
7 Appendix

7.1 Details of Datasets

The details of datasets used in this work are summarised in Table 3. For each dataset, to acquire the
user’s check-in sequence, the check-in records of each user are sorted chronologically based on the
timestamp given in the dataset. In these datasets, there is no personally identifiable information. In
addition, noting that in real-world settings, privacy-preservation in human mobility prediction could
be achieved by existing strategies such as anonymisation, differential privacy, and also privacy-aware
federated learning. For the semantic information, Foursquare dataset [39] includes low-level semantic
category labels (such as Japanese restaurant and Italian restaurant). We then follow the standard
Foursquare POI category hierarchy and map each POI to one of the following 8 high-level semantic
categories: Arts & Entertainment, College & University, Food, Professional & Other Places, Nightlife
Spot, Outdoors & Recreation, Shop & Service, Travel & Transport and Residence. As listed in the
table, the semantic category information is not directly given for the Gowalla dataset [6]. ArcGIS
is used to decode the semantic information based on the geographical coordinate of each POI. The
ArcGIS has the following 11 high-level categories: Arts & Entertainment, Education, Water Features,
Travel & Transport, Shops & Service, Residence, Professional & Other places, Parks & Outdoors,
Nightlife Spot, Land Features, Food.

In the case of the Gowalla dataset, the included POIs are across different cities, whereas FS-NYC/FS-
TKY are only about a single city. As compared in Table 1, the proposed MobTCast works well on
all three datasets (relatively large Gowalla and small FS-TKY/FS-NYC), which indicates that the
proposed method is robust enough to work well on both large and small region scales. In addition,
social links are not provided for FS-NYC and FS-TKY. More details about how to discover the social
contexts for these datasets are given in Section 4.2. Experiments on such datasets (semantic or social
information is not given) could evaluate the generalisation of our method at a certain level.

Table 3: Details of each dataset.

Gowalla FS-NYC FS-TKY
User 107,092 1,083 2,293
POI 1,280,969 38,334 61,859
Check-in 6,442,892 227,428 573,703
Collection Start 2009/02 2012/04 2012/04
Collection End 2010/10 2013/02 2013/02
Semantic Category No Yes Yes
Social Links Yes No No

7.2 Data Driven Analysis

In this part, as a supplement to the discussion in Section 1, we discuss the motivation of incorporating
different contexts in POI prediction system from a data-driven perspective.

1. Semantic Context. Typically, in LBSNs, each POI belongs to a category with high level
semantic meanings such as Shop and Education. For example, as illustrated in Figure 3(a),
there are three visiting peaks (corresponding to breakfast, lunch, and dinner time) for Food
POIs in each day. As for the Education, there is only one morning peak. This shows that
POIs with different semantic meanings have different visiting patterns.

2. Social Context. Friends and family members often visit a POI together. A user may also
check-in a new POI recommended by friends. As shown in Figure 3(b), the average DTW
(Dynamic Time Warping, calculated with longitude and latitude coordinates) distance from
a user’s trajectory to his/her friends’ trajectories is much smaller than that to other strangers’
trajectories, which reveals that social influence is an important context for predicting POIs.

3. Geographical Context. POIs that are close to each other might be visited by the same user
due to their proximity. To support and validate the importance of this context, we split each
user’s trajectory in a short period (e.g., two consecutive days) into multiple trajectory clips
based on the temporal interval between two visits. If the interval is larger than 6 hours,
the trajectory will be cut into two clips. We then calculate and compare two statistics: i)

13

0 2 4 6 8 10 12 14 16 18 20 22
Visited Time (hour)

0

100

200

300

400

500

600

Vi
sit

in
g

Fr
eq

ue
nc

y

food
education

(a) Semantic Context

0 10000 20000 30000 40000
Average trajectory distance (DTW)

Friends

Non-Friends

(b) Social Context

0 5 10 15 20 25 30
Average pair-wise distance between POIs (KM)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

same trajectories
different trajectories

(c) Geographical Context

Figure 3: Data-driven motivation of incorporating different contexts. These statistical analysis are
based on FS-NYC [39], Gowalla [6], and FS-TKY [39] datasets, respectively.

Table 4: The configuration of each variant.

Semantic Geographical Social Loss
V0 × × × L1

V1 X × × L1

V2 X X × L1

V3 X X × L1 + L2

V4 X X × L1 + L3

V5 X X × L1 + L2 + L3

MobTCast X X X L1 + L2 + L3

the average pair-wise distance between POIs in the same trajectories; and ii) the average
pair-wise distance between POIs in different trajectories. As it is shown in Figure 3(c), the
distributions of these two distances are different and the distance between POIs in the same
trajectories is smaller, which justifies the geographical context.

7.3 Detailed Configurations of Variants in Ablation Study

All variants compared in Ablation Study (Section 5.2) are summarised in Table 4. In the table, a
X indicates that the corresponding context is incorporated, whereas a × means that the context is
disabled.

7.4 Auxiliary Task for POI Prediction

In this part of the experiments, we investigate whether we can use the auxiliary task solely to achieve
a good POI prediction performance. We aim to answer the research question: can we only use the
auxiliary task to predict next POI? Since the outputs from the trajectory forecasting auxiliary task
are predicted coordinates (Eq. (9)) instead of probabilities of POIs, it cannot be directly used for
predicting the next POI. A tweak is required to get predicted POI from the predicted location. By
calculating the Euclidean distances between the predicted location and the locations of all |P | POIs,
a R|P | vector is obtained. The index of the minimum value in this vector is then considered as the
predicted POI.

We design two baselines with the tweak operation:

• Aux-RNN: This baseline is an RNN based trajectory forecasting auxiliary task. To be more
specific, the forecasting function Fg(·) in Eq. (6) is a GRU.

• Aux-Tra: This baseline is the same auxiliary task (Transformer based) used in MobTCast
(details are given in Section 4.3).

For both Aux-RNN and Aux-Transformer, the user embedding is also applied.

Table 5 lists the POI prediction performance of Aux-RNN and Aux-Transformer on three datasets. For
the convenience of comparison, the performance of the proposed MobTCast is also listed in the last
row of the table. As shown in the table, it is very clear that both Aux-RNN and Aux-Transformer have

14

Table 5: The results of Aux-RNN and Aux-Transformer, where only the auxiliary task is used for
POI prediction.

Gowalla FS-NYC FS-TKY
TOP-1 Top-5 Top-10 Top-20 TOP-1 Top-5 Top-10 Top-20 TOP-1 Top-5 Top-10 Top-20

Aux-RNN 0.00003 0.0002 0.0003 0.0007 0.0011 0.0023 0.0045 0.0092 0.0004 0.0006 0.0014 0.0046
Aux-Tra 0.00003 0.0002 0.0004 0.0008 0.0017 0.0027 0.0051 0.0106 0.0004 0.0007 0.0019 0.0049
MobTCast 0.2051 0.4364 0.5236 0.5956 0.2804 0.6591 0.7816 0.8561 0.2550 0.5683 0.6726 0.7489

poor performance on all datasets, which reveals that these auxiliary tasks and the tweak operation
cannot fully model the complex check-in behaviour of each user. More specifically, Aux-Transformer
is slightly better than Aux-RNN. Comparing their performances across different datasets, it can be
seen that they perform better if the total number of POIs is smaller. This correlation is as expected.
Overall, these results indicate that only using the auxiliary task cannot yield good POI predictions.

7.5 Computational Cost

In this section, we explore the computation cost of our MobTCast. In Table 6, the inference time
(running one training/testing instance) of each deep learning-based model is listed. All these recorded
times are executed on the same GPU. Among these methods, the basic RNN (the first row) is the
fastest as no other context or attention mechanism is included. Compared to RNN, DeepMove is
slightly slower due to the introduced attention calculation in the input history trajectory. Because
the attention in Flashback depends on the calculation of temporal and geographical distances (using
geographical coordinates), Flashback takes longer for running. As STAN incorporates a bi-layer
attention architecture (one attention layer for considering spatio-temporal correlation within user
trajectory and one attention layer for recalling the most plausible candidates from all POIs), the
inference time of STAN is the largest in the table.

As for our MobTCast_V0, it requires more time than RNN and DeepMove (but less than Flashback)
for running. This is because that the Transformer structure which adopts the multi-head attention
mechanism is used in MobTCast as the backbone. If we compare V1 against V0, it can be seen that
incorporating the semantic context is efficient enough (with a marginal cost increment only). For
V2-V5, since the auxiliary trajectory forecasting is introduced, there is a notable increase. However,
compared to Flashback where the geographical context is also included, the over-cost of each variant
is relatively small. We can also notice that the inference times of these four variants are almost the
same. The differences between these variants are about the loss functions (i.e., whether including
trajectory forecasting loss and consistency loss), which results in very similar computation costs.
Although MobTCast (the last row) needs longer running time than other variants, it takes the social
context into accounts. Thus, considering that MobTCast incorporates the computation of social
neighbours, the increment of inference time is still acceptable.

Table 6: Comparison of computational cost. Each method is benchmarked on the same NVIDIA
GeForce RTX-2080 Ti GPU.

Method Inference Time (10−6 Seconds)
RNN 2.457
DeepMove 3.095
Flashback 29.764
STAN 643.779
MobTCast_V0 16.114
MobTCast_V1 16.550
MobTCast_V2 33.939
MobTCast_V3 33.931
MobTCast_V4 33.913
MobTCast_V5 33.946
MobTCast 127.242

15

Table 7: Results (on the validation set) of different θ2 and θ3 combinations.

Top-1
Accuracy

θ2 = 0.5 θ2 = 1.0 θ2 = 2.5 θ2 = 5.0
θ3 = 0.5 0.2874 0.2874 0.2910 0.2793
θ3 = 1.0 0.2883 0.2919 0.2892 0.2739
θ3 = 2.5 0.2811 0.2860 0.2829 0.2721
θ3 = 5.0 0.2775 0.2865 0.2789 0.2766

Top-5
Accuracy

θ2 = 0.5 θ2 = 1.0 θ2 = 2.5 θ2 = 5.0
θ3 = 0.5 0.6507 0.6529 0.6538 0.6471
θ3 = 1.0 0.6430 0.6560 0.6439 0.6484
θ3 = 2.5 0.6408 0.6462 0.6372 0.6426
θ3 = 5.0 0.6327 0.6453 0.6444 0.6515

Top-10
Accuracy

θ2 = 0.5 θ2 = 1.0 θ2 = 2.5 θ2 = 5.0
θ3 = 0.5 0.8029 0.7881 0.7925 0.7813
θ3 = 1.0 0.7867 0.7921 0.7957 0.7966
θ3 = 2.5 0.7809 0.7975 0.7777 0.7930
θ3 = 5.0 0.7854 0.7952 0.7836 0.7876

Top-20
Accuracy

θ2 = 0.5 θ2 = 1.0 θ2 = 2.5 θ2 = 5.0
θ3 = 0.5 0.8859 0.8877 0.8815 0.8837
θ3 = 1.0 0.8788 0.8850 0.8886 0.8859
θ3 = 2.5 0.8797 0.8846 0.8841 0.8819
θ3 = 5.0 0.8734 0.8909 0.8824 0.8868

7.6 Weight Setting in Loss Function

As given in Eq. (15), three weight terms are introduced to combine different losses (the POI prediction
loss, trajectory forecasting loss, and consistency loss). In this section, we fix θ1 = 1 and manipulate
the remaining two weights (θ2 and θ3) to fully investigate the influence of these weights. Both θ2 and
θ3 are set to one of 0.5, 1.0, 2.5, and 5.0, which results in 16 different combinations. Considering the
large amount of the experiments, only the FS-NYC dataset is selected for evaluating. Table 7 reports
the POI prediction performance of different combinations on the validation set of FS-NYC dataset.
The combination with the best performance for each metric is shown in bold. As it can be seen from
the table, the combination of θ2 = 1.0, θ3 = 1.0 achieves top performance in both Top-1 accuracy
and Top-5 accuracy, whereas θ2 = 0.5, θ3 = 0.5 and θ2 = 1.0, θ3 = 5.0 is the top performer in
Top-10 and Top-20 respectively. Based on these results, in the rest experiments, θ2 = 1.0, θ3 = 1.0
is used as the default setting.

7.7 Different Observation Lengths

In the experiments given in the main paper, the observation length n is set to 20. In this part, we focus
on investigating the effect of different observation lengths. Figure 4 shows the performance when
the observation length is set to n = 5, n = 10, n = 20, and n = 30, respectively. As demonstrated
from the figure, we can see that the top-5, top-10, and top-20 performance with different observation
lengths are quite close. Larger observation length settings (n = 20 and n = 30) slightly outperform
the smaller observation length settings (n = 5 and n = 10). For the top-1 accuracy, when the
observation length is smaller, the performance drops as it is hard to predict when there are only a few
visiting records. However, we can also notice that the top-1 performance does not improve when the
observation length is too large (n = 30). This is because more distant inputs have a relatively smaller
contribution (to the next POI) than more up-to-date visiting records.

7.8 Model Training Pseudo-code

In Algorithm 1, the pseudo-code of MobTCast training process. Note that we only use user ui as an
example in the pseudo-code for simplification. In the experiments, all users’ data in the training set
are included for training and the training instances are processed through mini-batches (batch size
512).

16

Gowalla FS-NYC FS-TKY0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

n=5
n=10
n=20
n=30

(a) Top-1 Accuracy

Gowalla FS-NYC FS-TKY

0.3

0.4

0.5

0.6

0.7 n=5
n=10
n=20
n=30

(b) Top-5 Accuracy

Gowalla FS-NYC FS-TKY

0.3

0.4

0.5

0.6

0.7

0.8 n=5
n=10
n=20
n=30

(c) Top-10 Accuracy

Gowalla FS-NYC FS-TKY0.5

0.6

0.7

0.8

0.9

1.0
n=5
n=10
n=20
n=30

(d) Top-20 Accuracy

Figure 4: POI prediction performance (on the testing set) with different observation length (n)
settings.

Algorithm 1 Pseudo-code of training MobTCast (using one user as an example)
Input: user id: ui; observed sequence of user i (visited POI id): Pi ; observed sequence of user
i (timestamp id): Ti ; observed sequence of user i (category id): Ci ; observed sequence of user i
(geographical coordinate): Xi ; sequences of neighbours: {Pj}, {Tj}, {Cj}, j ∈ Ni
Output: trained model parameters: γ
1: γ ← random initialisation
2: while not converge do
3: Calculate feature hi with Pi, Ti, Ci as input by Eqs (1)-(3) . Semantic-aware mobility

feature extraction
4: for j ∈ Ni do
5: Calculate feature hj with Pj , Tj , Cj as input by Eqs (1)-(3) . Extract neighbour’s

mobility feature
6: end for
7: Calculate social context vector Hi with hi and hj of each neighbour through Eq. (4) .

Model social influence
8: Calculate feature gi with Xi as input by Eqs (5)-(6) . Auxiliary branch
9: Embed user id ui through Eq.(7) . User embedding

10: Predict the next location (in the geographical coordinate format) by Eqs. (8)-(9) . Get
prediction output of the auxiliary branch

11: Predict the next POI by Eq. (10) . Get prediction output of the main branch
12: Calculate Li with predictions of step 10 and 11 through Eqs (11)-(15) . Loss calculation
13: Update γ using∇γLi . Update model parameters by back propagation
14: end while
15: return γ

17

