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ABSTRACT The development of vision and language transformer models has paved the way for Visual
Question Answering (VQA) models and related research. There are metrics to assess the general accuracy
of VQA models but subjective assessment of the answers generated by the models is necessary to gain an
in-depth understanding and a framework for subjective assessment is required. This work develops a novel
scoring system based on the subjectivity of the question and analyses the answers provided by the model
using multiple types of natural language processing models (bert-base-uncased, nli-distilBERT-base, all-
mpnet-base-v2 and GPT-2) and sentence similarity benchmark metrics (Cosine Similarity). A case study
detailing the use of the proposed subjective scoring framework on three prominent VQA models- ViLT,
ViLBERT, and LXMERT using an automotive dataset is also presented. The framework proposed aids in
analyzing the shortcomings of the discussed VQAmodels from a driving perspective and the results achieved
help determine which model would work best when fine-tuned on a driving-specific VQA dataset.

INDEX TERMS Semantic Analysis, Scoring Framework, Subjective Assessment, VQA Models

I. INTRODUCTION

AUTONOMOUS driving has been a large area of devel-
opment, both commercially and in academic research,

over the last decade or more [1], and continues to be an area
of deep interest in the research community. However, while
perception and control tasks are still undergoing significant
research [2], [3], there has been an increase in interest in
incorporating elements of trustworthiness [4], [5] and ex-
plainability [6]–[8] into autonomous driving. Visual Ques-
tioning Answering (VQA) is proposed as a part of the vehicle
autonomy trustworthiness and interpretability solution [9],
[10]. VQA can be used, for instance, to explain the behaviour
of an autonomous vehicle to the vehicle occupants [11] as
shown in Figure 1.

VQA models are designed to comprehend and respond
to questions based on images. They operate by integrating
computer vision and natural language processing techniques.
Typically, they take an image as input, generally processed
through a convolutional neural network (CNN) to extract
meaningful visual features. VQA models also receive a natu-
ral language question related to the image, which undergoes
language processing (including tokenization and word em-
beddings). The models will then combine the extracted image
features and processed question features, creating a joint rep-
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FIGURE 1. A demonstration of how VQA models work in a driving scenario

resentation that encapsulates the relationship between visual
and textual information. This fused representation is further
utilized to predict an appropriate answer to the given question,
employing various machine learning approaches like neural
networks and attention mechanisms. The goal is to provide
accurate and relevant answers, demonstrating a comprehen-
sive understanding of both the image content and the posed
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FIGURE 2. A Generalized Overview of the Subjective Scoring Framework proposed

question.
Diverse evaluation metrics exist in the literature for mea-

suring the performance of VQA models. For instance,
LXMERT [12] relies on accuracy for assessing its perfor-
mance, while ViLBERT turns to test-dev accuracy for bench-
marking [13]. ViLT, in contrast, juxtaposes test-dev accuracy
with response time in comparison to other state-of-the-art
models [14]. VAuLT uses a combination of Accuracy and
Mac-F1 [15], and TVLT emphasizes latency as a pivotal
metric [16].

In the VQA domain, there are some established evalua-
tion methods and metrics that help measure the quality of
responses to such questions:

1) Human Evaluation: Expert human evaluators assess
the quality of responses based on predefined criteria.
Theymay use rating scales or qualitative judgments that
evaluate responses according to factors such as clarity,
appropriateness, how informative an answer might be
or overall quality. [17].

2) Inter-Evaluator Agreement measures how consis-
tently different evaluators rate the same responses [18].
A high level of agreement indicates that the evaluation
process is reliable.

3) Borrowed from machine translation evaluation, the
Bleu Score assesses how closely the model’s responses
match good human responses [19]. It provides a mea-
sure of response similarity.

4) Similar to Bleu, the METEOR score evaluates re-
sponse quality by considering synonyms and para-
phrases [20]. It looks at howwell the model’s responses
align with good human responses.

5) Initially designed for image captions, the CIDEr score
can be adapted to VQA. It assesses response quality
by considering consensus and diversity among human
judgments [21].

6) Commonly used for text summarization, the ROUGE
Score can also be applied to VQA to measure how well
the model’s responses match human responses [22].

7) Response Length and Quality: Evaluating the length
of responses helps ensure they are neither too short nor
overly long, depending on the nature of the question as
done in [14].

In practice, the selection of appropriatemetrics and evaluation
methods should be tailored to the specific goals and character-

istics of the subjective questions under examination. Evaluat-
ing subjective questions requires a multifaceted approach that
combines automated metrics with human assessments and
user feedback to gain an understanding of response quality
in the context of VQA.
A gap observed in the existing metrics is that there is

an inability to compare the performance of VQA models to
human answers. Evaluating the quality of responses to sub-
jective questions in VQA models is a complex task. Subjec-
tive questions involve understanding context, and relevance,
and generating human-like responses. A subjective question
might be ‘‘What should the driver do?’’, in contrast to the
more objective ‘‘What are the contents of the image?’’. The
goal of this paper is to discuss ameans bywhich the responses
of a VQA model can be compared to human responses, given
that humans can answer subjective questions in context. In
this paper, we propose a subjective scoring framework tai-
lored to the evaluation of visual question-answering models
for autonomous driving. Figure 2 shows a high-level overview
of our proposed method.
The principal contribution of this paper is to advance the

development of a structured framework for assessing answers
to subjective questions within VQA models in comparison to
human answers, which in the authors’ opinion is of great im-
portance in the autonomous driving space. This undertaking
substantively contributes to the academic and research com-
munity by propelling the frontiers of knowledge in natural
language understanding and multimodal models.
The authors have presented very initial work as a con-

ference submission [23]. However in this paper, we greatly
expand on the previous work by using only a part of the results
published in the conference for a case study validation. We
have expanded the results of [23] by introducing a few more
driving scenarios as further explained in the Section V-A. We
use these results as an input in the framework proposed here.
Our paper is structured as follows. We start with an initial

review of existing literature in this domain and highlight the
deficiencies in the prior art we are overcoming with Section
II. In Section III, we introduce the constituent components
of the proposed framework and explain their significance in
our context. To underscore the practical application of the
framework, we present a case study in Section V-A of section
V.Within this section, we leverage three distinct VQAmodels
against a driving context dataset, showcasing how the frame-
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work can be effectively utilized. We have shown a cursory set
of results with just two questions, to demonstrate the utility
of the proposal as can be seen in Section V. The findings of
the case study are further discussed in the Section V-B. Some
ideas on how we plan to further improve the framework has
been written in Section VII.

The code and further details on the framework is available
on our GitHub repository1.

II. LITERATURE REVIEW
Vision Question Answering (VQA) models emerge as a fu-
sion of both language and vision capabilities. Therefore,
before proposing a novel method for VQA models, we sur-
vey the intricacies of how both language and vision models
have been assessed independently. This holistic exploration
ensures a well-rounded understanding of the challenges and
methodologies associated with each domain, setting the stage
for a nuanced and effective evaluation framework for VQA
models.

For large language models, several studies have paved the
way for understanding the nuances of subjective evaluation.
Prior works have explored diverse approaches, including hu-
man judgment and user feedback, to appraise the efficacy
of language models in capturing contextual nuances, coher-
ence, and overall linguistic quality. Similarly, vision-specific
models have undergone rigorous evaluation, with researchers
emphasizing the importance of subjective assessments in
discerning the visual fidelity, interpretability, and overall
perceptual quality of generated content. Building upon this
foundation, our research endeavors to propose a subjective
scoring framework that draws inspiration from the discussed
works.

In [24], Aldahdooh et al. discuss the necessity for subjec-
tive quality assessment to validate the performance of objec-
tive measures on visual data, with video processing technolo-
gies as the selected visual data in their study. Language mod-
els used in recent tasks have been trained on large corpora,
often collected from large groups of people where subjective
judgments differ among different social groups. Dispropor-
tionate representation of opinions might create undesirable
outcomes from such language models. It is imminent there is
an increased need for a framework which can assess language
model predictions from a subjective analysis perspective.

Durmus et. al. [25] developed a framework to assess the
quality of output from a Large Language Model. The study
has conducted three main experiments. The first experiment
gave the result that participants from several European coun-
tries and America, Canada, and Australia are closer than
opinions from other countries, but the trained LLM model
will have a significantly different, yet biased output which
will not cater to a wide range of countries. The second exper-
iment was to prompt the model to imbibe cultural diversity
by considering opinions from China, and Russia which have
complex yet rich cultural values. The third experiment con-

1The repository will be made public on acceptance

cluded that translation of different languages will not neces-
sarily cover the context, which requires deeper knowledge of
social contexts. A decoder-only transformer fine-tuned with
Reinforcement Learning from Human Feedback (RLHF) was
proposed and a similarity metric was calculated from the
probabilities of the predicted answers. Language models are
prone to assumptions and biases due to the use of diverse hu-
man conversations in the training phase, hence more research
to mitigate potential biases/discriminations and qualitative
assessment of predictions is needed.
Wu et. al. [26] studied text summarization and how the

models perform in the effective capture of nuances, inter-
estingness, comprehensiveness, and such specific dimensions
of a summary that are of particular interest to a human
reader. The automatic evaluation metrics like BLEU [19] and
ROGUE [22] were studied in this experiment to identify the
factors missed by the metrics, yet relevant to the context. The
authors experimented with Diverse Role Player Evaluation
(DRPE) to identify the quality of expressions from the sum-
marized text. Role player-based evaluation is via voting and a
DRPE score was calculated as a joint probability of vote count
and reasoning. Role player-based evaluation is best suited
when the model predictions are more text-oriented and will
be directed toward multiple end-users. Recent research led to
development of vast number of VQA algorithms and auto-
mated assessment of predictions is necessary to encompass
important attributes like semantic simialrity and subjectivity
of the generated text.
In [21], consensus-based evaluation of Image Description

is studied. The automated metric proposed by the authors
uses Term Frequency Inverse Document Frequency (TF-IDF)
weighting for each n-gram for encoding. TF-IDF is a tra-
ditional encoding method for sentence similarity but lacks
semantic understanding of the tokens in the sentence [27].
The frequency of n-grams in the candidate sentence is as-
sessed against the reference sentence. Consensus-based pro-
tocol evaluates how often the humans validate the candidate
sentences as ’similar’ to the reference sentence. The model’s
performance was evaluated for sentence similarity using var-
ious aspects like grammaticality, saliency, and accuracy, but
semantic closness is not evaluated in this study.
Bashir et. al. [28] attempted subjective evaluation of an-

swers using Machine Learning and Natural Language Pro-
cessing. The Natural Language Processing methods like to-
kenization, stemming, lemmatization, and case folding were
used as pre-processing steps on the subjective input prior to
word2vec embedding and followed by stop words removal
before the machine learning step. The similarity score of
this subjective text is evaluated using Word Mover’s Dis-
tance (WMD) or Cosine similarity. Further in this experi-
ment, the authors train a Multi-Class Classifier, Multinomial
Naïve Bayes for classifying the text data into four categories,
identified based on the score obtained from the prediction
module. A final score is predicted based on the classification
value obtained and the overall score generated. Although
the authors conclude with experimental values that cosine
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FIGURE 3. Architecture of the Subjective Scoring Assessment Framework

similarity do not perform well with semantic similarity as
opposed to WMD and cosine similarity works better in cases
where semantics are preserved well, their experimental steps
did not use embedding methods that preserve semantic char-
acteristics of the text during preprocessing.

The framework proposed emphasizes in retaining the se-
mantic characteristics of the text during the embedding stage,
to enable semantic closeness comparison using cosine simi-
larity.

III. SUBJECTIVE SCORING EVALUATION ARCHITECTURE
In this section, we consider the architectural framework pro-
posed for Subjective Scoring assessment, which is visually
represented in Figure 3.We start by giving a general overview
of the architecture before giving more details on each compo-
nent.

In the initial phase of our architecture, we formulate spe-
cific questions about the subject matter depicted in an image.
These questions aim to ascertain what’s happening in that
image. To provide a basis for comparison, we ask human
expert annotators to provide the correct answers to these
questions as explained in Section III-A. The results of the poll
and the questionnaire are available in Section V-A. Following
this, we employ pre-trained VQA models to generate their
own answers to these questions. A deeper discussion of the
results observed from the poll can be found in [23].

All the questions, the answers obtained from humans (re-
ferred to as Ground Truth Answers), and the VQA model-
generated answers are documented together. The Ground
Truth answers serve a crucial role in our study. They help

us gauge whether the VQA model’s answers are contextually
relevant to the image.
The pre-processing stage generally involves various text

operations such as case normalization, tokenization, stopword
removal, lemmatization, and stemming. In our case, both
the Ground Truth and Model-Generated Answers are often
concise and limited to a few words, we opted for case normal-
ization only, to streamline the data for all embedding models,
ensuring consistency and manageability.
The embedding stage involves the application of pre-

trained models, such as SBERT and GPT-2. SBERT
(Sentence-BERT), a modified BERT framework designed for
generating semantically related text embeddings for pairs of
sentences [29]. Given our need for text embeddings for both
Model-Generated Answers and Ground Truth Answers, the
SBERT model streamlines this process. The utilization of
SBERT greatly simplifies the simultaneous acquisition of text
embeddings for these paired texts. Since the individual word
embeddings for words in sentences are different, when we
take the average or mean of the embeddings it will generate a
different vector than the sentence vector. This is why we used
SBERT which generates sentence embeddings and preserves
the semantic context more efficiently.
We employed ‘bert-base-uncased,’ ‘nli-distilbert-base,’

and ‘all-mpnet-base-v2’ from the Sentence Transformer li-
brary (as discussed in Section III-D). These models generate
text embeddings for both Ground Truth Answers and Model-
Generated Answers. ‘bert-base-uncased’ is pre-trained on
book corpora and English Wikipedia, ‘nli-distilbert-base’ on
a substantial corpus of 570k human-written English sentence
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pairs, and ‘all-mpnet-base-v2’ on 1 billion sentence pairs
gathered from various domains [29]. Thesemodels are trained
for diverse downstream tasks, including text similarity.

In our experiments, GPT-2 [30] was also employed to
generate word embeddings for both Ground Truth Answers
and Model-Generated Answers, facilitating the assessment
of similarity between the two. There are many LLMs which
are not free to use for comparative studies. We wanted to
use models that are accessible to researchers without any
additional costs. Another reason to use SBERT and GPT-2 is
the computational cost, time and the specific tasks for which
these models are trained on.

Upon acquiring the embeddings for both the Ground Truth
answers and Model-Generated answers, we proceed to de-
termine their similarity. To assess the similarity between the
text embeddings, the cosine similarity measure was applied,
yielding a score for each pair of Model-Generated Answers
and Ground Truth Answers, quantified on a scale from 0 to 1.

The subsequent phase of this experiment entails a process
known as subjective scoring (inter-rater reliability and error-
based analysis) which involves the assignment of numerical
scores for human-answers (ground truth), using a scale that
ranges from 0 to 1 to evaluate all Model-Generated answers.
These assigned scores serve as a benchmark for assessing
the quality and appropriateness of the model-generated re-
sponses. Obtained cosine similarity scores are subsequently
employed to establish the Pearson’s correlation between the
human expert evaluations and the scores generated by the
language models. Performance evaluation metrics, such as
RMSE (RootMean Squared Error) andMAE (MeanAbsolute
Error) are further employed to gauge the performance of the
models in generating similarity scores for the textual data
pairs as discussed in Section III-G.

To summarise, the proposed subjective scoring framework
involves formulating questions about image content, obtain-
ing human-annotated Ground Truth Answers, and using pre-
trained models like SBERT and GPT-2 for generating text
embeddings. The embeddings are assessed for similarity us-
ing cosine similarity, and subjective scoring assigns numeri-
cal scores (0 to 1) to human-answers and evaluates Model-
Generated answers against them. Performance metrics like
Pearson’s correlation, RMSE, and MAE are employed to as-
sess the models’ performance in generating similarity scores
for textual data pairs, enhancing the reliability of subjective
scoring.

The major aspects used in the creation of the Subjective
Scoring Framework have been discussed in the following
subsections.

A. GROUND TRUTH HUMAN-BASED RESPONSES
We selected nine(9) VQA models after evaluating them for
user interface quality, code replication ease, and compatibility
with the selected pre-trained models. The initial experiment
aimed to enhance the models’ performance using the driving
related dataset, explicitly focusing on signboard interpreta-
tion [31]. However, the results revealed limited comprehen-

sion of driving-related matters by the models. This led us to
conduct an additional experiment with 10 computer vision re-
searchers, presenting them with contextually minimal images
from our dataset, mirroring the approach used with the pre-
trained models.
This approach allowed us to create a controlled environ-

ment for the evaluation, with a focus on the correlation be-
tween the visual content of the image, the posed question,
and the most appropriate answer. The highest-rated answers,
as determined through a poll conducted among the expert
panel for each question posed, were designated as the ground
truth for the dataset used which has been further discussed
in Section V-A. It ensured that we introduced a significant
human perspective into our research.
Humans are capable of nuanced understanding and rea-

soning, which might involve contextual, common sense, or
background knowledge [32]. Humans also have the ability
to generalize their understanding across various contexts and
adapt to new scenarios [32]. Evaluating the performance of
VQAmodels against human responses helped gauge themod-
els’ ability to generalize and adapt to different visual scenes
and questions. Additionally, by analyzing the discrepancies
between human and model responses, at a later stage, we
can identify areas where the models are underperforming and
conduct targeted work on improving them.

B. VQA MODELS
In our proposed architecture, we examine three VQAmodels,
namely ViLT, ViLBERT, and LXMERT in the Subjective
Scoring Framework. These pre-trained models are used to
generate predicted answers for a set of ten images from a
driving-related dataset, which includes widely varying at-
tributes in the scene. Here, we give a brief introduction of the
VQA models used:

• ViLT (Vision and Language Transformer) commissions
the transformer module to extract and process visual
features in place of a separate deep visual embedder.
This design leads to significant runtime and parame-
ter efficiency. The authors fine-tuned ViLT-B/32 on the
VQAv2 train and validation sets while reserving 1,000
validation images and their related questions for internal
validation for the Visual Question Answering part of the
model [14].

• ViLBERT (Vision-and-Language BERT) is a model de-
veloped for learning task-agnostic joint representations
of image content and natural language [13]. BERT archi-
tecture is extended to a multi-modal two-stream model,
processing both visual and textual inputs in separate
streams that interact through co-attentional transformer
layers. To fine-tune ViLBERT on VQA, a two-layer
MLP on top of the element-wise product of the image
and text representations has been learned and mapped
to 3,129 possible answers. The authors treat VQA as a
multi-label classification task – assigning a soft target
score to each answer based on its relevance to the 10
human answer responses. The VQA model is trained
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with a binary cross-entropy loss on the soft target scores
using a batch size of 256 over a maximum of 20 epochs.

• LXMERT (Learning Cross-Modality Encoder Repre-
sentations from Transformers) is a large-scale Trans-
former model that consists of three encoders: an object
relationship encoder, a language encoder, and a cross-
modality encoder [12]. The model uses the Adam opti-
mizer with a linear-decayed learning rate schedule and
a peak learning rate at 1e – 4. The model is trained for
20 epochs which is roughly 670K4 optimization steps
with a batch size of 256. The pretraining of VQA tasks,
however, is only for the last 10 epochs because this
task converges faster and empirically needs a smaller
learning rate.

C. TEXT NORMALISATION
Text normalization refers to the process of transforming text
into a standardized or normalized form [33]. Text normaliza-
tion helps ensure that different but semantically equivalent
expressions are represented consistently. For example, con-
verting all text to lowercase or applying stemming can help
in capturing the same meaning across different forms of a
word. By normalizing text, the dimensionality of the input
space is reduced. This is particularly important when working
with embeddings, as it helps in creating more compact and
meaningful representations of text. In a typical VQA experi-
ment, questions can be posed in various ways, and answers
might have different forms. Normalizing text can help in
handling these variations and making the model more robust
to different input styles.

When applying SBERT or similar embedding models to
VQA, it’s common to preprocess both the questions and an-
swers using text normalization techniques. These techniques
may include lowercasing, stemming, lemmatization, remov-
ing stop words, and handling special characters. The goal
is to create a standardized representation of the text data
that captures the underlying semantic meaning and allows
the embedding model to produce meaningful and consistent
representations.

D. EMBEDDING MODELS
A word embedding is a learned representation for text where
words that have the same meaning have a similar represen-
tation [34]. The framework employs four transformer-based
models including three pre-trained Bert-based models and a
GPT model to calculate embeddings, whose basic architec-
tures are shown in Figure 4. BERT is a bidirectional trans-
former model pre-trained on extensive unlabelled text data
from sources like Wikipedia and book corpora and is known
for its robust performance in semantic textual similarity tasks,
albeit with a higher computational cost [35]. However, there
are various BERT-based models available, pre-trained on
different corpora for various downstream tasks. The BERT-
based models used in this study are bert-base-uncased, nli-
distilbert-base, all-mpnet-base-v2, and another transformer
model GPT-2.

The utilization of multiple embedding models presents
several notable advantages. Firstly, diverse representations
of textual data are facilitated by distinct embedding models,
each capturing linguistic and semantic information through
unique perspectives. This diversity enhances the representa-
tion of input text, encapsulating a broader spectrum of fea-
tures and nuances within the data. Secondly, employing mul-
tiple models affords a comprehensive understanding of the
input text, elucidating its intricacies from various analytical
viewpoints. Each model emphasizes different aspects of the
data, enriching the overall comprehension. Lastly, the amal-
gamation of embeddings from multiple models, known as
ensemble learning, holds the potential to bolster performance
and robustness. This amalgamation effectively mitigates bi-
ases or limitations inherent in individual models, resulting
in an ensemble representation that leverages the strengths of
each constituent model, thus enhancing the overall quality
and reliability of the embedded data.

A short description of all the embeddings used is as fol-
lows:

• BERT base uncased embedding: BERT (Bidirectional
Encoder Representations from Transformers) is a
transformer-based deep learning model that learns con-
textualized word representations. BERT-base-uncased
refers to a specific variant of BERT that is the base
model and is trained on uncased (lowercase) text. The
’uncased’ aspect implies that the model ignores cap-
italization differences, making it appropriate for tasks
where capitalization is not critical. BERT-base-uncased
generates high-dimensional vector representations (em-
beddings) for words or tokens in the input text, capturing
rich semantic and contextual information.

• NLI-distilBERT base embedding: DistilBERT is a dis-
tilled, smaller, and faster version of BERT while re-
taining a similar level of performance. NLI-distilBERT
refers to a variant of DistilBERT that is specifically
trained for Natural Language Inference (NLI) tasks. NLI
involves determining the relationship between a given
hypothesis and premise (usually entailment, contradic-
tion, or neutral). The ’base’ in ’NLI-distilbert-base’ de-
notes the base architecture and size of the model.

• mT5 (all-mpnet-base-v2) embedding: ’all-mpnet-base-
v2’ is not a standard term related to mT5 (multilingual
Translation Transformer), which is a transformer-based
model designed for multilingual translation tasks. How-
ever, all-mpnet-base-v2 could refer to a particular variant
or version of a model based on the MPNet (Multilingual
Pre-trained language model) architecture. MPNet is a
transformer model similar to BERT but designed for
multilingual tasks.

• GPT-2 embedding: GPT-2 (Generative Pre-trained
Transformer 2) is a transformer-based language model
developed by OpenAI [30]. GPT-2 has received gen-
erative pre-training on a massive corpus of web text
and it generates high-quality, coherent text based on the
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FIGURE 4. Basic Architecture of the embedding models used in the Framework

context provided in the input. GPT-2 embeddings refer
to the vector representations generated by passing input
text through the GPT-2 model. These embeddings cap-
ture contextual and semantic information and are widely
used in various natural language generation tasks, cre-
ative writing, and more.

When employing vectors derived from multiple embed-
dings, a preservation of semantic nuances within textual
content is observed. Consequently, the utilization of these
vectors in the computation of cosine similarity leads to a
more accurate evaluation of semantic affinity or proximity,
surpassing the conventional word2vec embeddings and sen-
tence similarity metrics.

The choice of specific natural language processing models
in the framework is driven by their proven effectiveness in
semantic tasks, i.e., their ability to capture semantic nuances
and similarities between textual data pairs and availability
for researchers without additional costs for reproducibility
and further fine-tuning if needed for their respective projects.
BERT, including bert-base-uncased, nli-distilBERT-base, and
all-mpnet-base-v2, is selected for its bidirectional transformer
architecture, pre-trained on diverse corpora, making them
effective in understanding the context and semantics of sub-
jective information. This is crucial for evaluating the subjec-
tivity of Model-Generated answers in comparison to human-
annotated Ground Truth Answers.

GPT-2 is included due to its capability to generate word
embeddings, enabling the assessment of similarity between
Ground Truth and Model-Generated answers. Its language
generation capabilities make it relevant for assessing the ap-
propriateness and quality of Model-Generated responses in
a subjective scoring framework. These models collectively
offer a comprehensive analysis of textual data pairs, balanc-
ing performance and accessibility in the subjective scoring
framework.

E. COSINE SIMILARITY
Cosine similarity is a metric used to measure the similarity
between two non-zero vectors of an inner product space.
It measures the cosine of the angle between the vectors,
indicating how closely they are related in terms of orientation
[36]. Cosine similarity is often used in Natural Language

Processing and Information Retrieval tasks to determine the
similarity between documents, words, or other text represen-
tations in a high-dimensional space [37].
In the context of VQA, cosine similarity is specifically

valuable for evaluating the similarity or closeness between a
model-generated answer and the ground truth. The formula
used to calculate cosine similarity in our experiment is:

similarity (A,B) = cos(θ) =

(
A.B

∥A∥∥B∥

)

=

n∑
i= 1

AiBi√
n∑

i=1

A2
i

n∑
i=1

B2
i

where A = Ground Truth B = Generated Answer

The reasons why cosine similarity is important in this
scenario are:

i. Evaluation of Model Performance: Cosine similarity
helps evaluate how close the generated answer is to the
correct or expected answer. A high cosine similarity
indicates that the generated answer is similar to the
reference answer, which is desirable in VQA tasks.

ii. Numerical Comparison of Vector Representation: Co-
sine similarity provides a numerical measure of sim-
ilarity between two vectors (representing answers in
this case). The Transformer based models convert the
input text data into high-dimensional vectors called
embeddings. Cosine similarity measure is used to find
the similarity between those vectors, allowing for a
quantitative assessment of how well the generated an-
swer aligns with the correct answer which is further
discussed in section V-A.

iii. Optimization and Fine-Tuning: VQA models can be
fine-tuned using cosine similarity as a loss function.
The goal here would be to optimize the model to gen-
erate answers that have high cosine similarity with the
ground truth answers during training.
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F. INTER-RATER RELIABILITY TEST AND ERROR-BASED
ANALYSIS
In subjective scoring, inter-rater reliabiltiy serves as the sta-
tistical measure to assess the consistency between two or
more raters or graders while evaluating the same data. It is
the degree of similar or dissimilar judgements of different
raters indicating the reliability of the measurement process
across multiple graders. Inter-rater reliability not only en-
hances the validity and credibility of assessments but also
guarantees quality, fosters fairness, and supports effective
decision-making. Error-based analysis,such as RMSE, fo-
cuses on quantifying discrepancies between predicted and
actual scores. It helps in continuous improvement, optimizing
model performance, and ensuring fairness by identifying and
rectifying biases.

Both approaches contribute to the reliability and precision
of subjective assessments, with inter-rater reliability empha-
sizing human agreement and error-based analysis focusing on
the accuracy and optimization of scoring models.

G. METRICS
The performance of VQA models can be tested using any
metrics but we recommend using root mean squared error
and mean absolute error. Using Root Mean Squared Error
(RMSE) and Mean Absolute Error (MAE) to evaluate the
performance of VQA models provides insights into the mod-
els’ prediction accuracy by quantifying the discrepancy be-
tween predicted scores and ground truth scores. RMSE and
MAE also help to understand the magnitude of errors in
these predictions. A lower RMSE or MAE suggests that the
model’s predictions are closer to the true scores, indicating
a more accurate VQA system. RMSE and MAE also allow
for comparison of the VQA model’s performance with other
models or benchmarks. They provide a standardized metric
that enables researchers to assess how well the model per-
forms relative to established baselines or other state-of-the-
art approaches. We also used Pearson’s correlation measure
in order to determine the degree of correlation between the
two texts. A short description of the metrics is given below:

• Pearson Correlation is a statistical measure that quan-
tifies the strength and direction of a linear relationship
between two continuous variables. It is used to assess
how closely two variables are related, and it provides
a numerical value indicating the degree of correlation.
In the context of VQA models, it helps to assess how
closely the VQA model’s predictions align with the
actual answers or scores provided in the dataset.

r =

∑
(Pi − P)(Oi − O)√∑

(Pi − P)2
∑

(Oi − O)2

where r is the Pearson Correlation co-efficient, Pi is the
VQAmodel’s predicted answer scores,Oi is the Ground
Truth answer scores, P is the mean of the predicted
answers’ scores, and O is the mean of the Ground Truth
answers’ scores.

• Root Mean Squared Error (RMSE) is a widely used
statistical metric that measures the average magnitude
of the errors or residuals between predicted values and
actual (observed or ground truth) values in a dataset.

RMSE =

√√√√√√√
N∑

i= 1

(Pi −Oi)
2

N

where Pi is VQAmodels’s prediction value,Oi is ground
truth value and N is the total number of data points.
RMSE gives higher weight to larger errors because of
the squaring. It is sensitive to outliers and penalizes
them more severely. RMSE is suitable when you want
to account for the magnitude of errors and favor models
that minimize larger errors.

• Mean Absolute Error (MAE) is a statistical metric used
to measure the average magnitude of errors between
predicted values and actual (observed or ground truth)
values in a dataset.

MAE =
1

N

N∑
i= 1

∣∣Pi −Oi

∣∣
where Pi is VQAmodels’s prediction value,Oi is ground
truth value andN is the total number of data points.MAE
treats all errors equally and does not give higher weight
to larger errors. It is less sensitive to outliers and provides
a more straightforward measure of average prediction
error. MAE is often used when you want to assess the
overall accuracy and reliability of predictions without
emphasizing large errors.

The Subjective Scoring Framework designed using the
discussed embedding models and cosine similarity enables
researchers to compare and choose the most effective model
based on the accuracy of embeddings in capturing semantic
similarity. Additionally, it serves as a performance bench-
mark, quantifying the models’ ability to represent the re-
lationship between questions and images accurately. This
approach also enriches the overall understanding of input
features by leveraging diverse representations from different
models. Analyzing differences in cosine similarity scores
provides insights into model behavior and interpretation of
questions and images.

IV. COMPUTATIONAL RESOURCES USED
The subjective framework has been developed using publicly
available pre-trained models in our framework which is open
access and can even be run on 2 CPU cores and 2.30 GHz
of CPU Frequency. While the framework is available on our
GitHub page, the VQA models used for the case study are
not. The three VQA models used are open-access pre-trained
models that have been inferenced on one Nvidia GeoForce
RTX 3080 GPUwith 10240 CUDA cores, 12GBmemory and
1.67 GHz CPU Frequency. The computational time required
to run an inference for one question in ViLBERT was 27
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seconds, ViLT was 26 seconds and for LXMERT, it was 23
seconds.

V. RESULTS AND DISCUSSION
A. CASE STUDY
1) Images Used
The Table 1 is the comprehensive list of the images, questions
and answers used in the case study discussed. These images
were selected from the MS COCO dataset [38]. It can be
seen from the category column that we tried to keep diverse
driving scenarios in mind while designing the questions. The
rationale behind each of them is listed below:

• Dark Setting: Tests the model’s ability to recognize and
answer questions about objects, signs, or situations in
low-light conditions, which may require understanding
context or relying on limited visual cues.

• Light Setting: Evaluates the model’s performance in
scenarios with different lighting conditions, assessing
whether it can adapt to varying levels of brightness and
handle challenges like glare or reflections effectively.

• Parking: Tests the model’s comprehension of parking-
related questions, including identifying parking signs,
understanding parking regulations, and recognizing
parking lot layouts or parking manoeuvres.

• Railway Crossing Signboards: Assesses the model’s
capability to recognize and interpret railway crossing
signs accurately, which is critical for understanding po-
tential hazards and ensuring safety near railway tracks.

• Pedestrian Crossing: Evaluates the model’s under-
standing of pedestrian crossings and its ability to answer
questions related to pedestrian safety and traffic regula-
tions in areas with pedestrian activity.

• Traffic Scene: Tests the model’s comprehension of
complex traffic scenes, including identifying vehicles,
traffic signs, signals, and understanding traffic flow dy-
namics in different driving environments.

• Accident: Assesses the model’s capability to recognize
and interpret accident scenes, which may involve iden-
tifying damaged vehicles, assessing the severity of the
situation, and understanding relevant signs or signals.

• Road Signboards: Evaluates the model’s ability to rec-
ognize and interpret various road signs accurately, in-
cluding speed limits, directions, warnings, and regula-
tory signs, across different scenarios.

• Roadworks: Tests the model’s understanding of
roadwork-related signs and situations, assessing its abil-
ity to recognize temporary changes to road conditions
and navigate through work zones safely.

• Men at Work in the Middle of the Road: Assesses
the model’s comprehension of roadwork zones and its
ability to recognize hazards posed by road workers or
maintenance crews, requiring cautious navigation.

• Fallen Signboard: Tests the model’s ability to iden-
tify and respond to unexpected obstacles or hazards on
the road, such as fallen signboards, which may require
adapting to changes in a driving scenario.

By testing VQA models with questions across these di-
verse categories, researchers can evaluate the models’ gen-
eralization capabilities, robustness, and understanding of a
wide range of driving scenarios, ultimately informing im-
provements in their performance and reliability for real-world
applications.

2) Dataset collection
The authors conducted a survey consisting of two specific
questions, namely ‘‘What are the contents of the image?"
and ‘‘What should the driver do?", targeting the chosen set
of images all pertaining to driving scenarios as described in
Section V-A1.
The survey was distributed among a cohort of ten Com-

puter Vision researchers who provided responses to the ques-
tions based on the available options and the accompanying
images. The answer that received the most votes was selected
as the ground truth. By establishing a consensus answer based
on the majority vote for every question, a reference point
has been created against which the accuracy of the model
can be measured. This allows for quantitative assessment and
comparison of different models.
In real-world scenarios, questions about images often have

multiple valid interpretations or perspectives. For example,
when asking "What should the driver do?" in the context of
a driving scenario, different experts or people might provide
varying but valid responses based on their individual view-
points. Having diverse answers in the ground truth aligns with
the complexity and diversity of human understanding and
decision-making. However, to reduce the complexity of the
experiment, the scope has been limited to only one Ground
Truth answer per question. The framework will be able to
handle multiple answers to one question when taken in as
a superset instead of a subset as we are doing in the case
study. To handle multiple answers, we need to aggregate the
embeddings either by averaging or concatenating the embed-
dings of multiple ground truth answers to create a composite
embedding representation for the question-image pair.
The rationale behind asking both subjective and objective

questions, namely ‘What are the contents of the image?’ and
‘What should the driver do?’, is to assess themodel’s ability to
comprehend and respond to different types of questions in the
context of visual information. Questions like ‘What are the
contents of the image?’, require the model to understand and
interpret the visual content and provide a descriptive answer.
These questions evaluate the model’s capability to recognize
objects, scenes, and other relevant visual elements depicted
in the image. A question like ‘What should the driver do?’,
require the model to provide a specific action or response
based on the given visual information. These questions assess
the model’s understanding of driving scenarios and ability to
reason about the appropriate course of action.
By including both subjective and objective questions, the

experiment aims to evaluate different aspects of the model’s
performance. Subjective questions focus on the model’s vi-
sual comprehension and scene understanding abilities, while
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Image Qodd (Q1,Q3,Q5...) Qeven(Q2,Q4,Q6...)

FIGURE 5. Ground Truth Poll Results

objective questions assess its ability to provide contextually
appropriate and practical responses in a driving context. This
comprehensive evaluation helps to gauge the model’s overall
proficiency in visual question answering and its potential
utility in real-world applications such as self-driving cars.

The answers received from the three VQA models dis-
cussed have also been listed. It provides a visual represen-
tation of the model’s performance in addressing the posed
questions, allowing for an assessment of their effectiveness
based on the ground truth. The rationale behind comparing
the answers of three VQA models with human answers and
using colour coding (green for correct, orange for wrong,
yellow for partially correct) is twofold. Firstly, this approach
visually highlights performance and discrepancies between
the models and human responses. This visual representation
allows for a quick and intuitive understanding of the accuracy
and effectiveness of the models in comparison to human
performance. Secondly, such an approach allows engineers
to set upper and lower bounds on acceptable performance
which in turn informs the classification stage of the modelling
process. Further discussion of this rationale is considered in
the paper ‘Towards a performance analysis on pre-trained
Visual Question Answering models for autonomous driving’
[23].

As explained in the Section III-A, the chosen Ground Truth
answers have been collected using a poll among Computer
Vision researchers in the D2ICE Group 2. The results of
the poll have been shown in the Figure 5. As can be seen
in the Table 1, every image was posed with 2 questions.
The questions and the answers proposed have been shown in
columns corresponding to the images in Figure 5. The ground
truth for the respective questions was evaluated against the
answers generated by the pre-trained models.

3) Data Preprocessing- Text Normalisation

Text normalization refers to the process of standardizing and
simplifying text data to ensure that it is consistent and more
easily processed by models [33]. Converting all text to low-
ercase in our experiment to ensure uniformity in capitaliza-
tion, which is particularly useful for models like BERT-base-
uncased and NLI-distilBERT-base that are case-insensitive.
This can be observed in the Table 2 where the models are
performing better after normalisation. It also ensures that
the text input to the models is consistent, helping to avoid
issues where the same word with different capitalization or
punctuation is treated as different tokens. The models BERT,
DistilBERT, and GPT-2 have predefined vocabularies. Text
normalization helps ensure that words in the text match the to-
kens in the model’s vocabulary, preventing out-of-vocabulary
issues.

10 VOLUME 11, 2023



Anonymisedet al.: Subjective Scoring Framework for VQA Models in Autonomous Driving

TABLE 1. Comparison of Responses: Human Answers versus Selected Models

Index Category Image Questions Human Answers ViLBERT ViLT LXMERT

Q1 Dark setting
What are the contents of 
the image?

An Accident Trucks Cars Cars

Q2
What should the driver 
do?

Slow down and go left Run Stop Go

Q3 Light Setting
What are the contents of 
the image?

Traffic Lights Clouds Traffic Lights Power Lines

Q4
What should the driver 
do?

Stop Sleep Stop Stop

Q5 Parking
What are the contents of 
the image?

Parking Lot Clouds Cars Cars

Q6
Can the driver park here? Yes No No Yes

Q7 Signboard
What are the contents of 
the image?

Road Paint Traffic Lights Cars

Q8
What should the driver 
do?

Stop Sleep Stop Go

Q9 Pedestrian Crossing
What are the contents of 
the image?

People crossing the 
road

Clouds Buildings People

Q10
What should the driver 
do?

Stop Run Stop Stop

Q11 Traffic 
What are the contents of 
the image?

Traffic Trucks Buses Buses

Q12
What should the driver 
do?

Go Run Stop Go

Q13 Accident
What are the contents of 
the image?

An Accident Clouds Cars Cars

Q14
What should the driver 
do?

Stop Stop Stop Stop

Q15 Signboard
What are the contents of 
the image?

Road Windows Trees Concrete

Q16
What should the driver 
do?

Wait Sleep Stop Stop

Q17 Roadworks
What are the contents of 
the image?

Traffic Lights Trucks Cars Cars

Q18
What should the driver 
do?

Stop Stop Stop Go

Q19 Men at work
What are the contents of 
the image?

Men at work Trucks People Cars

Q20
What should the driver 
do?

Stop Sleep Stop Stop

Q21 Fallen Signboard
What are the contents of 
the image?

Stop sign fell down Trucks Stop sign Cars

Q22
What should the driver 
do?

Go left Eat Stop Stop

TABLE 2. Results of performance for the three VQA models- ViLT, ViLBERT, and LXMERT by using the metrics- Mean Absolute Error, Root Mean Squared
Error, and Pearson Correlation before and after text normalisation of the dataset used in the Case Study

Before Normalisation:

ViLBERT ViLT LXMERT ViLBERT ViLT LXMERT ViLBERT ViLT LXMERT

NLI-distilbert-base 0.5581 0.4901 0.5241 0.7698 0.7743 0.7427 0.7686 0.6495 0.6588

all-mpnet-base-v2 0.2814 0.2955 0.3961 0.5694 0.6241 0.5697 0.8286 0.7447 0.8215

BERT-base-uncased 0.6464 0.4937 0.5124 0.8264 0.7774 0.7777 0.7077 0.6109 0.5183

GPT2 0.8999 0.6632 0.6633 0.9715 0.8937 0.8929 0.2522 0.3903 0.1952

After Normalisation:

ViLBERT ViLT LXMERT ViLBERT ViLT LXMERT ViLBERT ViLT LXMERT

NLI-distilbert-base 0.5581 0.4901 0.5241 0.7698 0.7743 0.7427 0.7686 0.6495 0.6588

all-mpnet-base-v2 0.2814 0.2955 0.3961 0.5694 0.6241 0.5697 0.8286 0.7447 0.8215

BERT-base-uncased 0.6636 0.4976 0.5259 0.8375 0.7822 0.7841 0.6657 0.6042 0.5321

GPT2 0.9008 0.6617 0.6612 0.9720 0.8926 0.8914 0.3027 0.5497 0.3913

Mean Absolute Error Root Mean Squared Error Pearson Correlation

Mean Absolute Error Root Mean Squared Error Pearson Correlation
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FIGURE 6. Analyzing Semantic Consistency: A graph of Cosine Similarity Values of predicted answers by the chosen VQA Models- ViLBERT, ViLT, and
LXMERT with Ground Truth Across Questions in the Case Study

B. DISCUSSION
The experiment has been divided into two stages, generating
a similarity score for the predicted and Ground Truth Re-
sponses using Cosine Similarity for the chosen VQA mod-
els as shown in Figure 6 and then in the further step, the
subjective score given by the humans is evaluated against
the obtained similarity score using the error-based methods
(RMSE andMAE). Pearson Correlation is used to assess how
closely the predicted answers and ground truth answers are
related as shown in Figure 7.

It must be noted that all the values of cosine similarity lie
in the range [-1,1]. A higher cosine value implies that the
predicted answer by the model is closer to the ground truth
and vice versa. In Figure 6, it can be observed that GPT-2
has given the most unreliable results of all the embedding
models used. The reason for this is that GPT-2 has not been
trained for text similarity or contextuality tasks. We fine-
tuned all the embedding models used in the framework for
text-similarity, it is noted that GPT-2 still performed poorly. It
is primarily a generative model trained on large text corpora
for tasks like text completion and generation. While it can
capture some level of context, it does not performwell in tasks
that require understanding and representing intricate relation-
ships between multiple pieces of text while comparing them.
Additionally, text similarity and contextuality tasks involve

2The D²iCE (Data-Driven Computer Engineering) research group is a
specialized hub that focuses on the convergence of academia and indus-
try to address real-world challenges using AI and ML. For more info:
https://www.d2ice.ie/

consideration of linguistic ambiguity, understanding subtle
nuances, disambiguating complex sentences and assessment
of clustering that may occur in relation to expert responses.
GPT-2, like many language models, may struggle with such
challenges. This has also been highlighted in the values shown
in Tables 3 and 4. However, it can be clearly seen from the
results presented in Figure 7 that if embedding models are
giving bad values (like GPT-2), our framework is able to
identify those anomalies (like false-positives) as shown in the
low Pearson Correlation values of all the three models; ViLT
(0.549661), ViLBERT (0.302661) and LXMERT (0.391322).

Objective questions often require a more factual under-
standing and may benefit from embeddings that capture de-
tailed semantic information. On the other hand, subjective
questions may involve more nuanced understanding and con-
text, where different embeddings might excel. The mean of
all the cosine values to the objective questions (Table 3) helps
us determine that ViLT has performed well with BERT-base-
uncased embeddings (0.76) whereas for subjective questions
(Table 4), it has been observed that ViLT performed better
with NLI-distilbert-base embeddings (0.9140). DistilBERT
models, including NLI-distilbert, are often designed to be
more computationally efficient while retaining much of the
performance of the larger BERT models. If the task involves
natural language inference as is the case for subjective ques-
tions, the embeddings from NLI-distilbert might be partic-
ularly well-suited for capturing the relationships between
premises and hypotheses. BERT embeddings are better suited
for capturing the nuances and details in the context of objec-
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TABLE 3. Analyzing Semantic Consistency of objective questions: Cosine Similarity Values of predicted answers by the chosen VQA Models- ViLBERT, ViLT,
and LXMERT with Ground Truth Across Questions in the Case Study

Index

NLI-

distilbert-

base

all-mpnet-

base-v2

BERT-base-

uncased
GPT2

NLI-

distilbert-

base

all-mpnet-

base-v2

BERT-base-

uncased
GPT2

NLI-

distilbert-

base

all-mpnet-

base-v2

BERT-base-

uncased
GPT2

Q1 0.4840 0.2878 0.7966 0.9948 0.5147 0.3366 0.7882 0.9845 0.5147 0.3366 0.7882 0.9845

Q3 0.6348 0.3306 0.7319 0.9922 1.0000 1.0000 1.0000 1.0000 0.5294 0.3505 0.7618 0.9972

Q5 0.5136 0.2929 0.7111 0.9914 0.7757 0.4340 0.7094 0.9819 0.7757 0.4340 0.7094 0.9819

Q7 0.5391 0.2253 0.8271 0.9862 0.7453 0.3854 0.6906 0.9817 0.7518 0.4769 0.8338 0.9946

Q9 0.5763 0.0326 0.5781 0.9832 0.6114 0.0624 0.5973 0.9883 0.5972 0.3048 0.5327 0.9810

Q11 0.6514 0.5252 0.8696 0.9963 0.6968 0.5011 0.8633 0.9970 0.6968 0.5011 0.8633 0.9970

Q13 0.5827 0.2011 0.8071 0.9944 0.5147 0.3366 0.7882 0.9845 0.5147 0.3366 0.7882 0.9845

Q15 0.6738 0.1679 0.8318 0.9958 0.6161 0.3123 0.7896 0.9895 0.6587 0.3428 0.8340 0.9785

Q17 0.5504 0.4700 0.7562 0.9944 0.7231 0.4897 0.7448 0.9823 0.7231 0.4897 0.7448 0.9823

Q19 0.4442 0.2059 0.6228 0.9899 0.5959 0.2346 0.5912 0.9801 0.3849 0.1334 0.6307 0.9725

Q21 0.4839 0.2099 0.6330 0.9939 0.8764 0.6741 0.7974 0.9956 0.4198 0.1807 0.6003 0.9864

Mean 0.5577 0.2681 0.7423 0.9920 0.6973 0.4333 0.7600 0.9878 0.5970 0.3534 0.7352 0.9855

ViLBERT ViLT LXMERT

tive questions, resulting in a higher mean cosine similarity for
ViLT performance. It’s understandable for different embed-
dings to excel in different aspects of language understanding,
and the optimal choice may vary depending on the specific
context and goals of the task at hand.

Models like BERT and its variants have been fine-tuned
for tasks like semantic textual similarity and context-based
question answering which can be seen in our results as well.
Considering the current dataset of images and questions in the
case study, it is observed that LXMERT with all-mpnet-base-
v2 embeddings is the best model for the experiment which
has been shown in the graph in Figure 6.

This assertion gains additional credence when we con-
sider the comprehensive evaluation of the models using key
metrics- Pearson Correlation, RMSE, and MAE, as visual-
ized in Figure 7. LXMERT equipped with all-mpnet-base-
v2 embeddings stands out as the top-performing model for
the conducted experiment. A high positive value of the Pear-
son correlation coefficient (0.82150878) in VQA indicates a
strong positive linear relationship between the model’s pre-
dicted answers and the ground truth answers. This suggests
that the model’s answers agree with the ground truth, and
the model is performing well in terms of providing accurate
responses to the questions posed about images. Consequently,
a low MAE (0.39607018) and RMSE (0.56971988) indicate
that the model’s responses are accurate and exhibit minimal
deviation from the ground truth answers. Finer precision
values of all our results can be referred at our GitHub page.

VI. LIMITATIONS AND BIASES
The proposed subjective scoring framework and its appli-
cation in VQA models have some limitations and potential
biases that have been considered and mitigated:

• Human Annotation Bias: The reliance on human-
annotated Ground Truth Answers introduces the poten-
tial for bias based on individual annotators’ perspec-
tives. Variability in human interpretation and subjectiv-
ity may influence the benchmark against which Model-
Generated answers are evaluated. To overcome this lim-

itation, we used multiple human annotators and selected
the most voted answer to mitigate the impact of individ-
ual subjectivity, aiming for a more robust and reliable
benchmark as discussed in Figure 5 .

• Subjective Nature of Scoring: Subjective scoring itself
introduces a level of ambiguity and subjectivity. The
assignment of numerical scores by human annotators
may vary, leading to potential inconsistencies. Inter-
rater reliability measures can mitigate this, but some
subjectivity is inherent in the scoring process.

• Text Embedding Techniques: Different embedding
models may capture semantic information differently,
and the chosen models may not perfectly represent the
complexity of subjective language, impacting the over-
all effectiveness of similarity assessment. However, we
attempt to offer a comprehensive analysis of textual data
pairs, balancing performance and accessibility in the
subjective scoring framework by using both GPT-2 and
BERT.

• Computational Cost: The use of complex transformer
models like BERT and GPT-2 comes with high compu-
tational costs, limiting scalability for large datasets or
real-time applications. This could hinder the practicality
of the framework in certain contexts. To mitigate this,
we have used publicly available pre-trained models in
our framework which is open access and can even be run
on 2 CPU cores and 2.30 GHz of CPU Frequency. The
framework is accessible in the form of a Google Colab
notebook on our GitHub page.

VII. CONCLUSION AND FUTURE WORK
In this work, a framework that can analyse the predictions
generated by VQA models based on subjective and semantic
attributes of the answers has been developed. The subjective
analysis is aggregated using four(4) types of embeddings
from natural language processing models and sentence simi-
larity benchmark metrics.
Subjective questions typically involve nuanced aspects in-

cluding contextual dependencies, the existence of multiple
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TABLE 4. Analyzing Semantic Consistency of subjective questions: Cosine Similarity Values of predicted answers by the chosen VQA Models- ViLBERT, ViLT,
and LXMERT with Ground Truth Across Questions in the Case Study

Index

NLI-

distilbert-

base

all-mpnet-

base-v2

BERT-base-

uncased
GPT2

NLI-

distilbert-
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GPT2
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all-mpnet-
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BERT-base-
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Q2 0.6229 0.3196 0.5066 0.9719 0.8205 0.3411 0.4242 0.9709 0.7450 0.2795 0.4475 0.9679

Q4 0.6758 0.3008 0.7127 0.9958 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Q6 0.7635 0.7000 0.8548 0.9646 0.7635 0.7000 0.8548 0.9931 1.0000 1.0000 1.0000 1.0000

Q8 0.6758 0.3008 0.7127 0.9958 1.0000 1.0000 1.0000 1.0000 0.8327 0.2864 0.9010 0.9966

Q10 0.6164 0.3277 0.8455 0.9977 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Q12 0.8564 0.4228 0.8579 0.9990 0.8327 0.2864 0.9010 0.9966 1.0000 1.0000 1.0000 1.0000

Q14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Q20 0.6758 0.3008 0.7127 0.9958 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Q22 0.5814 0.1879 0.6652 0.9851 0.8477 0.2848 0.7223 0.9856 0.8477 0.2848 0.7223 0.9856

Mean 0.7404 0.4765 0.7727 0.9913 0.9140 0.7231 0.8870 0.9948 0.9135 0.6799 0.8934 0.9949
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FIGURE 7. Comprehensive overview of performance for the three VQA models- ViLT, ViLBERT and LXMERT by using the metrics- Mean Absolute Error, Root
Mean Squared Error and Pearson Correlation. The red dotted line is used to show the most significant values obtained.

’correct’ answers, the clustering of responses around differ-
ent correct answers and a consideration of individual pref-
erences in terms of autonomous driving. The framework
proposed is instrumental in discerning the areas where the
models might fail, guiding subsequent refinement efforts to
improve their performance. In real-world applications, users
frequently pose subjective questions that necessitate a good
comprehension of context and consequently warrant nuanced
responses.

It has been noted that even a question like ‘what are the
contents of the image?’ has a great deal of subjectivity, which
could become much more of an issue when case study re-
sponses are taken from a larger, more general subset of the
population. As humans, we tend to say what the contents
are in the context of the scenario. For example, in a driving
scene, we will look at the road contents,rather than saying
‘buildings and windows’ in their background. However, this
is not the same for a VQAmodel which depends on its’ object
detection algorithm for the contents of the image presented.
The authors intend to conduct a simulated study that will
have human researchers drive in the same environment as the
pictures provided to the VQA model and observe what the
humans percieve when they are in the driving seat and how
similar or different it is to the observations of a VQA model.
This will help us assess on training the object detection part of

a VQAmodel exactly to the needs of a driver when presented
with a driving scenario. The authors also intend to consider
how this ambiguity can be formally addressed by assessing
the optimisation question that arises when a vector of cosine
similarities is computed with reference to a range of expert
responses.

The design of VQA systems for driving should invariably
prioritize the end-users and their expectations of obtaining
coherent and contextually relevant responses. The framework
proposed contributes to meeting these different and some-
times diverse expectations, leading to a methodology that can
support a diverse range of meaningful VQA interactions.

Furthermore, standardizing the evaluation process facili-
tates benchmarking and comparative analyses across different
VQA models. Researchers can leverage this framework to
scrutinize model enhancements, propelling advances within
the evolving landscape of VQA models.

For future work, we are actively applying the proposed
framework to assess the performance of variousVQAmodels,
including both pre-trained and finetuned models using a driv-
ing dataset (Nuscenes). The incorporation of the subjective
scoring framework enhances our ability to conduct a nuanced
and thorough analysis of a VQA model’s effectiveness in
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capturing the details of visual information 3 related to driving
scenarios.

We are also exploring different applications. For example,
we are also working on using the framework to assess a
VQA model that can detect defects on mobile screens, for
instance, scratches, cracks, etc. We are also working on using
the framework to assess a VQA model that can detect defects
onmobile screens, for instance, scratches, cracks, etc. The ob-
jective of the project is to finetune the training and validation
process for the specific question of screen defect detection
so that there is a rigorous parameter-based data collection
procedure for handling false positives or negatives that may
be identified by a model in a real-time setting.
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