

TAGMOL: Target-Aware Gradient-guided Molecule Generation

MoleculeAI

Vineeth Dorna* Saurabh Singal Mrityunjay Singh

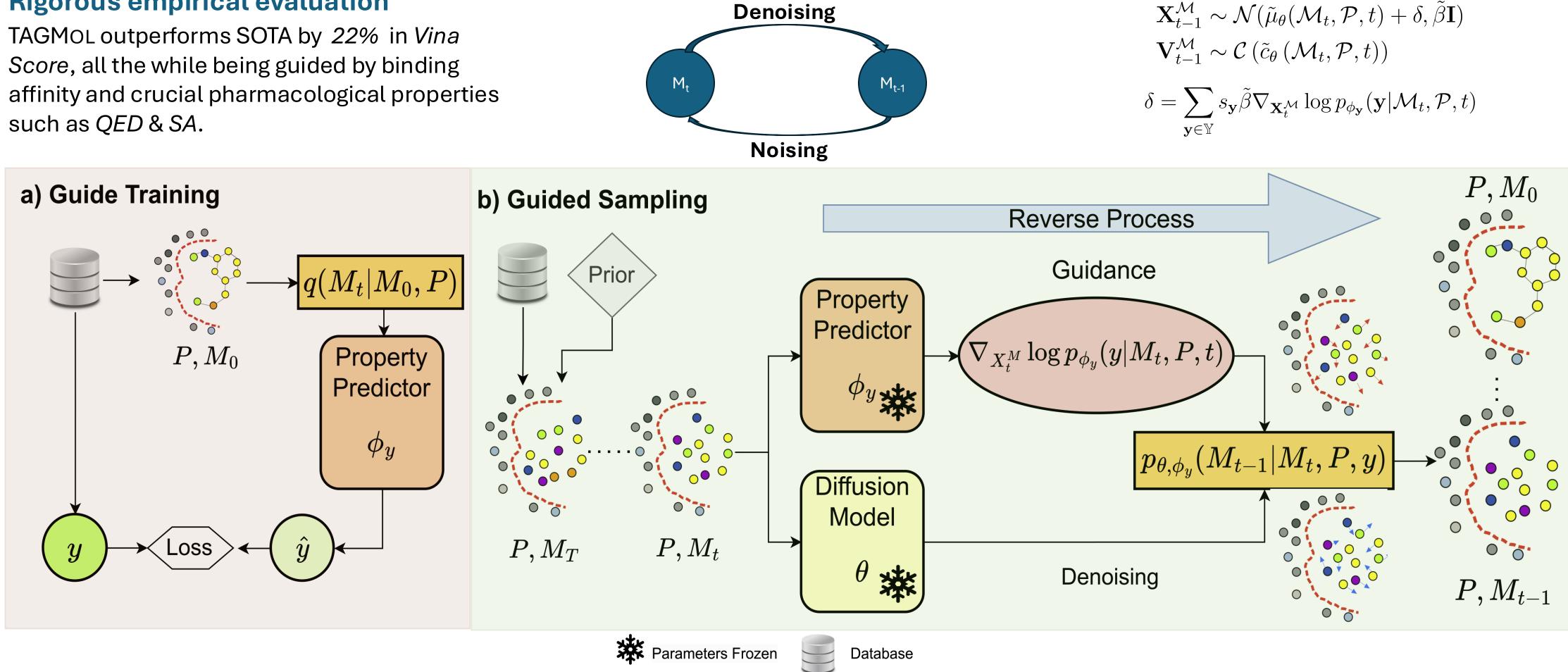
D. Subhalingam* Keshav Kolluru

Shreshth Tuli N. M. Anoop Krishnan Sayan Ranu

CONTRIBUTIONS

Goal

Generate ligand molecules that tightly bind to the protein pocket and possess acceptable pharmacological properties.


Algorithm Design

We introduce TAGMOL, decoupling molecular generation and property prediction. The latter guides diffusion sampling and create molecules with desired properties.

Rigorous empirical evaluation

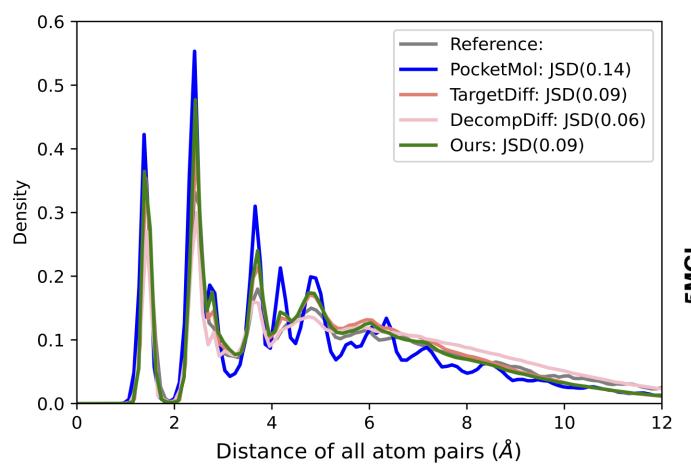
PRELIMINARY

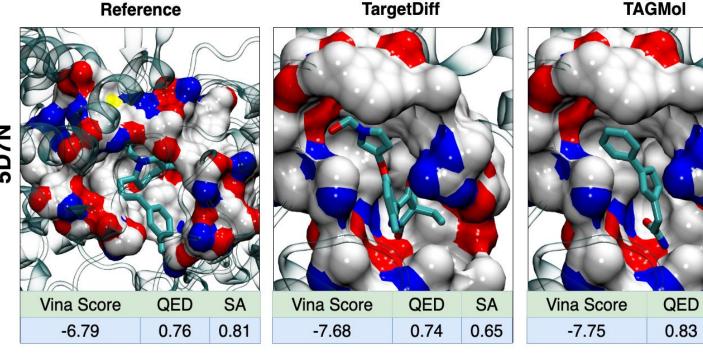
- Protein: $\mathbf{P} = [\mathbf{X}^{\mathcal{P}}, \mathbf{V}^{\mathcal{P}}]$
- Ligand: $M = [X^{\mathcal{M}}, V^{\mathcal{M}}]$
- Number of atoms: $N_{\mathcal{P}} / N_{\mathcal{M}}$
- Number of features: N_f / N_K
- **3D** Coordinates: $\mathbf{X}^{\mathcal{P}} \in \mathbb{R}^{N_{\mathcal{P}} \times 3} / \mathbf{X}^{\mathcal{M}} \in \mathbb{R}^{N_{\mathcal{M}} \times 3}$
- Atom Features: $\mathbf{V}^{\mathcal{P}} \in \mathbb{R}^{N_{\mathcal{P}} \times N_f} / \mathbf{V}^{\mathcal{M}} \in \mathbb{R}^{N_{\mathcal{M}} \times N_K}$
- Set of guided properties: $\mathbb {Y}$
- **Property Guide:** SE(3) Invariant GNN ϕ_y to predict property $\mathbf{y} \in \mathbb{Y}$
- Generative backbone: Diffusion model θ
- M_t : Noisy molecule M at diffusion time step t

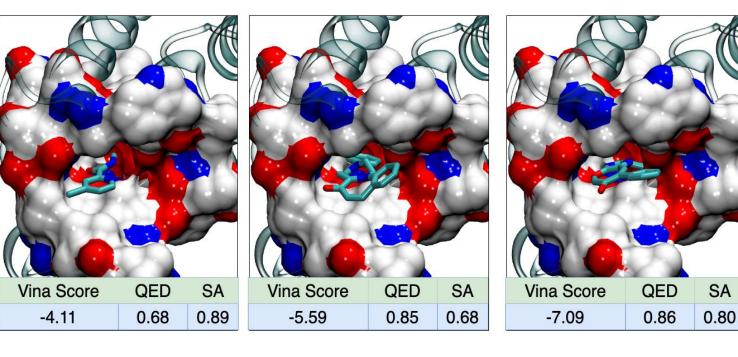
ALGORITHM

Guide Training Objective

$$NLL = -\mathbb{E}_{p(\mathbf{P},\mathbf{M}_{0:T})} \sum_{t=0}^{T} \log(p_{\phi_y}(\mathbf{y}|\mathbf{M}_t,\mathbf{P},t))$$
$$= \mathbb{E}_{p(\mathbf{P},\mathbf{M}_{0:T})} \sum_{t=0}^{T} \frac{(\mathbf{y} - \phi_{\mathbf{y}}(\mathbf{M}_t,\mathbf{P},t))^2}{2}$$


Guided Sampling


 $p_{\theta,\phi_{\mathbb{Y}}}(\mathcal{M}_{t-1}|\mathcal{M}_t,\mathcal{P},\mathbb{Y}) = Zp_{\theta}(\mathcal{M}_{t-1}|\mathcal{M}_t,\mathcal{P})$ $\cdot \prod_{\mathbf{y} \in \mathbb{Y}} p_{\phi_{\mathbf{y}}}(\mathbf{y} | \mathcal{M}_{t-1}, \mathcal{P}, t)$


EXPERIMENTS & RESULTS

Methods	Vina S	core (\downarrow)	Vina Min (\downarrow) Vina Do			$Oock (\downarrow)$	High Af	finity (†)	$ $ QED (\uparrow)		SA (†)		Hit(↑)
	Avg.	Med.	Avg.	Med.	Avg.	Med.	Avg.	Med.	Avg.	Med.	Avg.	Med.	Rate %
Reference	-6.36	-6.46	-6.71	-6.49	-7.45	-7.26	-	-	0.48	0.47	0.73	0.74	21
liGAN	-	-	-	-	-6.33	-6.20	21.1%	11.1%	0.39	0.39	0.59	0.57	13.2
AR	<u>-5.75</u>	-5.64	-6.18	-5.88	-6.75	-6.62	37.9%	31.0%	0.51	0.50	<u>0.63</u>	<u>0.63</u>	12.9
Pocket2Mol	-5.14	-4.70	-6.42	-5.82	-7.15	-6.79	48.4%	51.0%	0.56	0.57	0.74	0.75	24.3
TargetDiff	-5.47	<u>-6.30</u>	-6.64	-6.83	-7.80	-7.91	58.1%	59.1%	0.48	0.48	0.58	0.58	20.5
DecompDiff	-4.85	-6.03	-6.76	<u>-7.09</u>	<u>-8.48</u>	<u>-8.50</u>	<u>64.8</u> %	78.6 %	0.44	0.41	0.59	0.59	24.9
TAGMOL	-7.02	-7.77	-7.95	-8.07	-8.59	-8.69	69.8 %	<u>76.4</u> %	<u>0.55</u>	<u>0.56</u>	0.56	0.56	27.7

- **Dataset:** CrossDocked2020[1]
- Properties optimized: Vina Score, QED & SA
- Generative Backbone: TargetDiff [2]
- **Evaluation Metric:** Hit rate ($QED \ge 0.4$, $SA \ge 0.5 \& Vina Dock \le 8.18 kcal/mol)$

REFERENCES

- [1] Francoeur, P. G., Masuda, T., Sunseri, J., Jia, A., Iovanisci, R. B., Snyder, I., & Koes, D. R. (2020). Three-dimensional convolutional neural networks and a cross-docked data set for structure-based drug design. Journal of chemical information and modeling, 60(9), 4200-4215.
- [2] Guan, J., Qian, W. W., Peng, X., Su, Y., Peng, J., & Ma, J. 3D Equivariant Diffusion for Target-Aware Molecule Generation and Affinity Prediction. In The Eleventh International Conference on Learning Representations.

SA

0.82

SA

CODE