuaton) = vt =)
= Ty — — Tk) — Ty, Tp, — Ty ) — - — Ty — — Tk) — Ty, Tp_q — T
Nkul/Agk * L * 12 a kul//\gk xr L1 *
1\2 } 1\?2 .
= <1 - <1 - \/§> ) <M$k - Vl/Ag(xk) — HTy, T — m*> + <1 - \/§> </~L:Ek - Vl//\g(fk) — Py, Ty — xk—l> .
. . 1 2
Therefore, we can write difference of Uy, and (1 — ﬁ) Uy, as
1 2
Uk+1 — (1 - \/a) Uk
P 1)° %
= (9(a?) = g. = Sllag —all?) - (1 - ﬂ) (9(22) = 90 = Sllagy = 2 l?)
1)’ = 1\? =
+ (1 - (1 - \/§> > <,U“Tk = Viag(@r) — pae, zy — x*> + (1 - \/c’z> <ufck = Viiag(@r) — pae, xy — fck_1>
o 1)\? o By o By o
= olef) =)= (1= 2= ) (stot) =0 = Sllais =l + Gl = )

- (1 - (1- 2)) B — a7 + (1 - (1- %)) (122~ Taypg(o) — s — )

1\, ., = o o
+ (1 — \/Cj) <,U~Tk - Vl/)\g(xk) = P, Tpp — wk—1>
1

~ a9 - (1- ﬁ)z (o) —a) + (1- ;a) B afy —af,f s+ 0t~ 22.)

v (1 -(1- ;a)) (£ (@ —2) — Fipg(en).ag — o)

~ (a9 - (1- \}a) (otai ) = 90) + (1- ;a) (B (aos — ) + gl 2y — )

v (1 -(1- %)) (B a3 2 - Vipnooe) o — o)
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1 : o o = o o I o o
= (1= 7) (otai) - 966D ~ (Fupglon).ais o) - llai s - a2l

_ <1 -(1- ;g)) (3 = 960 = (Fayng(an).a. — o) = Lo, —a )

where the inequality follows from strong convexity inequalities.

2 2
The case Uy < (1 — %) Uy follows from the same argument with z° ; = x¢. Thus U1 < (1 — %) Uy,
fork=-1,0,.... O

Following proof is a close adaptation of the convergence analysis of ITEM [19, Theorem 3].

Proof of Theorem[d| In the setup of Theorem 4} define

o o 1
U = A (9602 ) = 9. = ks =) 4 (At st 3 ) =P

for k = 0,1,.... By plugging in the definitions and performing direct calculations, we get

1
U() = </L+ )\) ||£E0 — IE*H2.

We can show that {U},}72 , is nonincreasing. Using strong convexity, we conclude the rate with

1 1
(Aku fue A) o — a2 < U < Uy = (u ; ) 20 — .

A
And by
2
4y~ LD A +20+ VO + A )+ gAe) I+ QAea+2y/adi, 4,
(1-4q) B (1-4q)? 1-va)?

we get theorem through direct calculation.
Now we complete the proof by showing that {Uj }2 , is nonincreasing. For k = 1,2, ..., we have

p P y g k=0 g
Uk+1 — Uk

A . 1 2

= 41 — qKQP(Ak+17Ak) ‘(1 — @)A1 Ving(ze) — T )\NAk(xz_l —Ty) + Tt )\#Kg,(Zk —xy)
1
- —— K P(A A - 2
)\(1 _ q) 1 ( k+1, k)HZk I‘*H

o o = o o It o o
+ A (9@3) = g(@io) + (Vippglan).aiy —af) + Sllag, — o3)?)

+ (Ary1 — Ag) (9(1’2) — g« + <@1/A9($k)7$* - J/‘Z> +£
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where inequality follows from the strong convexity inequality,

2

Ky = 4
(1+¢)?2+(1—q)2qAr
K, = 1+ + (-0 A
(1-q)2(1 +q+ qAr)2A7
1+ q)Ap — (1 —q)(2+ qAp)A
K3:(1+q)( +q) k ( Q)( +q k) k+1

(14+¢)?+ (1 —-¢q)?qAr4

P(z,y) = (y — (1 — ¢)z)? — 4z(1 + qy) and P(Ak+1, Ax) = 0 by condition, and equality follows from
direct calculation.

The case Uy < Uy follows from the same argument with 2° | = x¢. Thus Uy < Upfork =0,1,.... O

H Other geometric and non-geometric views of acceleration

Geometric descent is an accelerated method designed expressly based on a geometric principle of shrinking
balls for the smooth strongly convex setup [13} 16} |42]. Quadratic averaging is equivalent to geometric
descent but has an interpretation of averaging quadratic lower bounds [30]]. Both methods implicitly induce

the collinear structure through steps equivalent to defining 241 as a convex combination of z; and xﬁ'.

(In fact, our xfr notation comes from the geometric descent paper [[13]].) However, this line of work does

not establish a rate faster than FGM or its corresponding proximal version, nor does it extend the geometric
principle to the non-strongly convex setup.

The method of similar triangles (MST) is an accelerated method [32} |60, [1] with iterates forming simi-
lar triangles analogous to our illustration of FGM in Figure[I] One can also interpret acceleration as an
approximate proximal point method with alternating upper and lower bounds and obtain the structure of
similar triangles as a consequence [1]]. The parallel structure we present generalizes the structure of similar
triangles; the illustration of OGM and OGM-G in Figure [I]exhibits the parallel structure but not the similar
triangles structure. To the best of our knowledge, the parallel structure we present is a geometric structure of
acceleration that has not been considered, explicitly or implicitly, in prior works.

Linear coupling [4] interprets acceleration as a unification of gradient descent and mirror descent. The
auxiliary iterates of our setup are referred to as the mirror descent iterates in the linear coupling viewpoint.
However, the primary motivation of linear coupling is to unify gradient descent, which reduces the function
value much when the gradient is large, with mirror descent, which reduces the function value much when the
gradient is small. This motivation does not seem to be applicable to the problem setup of minimizing gradient
magnitudes, the setup of OGM-G and FISTA-G.

The scaled relative graph (SRG) is another geometric framework for analyzing optimization algorithms; it
establishes a correspondence between algebraic operations on nonlinear operators with geometric operations
on subsets of the 2D plane [[66 140, 41, |68]. The SRG demonstrated that geometry can serve as a powerful
tool for the analysis of optimization algorithms. However, there is no direct connection as the SRG has not
been used to analyze accelerated optimization algorithms.

I Experiment

For scientific reproducibility, we include code for generating the synthetic data of the experiments. We
furthermore clarify that since FPGM-m, FISTA, and FISTA+FISTA-G are not anytime algorithms (i.e., since
the total iteration count K" must be known in advance), the points in the plot of Figure 4 were generated with
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a separate iteration. In other words, the plots for ISTA and FISTA were generated each with a single for-loop,
while the plots for FPGM-m, FISTA, and FISTA+FISTA-G were generated with nested double for-loops.

import numpy as np
np.random.seed (419)

#11 norm problem data

m, n, k = 60, 100, 20 # dimensions

lamb = 0.1 # lasso penalty constant
L = 324

x_true = np.zeros(n)

x_true[:k] = np.random.randn (k)

np.random.shuffle (x_true)

[U,_] = np.linalg.qgr (np.random.randn (m,m))

[V,_] = np.linalg.qgr (np.random.randn (n,n))

Sigma = np.zeros((m,n))

np.fill_diagonal (Sigma, np.abs (np.random.randn (m) ))
np.fill_diagonal (Sigma[m-3:m,m-3:m],np.sqgrt (L))

A =0U (@ Sigma @ V.T

b = A@x_true + 0.01 * np.random.randn (m)

#nuclear problem data

m, n, k = 60, 20, 20 # dimensions

lamb = 0.1 # nuclear norm penalty constant
L = 400

n2 = int (n* (n+l)/2)

x_true = np.zeros(n2)

X_true[:k] = np.random.randn (k)

np.random.shuffle (x_true)

[U,_] = np.linalg.qgr (np.random.randn (m,m) )

[V,_] = np.linalg.qgr (np.random.randn (n2,n2))

Sigma = np.zeros((m,n2))

np.fill_diagonal (Sigma, np.abs (np.random.randn (m)))
np.fill_diagonal (Sigma[m-3:m,m-3:m],np.sqrt (L))

A =U @ Sigma @ V.T

b A@x_true + 0.01 * np.random.randn (m)
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