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1 Uncertainty Estimation with Monte Carlo Dropout Method1

Given an input data set X = {x1, ..., xn} and the respective outputs Y = {y1, ..., yn}, the conven-2

tional machine learning methods intend to find an optimal model Φ(x;θ), which is parameterized3

with θ, to map the input X to the Y . After training, the optimal model Φ(x;θ) will give a single4

point prediction for certain test sample with static θ. On the contrary, the Bayesian methods (e.g.,5

Bayesian neural networks) can generate predictive distributions instead of a single point prediction6

for estimating model uncertainty. With defining Φ(x;θ) with a prior P (θ) over parameter space θ,7

the training objective is then turned to find an optimal posterior distribution over θ:8

P (θ|X,Y ) =
P (Y |X,θ)P (θ)

P (Y |X)
. (1)

The prediction value of y with input x is the weighted average of model predictions over all possible9

sets of parameters θ with various posterior probabilities as Eq. (2) shows.10

P (y|x,X, Y ) =

∫
P (y|x,θ)P (θ|X,Y )dθ

= Eθ∼P (θ|X,Y )[Φ(x;θ)]

(2)

However, the posterior distribution P (θ|X,Y ) is intractable as shown in previous works. Alter-11

natively, Gal and Ghahramani proved that a DNN with arbitrary non-linear depth and dropout is12

mathematically equivalent to a Bayesian approximation of the probabilistic deep Gaussian process.13

They proposed a method named Monte Carlo Dropout which utilizes a dropout distribution P̂ (θ)14

to approximate P (θ|X,Y ). To be specific, for the l-th layer (l = 1, ..., L) in a model with total L15

layers, the parameter distribution θl is defined as:16

θl = Ml ∗ diag([Zl,i]
Dl
i=1), (3)

where Ml ∈ RDl×Dl−1 is a matrix with variational parameters and diag(·) is an operator to map17

a vector to a diagonal matrix. Zl,i ∼ Bernoulli(qi) is independently sampled from Bernoulli18

distribution, where i = 1, ..., Dl−1. qi is the probability of dropout. Subsequently, the Eq. (2) is19

reformulated as:20

Eθ∼P̂ (θ)[Φ(x;θ)] ≈
1

N

N∑
n=1

Φ(x;θn). (4)
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Figure 1: Network Architectures for (a) 1D-CNN Teacher, (b) 1D-CNN Student and (c) Domain
Discriminator.

Practically, Eq. (4) means to enable the dropout of model during test phase and forward N times for21

each sample xi. Furthermore, for classification tasks we employ the entropy to measure teacher’s22

uncertainty on target data as Eq. (5) shows:23

Hi = −
∑
c

(
1

N

∑
n

p(y = c|xi,θ
n)log(

1

N

∑
n

p(y = c|xi,θ
n))), (5)

where p(y = c|xi,θ
n) represents the probability of sample belong to class c and it is the softmax24

outputs of teacher model Φ(x;θn) on the n-th forward pass. Intuitively, a higher value of the25

predictive entropy Hi will be obtained when all classes are predicted to have equal probabilities,26

which means the teacher is less confident about the specific data.27

2 Model Architecture28

2.1 Teacher and Student model29

As illustrated in Fig. 1(a) and (b), the teacher and student model are constructed with three stacked30

CNN blocks as the backbone and one fully connected layer as the classifier. Each CNN block consists31

of a 1D convolutional layer, followed by a BatchNorm layer, an activation layer (ReLU), a 1D32

MaxPooling layer and a Dropout layer. Here, ‘Conv1D’ represents the 1D convolutional layer and33

the first variable in the bracket represents the number of input channels and the second one represents34

the number of output channels. ‘BN’ is a BatchNorm layer. ‘FC’ represents a fully connected layer.35

‘C’ represents the number of classes.36

Meanwhile, we also compared the complexity of teacher and student model as shown in Table 1. The37

compact student is about 15× smaller in terms of number of trainable parameters and 17× faster in38

terms of number of floating point operations (FLOPs) than the cumbersome teacher model.39

2.2 Domain discriminator40

Fig. 1(c) is the network architecture of domain discriminator. It consists of three linear layer followed41

by ReLU activation layers. The output of domain discriminator is a 2-classes probability distribution42
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Table 1: Comparison of model complexity.
No. of trainable

Parameters No. of FLOPs

Teacher 2.01× 105 9.17× 105

Student 0.13× 105 0.54× 105

Compression Ratio 15.46× 16.98×

Table 2: Network Architecture for Dueling DDQN.
Layers Dueling DDQN

#1 FC(Input, 1024)+ReLU
#2 NoisyFC(1024,1024)+ReLU NoisyFC(1024,1024)+ReLU
#3 NoisyFC(1024,1) +ReLU NoisyFC(1024, 2)+ReLU
#4 Aggregation

to indicate whether the feature maps come from the teacher with source domain data as input or from43

the student with target domain data as input.44

2.3 Dueling DDQN45

Table 2 presents the details of our dueling DDQN. The left column is the state-value estimation46

stream and the right column is the advantage estimation column. The ‘NoisyFC’ represents a linear47

layer whose weights and biases are perturbed by a parametric function of the noise. The conventional48

linear layer can be expressed as y = wx + b, where w ∈ Rq×p, b ∈ Rq are trainable weights and49

biases, x ∈ Rp and y ∈ Rq are the inputs and outputs, respectively. In the NoisyNets, the weights50

and biases are reformulated as Eq. (6) and (7), respectively. Here, µw ∈ Rq×p, σw ∈ Rq×p, µb ∈ Rq ,51

σb ∈ Rq are the trainable weights and biases. ⊙ is the element-wise multiplication. ϵw and ϵb are the52

factorised Gaussian noise, where each entry ϵwi,j = f(ϵi)f(ϵj), ϵbj = f(ϵj) and f(x) = sgn(x)
√
|x|.53

Adding such parametric noise to the deep reinforcement learning agent will enhance the efficiency of54

exploration.55

w = µw + σw ⊙ ϵw (6)

b = µb + σb ⊙ ϵb (7)

3 Additional Transfer Scenarios56

We evaluate our proposed method on another five additional transfer scenarios on four datasets57

as shown in Table 3 and Table 4. From above two Tables, we can sse that our proposed method58

consistently achieves better performance than other SOTA methods, further indicating its effectiveness59

in transferring the knowledge under the cross-domain scenarios.60

Table 3: Marco F1-scores on HAR and HHAR across three independent runs.

Methods HAR Transfer Scenarios HHAR Transfer Scenarios
18 → 27 20→5 24→8 28→27 30→20 Avg 0→2 5→0 6→1 7→4 8→3 Avg

Teacher 98.23 90.57 97.08 100 92.21 95.62 66.56 33.25 94.47 94.99 96.68 77.19
Student-Only 98.37 48.78 77.38 61.17 76.41 72.42 61.94 27.43 69.10 77.72 80.51 63.34

KD-STDA 100 75.77 90.77 97.77 86.36 90.13 61.93 28.04 92.65 91.33 96.30 74.05
KA-MCD 85.22 78.03 86.14 91.19 74.28 82.97 43.90 33.35 92.32 94.27 97.02 72.17
MLD-DA 98.82 80.57 91.90 100 91.69 92.60 65.44 31.10 92.97 94.97 95.87 76.07

REDA 98.20 95.05 91.26 98.53 72.04 91.02 54.18 32.56 88.50 88.84 96.18 72.05
AAD 90.27 66.88 86.09 94.73 84.82 84.56 58.23 37.24 91.47 81.99 83.61 70.51

MobileDA 92.86 84.96 90.45 79.12 77.56 84.99 50.27 30.83 76.12 89.70 79.25 65.23
UNI-KD 100 94.42 100 92.26 87.10 94.76 62.33 39.01 92.89 96.90 96.52 77.53
Proposed 100 85.26 97.92 100 92.21 95.08 67.27 38.25 94.59 95.83 97.40 78.67
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Table 4: Marco F1-scores on FD and SSC across three independent runs.

Methods FD Transfer Scenarios SSC Transfer Scenarios
1→0 1→3 3→0 3→1 3→2 Avg 3→19 5→15 6→2 13→17 18→12 Avg

Teacher 66.40 100 62.30 100 81.65 82.07 71.85 73.69 72.21 50.74 52.96 64.29
Student-Only 45.13 91.14 44.84 93.03 70.55 68.94 43.65 41.04 48.21 38.78 47.28 43.79

KD-STDA 47.55 93.02 51.26 99.81 76.28 73.58 61.24 66.97 67.05 43.05 49.92 57.65
KA-MCD 51.77 98.69 48.50 93.65 83.05 75.13 61.13 63.23 70.96 39.56 46.86 56.35
MLD-DA 51.98 99.67 52.14 96.01 75.62 75.08 66.23 70.30 69.33 44.22 44.13 57.65

REDA 53.65 96.21 52.48 96.60 80.85 75.96 56.09 61.96 53.59 40.50 36.26 49.68
AAD 46.42 94.65 52.09 98.65 87.11 75.78 62.75 64.81 71.78 44.52 49.18 58.61

MobileDA 51.71 94.92 51.17 99.86 78.51 75.23 64.16 67.67 56.74 47.50 56.56 58.53
UNI-KD 60.91 99.97 61.00 100 87.08 81.79 66.84 70.76 65.70 50.19 49.77 60.65
Proposed 61.99 99.67 62.42 100 87.76 82.37 69.49 72.73 67.01 49.31 52.52 62.21
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Figure 2: Sensitivity of N .
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Figure 3: Sensitivity of K.
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Figure 4: Sensitivity of λ.

Table 5: Sensitivity Analysis on α1 and α2.

Dataset α1=0.2
α2=1.8

α1=0.4
α2=1.6

α1=0.6
α2=1.4

α1=0.8
α2=1.2

α1=1.0
α2=1.0

α1=1.2
α2=0.8

α1=1.4
α2=0.6

α1=1.6
α2=0.4

α1=1.8
α2=0.2

HAR 94.68 94.23 94.49 93.58 93.25 92.65 92.68 92.72 92.05
HHAR 82.37 82.35 94.49 82.10 81.59 82.11 81.04 81.25 81.34

FD 92.63 92.34 92.87 92.10 91.89 91.74 92.01 91.34 92.05
SSC 68.26 68.47 68.15 67.65 67.80 66.65 66.95 66.35 66.01

4 Sensitivity Analysis61

4.1 Hyper parameter N62

In our proposed method, one of the key hyper parameters is N , which is the number of teachers63

utilized for calculating the uncertainty on a specific sample. It relates to our reward function, thus64

affecting the learning process of target sample selection policy. Intuitively, the larger N will lead to65

more accurate estimation of teacher’s uncertainty and provide more accurate reward. As illustrated in66

Fig. 2, student’s performance is gradually increased with N but will keep at some certain level when67

N ≥ 10. The larger value of N also increases the total cost in terms of training time. Empirically,68

N = 5 or N = 10 are appropriate, and we choose N = 10 in our experiments for all the datasets.69

4.2 Hyper parameter K70

Another hyper parameter in our proposed approach is the episodes length K for generating historical71

experience and we perform the analysis as illustrated in Fig. 3. From Fig. 3, we can see that our72

proposed method is not very sensitive to K. But a large value of K will result in longer training time.73

K = 5 is sufficient to generate informative historical experience for training the dueling DDQN.74

4.3 Hyper parameter λ75

Regarding hyper parameter λ which is to balance the contribution of domain confusion loss LDC and76

the distillation loss LRKD, we can see from Fig. 4 that a small value of λ (e.g. λ = 0.1) will make77

the student more focus on learning domain-invariant knowledge from LDC . It will result in worse78

performance in datasets like HHAR and SSC. A higher value of λ will obviously enhance student’s79

generalization capability on target domain. λ ∈ [1, 5] is a suitable range based on our experiment80

results.81
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4.4 Hyper parameter α1 and α282

To limit our reward within the range of -1 to 1, α1 and α2 should satisfy below constrains: α1 ∈ (0, 2),83

α2 ∈ (0, 2) and α1 + α2 = 2. We perform grid search on four datasets as shown in Table 5. We84

can see that the student trained with low α1 value and high α2 value can achieve better performance85

than other configurations, indicating transferability contributes more to the final performance than86

uncertainty. In all of our experiments, we set α1 = 0.2 and α2 = 1.8 for all datasets for simplicity.87
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