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A SUPPLEMENTARY SUMMARY

We state the assumptions in Appendix.B. We provide the technique details appearing in Section.3
at Appendix.C. The details of the experiments can be found in Appendix.D. The visualization of
generated figures can be found in Appendix.E.

B ASSUMPTIONS

We will use the following assumptions to construct the proposed method. These assumptions are
adopted from stochastic analysis for SGM (Song et al., 2021; Yong & Zhou, 1999; Anderson, 1982),

(i) p0 and p1 with finite second-order moment.
(ii) gt is continuous functions, and |g(t)|2 > 0 is uniformly lower-bounded w.r.t. t.

(iii) ∀t ∈ [0, 1], we have ∇v log pt(mt, t) Lipschitz and at most linear growth w.r.t. x and v.

Assumptions (i) (ii) are standard conditions in stochastic analysis to ensure the existence-uniqueness
of the SDEs; hence also appear in SGM analysis (Song et al., 2021).

C TECHNIQUE DETAILS IN SECTION.3

C.1 BROWNIAN BRIDGE AS THE SOLUTION OF STOCHASTIC OPTIMAL CONTROL

We adopt the presentation form Kappen (2008). We consider the control problem:

min
vt

∫ 1

t0

1

2
∥vt∥22dt+

r

2
∥x1 − x1∥22

s.t. dxt = vtdt, x0 = x0

Where r is the terminal cost coefficient. According to Pontryagin Maximum Principle (PMP;Kirk
(2004)) recipe, one can construct the Hamiltonian:

H(t,x,v, γ) = −1

2
∥vt∥22 + γvt

Hence the optimized Hamiltonian is:

H(t,x,v, γ)∗ =
1

2
γ2, where vt = γ

Then we solve the Hamiltonian equation of motion:
dxt

dt
=

∂H∗

∂γ
= γ

dγ
dt

=
∂H∗

∂x
= 0

where x0 = x0 and γ1 = −r · (x1 − x1)

One can notice that the solution for γt is the constant γt = γ = −r · (x1 − x1), hence the solution
for xt is xt = x1 + γt.

γ = −r(x1 − x1) = −r(x0 + (1− t0)γ − x1)

→ v∗
t := γ =

r(x1 − x0)

1 + r(1− t0)

When r → +∞, we arrive the optimal control as v∗
t = x1−x0

1−t0
. Due to certainty equivalence, this is

also the optimal control law for

dxt = vtdt+ dwt

12
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By plugging it back into the dynamics, we obtain the well-known Brownian Bridge:

dxt =
x1 − xt

1− t
dt+ gtdwt

C.2 PROOF OF PROPOSITION.3

Lemma 6. The solution of following Lyapunov equation,

Ṗ = AP+PAT − ggT (12)

with terminal condition

PT =

[
0 0
0 R

]
(13)

is given by

Pt =

[
r(t− 1)2 − 1

3g
2(t− 1)3 r(t− 1)− 1

2g
2(t− 1)2

r(t− 1)− 1
2g

2(t− 1)2 g2(1− t) + r

]
and the inverse of Pt is,

P−1
t =

1

g2(−4r + g2(t− 1))(t− 1)

[
12(r−g2(t−1))

(t−1)2
6(−2r+g2(t−1))

t−1
6(−2r+g2(−1+t))

t−1 12r − 4g2(t− 1)

]

When A =

[
0 1
0 0

]
, g =

[
0
g

]
and R = rI.

Thus,

P10 =
−12r + 6g2(t− 1)

g2[−4r + g2(t− 1)](t− 1)2
=

−12r

g2[−4r + g2(t− 1)](t− 1)2
+

6

[−4r + g2(t− 1)](t− 1)

P11 =
12r − 4g2(t− 1)

g2[−4r + g2(t− 1)](t− 1)
=

12r

g2[−4r + g2(t− 1)](t− 1)
+

−4

[−4r + g2(t− 1)]

Proof. One can plug in the solution of Pt into the Lyapunov equation Pt and it validates Pt is
indeed the solution.

Remark 7. Here we provide a general form when the terminal condition of the Lyapunov function
is not a zero matrix. It explicitly means that it allows that the velocity does not necessarily need to
converge to the exact predefined v1. It will have the same results as shown in the paper by setting
r = 0.

Lemma 8. The state transition function Φ(t, s) of following dynamics,

dmt =

[
0 1
0 0

]
mtdt

is,

Φ(t, s) =

[
1 t− s
0 1

]

Proof. One can easily verify that such Φ satisfies ∂Φ/∂t =
[
0 1
0 0

]
Φ.
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Lemma 9 (Chen & Georgiou (2015)). The optimal control u∗
t of following problem,

u∗
t ∈ argmin

ut∈U
E

[∫ T

0

1

2
∥ut∥2

]
dt

s.t dmt =

[
0 1
0 0

]
mtdt+ utdt+ gdwt

m0 = m0, m1 = m1

is given by

u∗
t = −ggTP−1

t (mt − Φ(t, 1)m1)

Where Pt follows Lyapunov equation (eq.12) with boundary condition P1 = 0. and function Φ(t, s)
is the transition matrix from time-step s to time-step t given uncontrolled dynamics.

Proof. See Chen & Georgiou (2015).

Proposition 10. The solution of the stochastic bridge problem of linear momentum system (Chen &
Georgiou, 2015) is

a∗(mt, t) = g2tP11

(
x1 − xt

1− t
− vt

)
where : P11 =

−4

g2t (t− 1)
. (14)

Proof. From Lemma.9, one can get the optimal control for this problem is

u∗
t = −ggTP−1

t (mt − Φ(t, 1)m1)

where state transition function Φ can be obtained from Lemma.8 and Pt is the solution of Lyapunov
equation and P−1

t can be found in Lemma.6.

Then we have:

u∗
t = −ggTP−1

t (mt − Φ(t, 1)m1)

= −ggTP−1
t mt + ggTP−1

t Φ(t, 1)m1

= −
[
0 0
0 g2

]
P−1

t mt + ggTP−1
t

[
1 t− 1
0 1

]
m1

= −g2t

[
0 0
P10 P11

]
mt +

[
0 0
0 g2t

] [
P00 P01

P10 P11

] [
1 t− 1
0 1

]
m1

= −g2t

[
0 0
P10 P11

]
mt + g2t

[
0 0
P10 P11

] [
1 t− 1
0 1

]
m1

= −g2t

[
0 0
P10 P11

]
mt + g2t

[
0 0
P10 P10(t− 1) + P11

]
m1

=

[
0

g2tP10(x1 − xt) + g2tP10(t− 1) · v1 + g2tP11(v1 − vt)

]
Plug in v1 :=

x1 − xt

1− t

=

[
0

g2tP11

(
x1−xt

1−t − vt

)]

14
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C.3 MEAN AND COVARIANCE OF SDE

We follow the recipe of Särkkä & Solin (2019). The mean µt and variance Σt of the matrix of
random variable mt obey the following respective ordinary differential equations (ODEs):

dµt = Ftµtdt+Dtdt

dΣt = FtΣtdt+ [ΣtFt]
T dt+ ggTdt

One can solve it by numerically simulating two ODEs whose dimension is just two. Or one can use
software such as Inc. (2022) to get analytic solutions.

C.4 DERIVATION FROM SDE TO ODE FOR PHASE DYNAMICS

One can represent the dynamics in the form of,[
dxt

dvt

]
=

[
vt

Ft

]
dt+

[
0 0
0 gt

]
dwt s.t m0 :=

[
x0

v0

]
∼ N (µ0,Σ0) (15)

as
dmt = f(mt)dt+ gtdwt

And its corresponding Fokker-Planck Partial Differential Equation Øksendal (2003) reads,

∂pt
∂t

= −
∑
d

∂

∂mi
[fi(m, t)pt(mt)] +

1

2

∑
d

∂2

∂mimj

[∑
d

gtg
T
t pt(mt)

]
(16)

According to eq.(37) in Song et al. (2020b), One can rewrite such PDE,
∂pt
∂t

= −
∑
d

∂

∂mi

{
fi(mt, t)pt(mt)−

1

2

[
∇m · (gtg

T
t ) + gtg

T
t ∇m log p(mt)

]}
(17)

due to the fact gt ≡
[
0 0
0 gt

]
(18)

= −
∑
d

∂

∂mi

{
fi(mt, t)pt(mt)−

1

2

[
g2t∇v log p(mt)

]}
(19)

Then one can get the equivalent ODE:

dmt =

[
f(mt, t)−

1

2
g2t∇v log p(m, t)

]
dt+ gtdwt (20)

C.5 DECOMPOSITION OF COVARIANCE MATRIX AND REPRESENTATION OF SCORE

Here we follow the procedure in Dockhorn et al. (2021). Given the covariance matrix Σt, the
decomposition of the positive definite symmetric matrix is,

Σt = LT
t Lt (21)

Where,

Lt =

[
Lxx
t Lxv

t
Lxv
t Lvv

t

]
=

[√
Σxx

t 0
Σxv

t√
Σxx

t

√
Σxx

t Σvv
t −Σvv

t

Σxx
t

]
(22)

We borrow results from Dockhorn et al. (2021), the score function reads,

∇m log p(mt|m1) = −∇mt

1

2
(mt − µt)Σt

−1(mt − µt)

= −Σt
−1(mt − µt)

Cholesky decomposition of Σt

= −L−TL−1(mt − µt)

= −L−T ϵ

15
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The form of L reads,

Lt =

[√
Σxx

t 0
Σxv

t√
Σxx

t

√
Σxx

t Σvv
t −(Σxv

t )2

Σxx
t

]
and the transpose inverse of L reads,

L−T
t =

 1√
(Σxx

t +ϵxx)

−Σxv
t√

(Σxx
t )

√
(Σxx

t )(Σvv
t +)−(Σxv

t )2

0

√
Σxx

t√
(Σxx

t )(Σvv
t )−(Σxv

t )2


Hence, the score function reads,

∇v log p(mt|m1) = −
√

Σxx
t√

(Σxx
t + ϵxx)(Σvv

t + ϵvv)− (Σxv
t )2︸ ︷︷ ︸

ℓt

ϵ1

C.6 REPRESENTATION OF ACCELERATION at

As been shown in Proposition.3, the optimal control can be represented as,

a∗t = g2tP11

(
x1 − xt

1− t
− vt

)
= g2tP11

x1

1− t
− g2tP11

(
xt

1− t
+ vt

)
= g2tP11

x1

1− t
− g2tP11

(
µx
t + Lxx

t ϵ0
1− t

+ (µv
t + Lxv

t ϵ0 + Lvv
t ϵ1)

)
= g2tP11

[(
x1 − µx

t

1− t
− µv

t

)
−
(

Lxx
t

1− t
ϵ0 + Lxv

t ϵ0 + Lvv
t ϵ1

)]
solving eq.C.3 we can get : xt =

1

3
x1t

2(t2 − 4t+ 6),vt =
4tx1

3
(t2 − 3t+ 3)

Plug inxt,vt

= g2tP11

[(
x1 − 1

3x1t
2
(
6− 4t+ t2

)
1− t

− 4tx1

3
(t2 − 3t+ 3)

)
−
(

Lxx
t

1− t
ϵ0 + Lxv

t ϵ0 + Lvv
t ϵ1

)]

= g2tP11

[(
(−t4 + 4t3 − 6t2 + 3)

3(1− t)
− 4t

3
(t2 − 3t+ 3)

)
x1 −

(
Lxx
t

1− t
ϵ0 + Lxv

t ϵ0 + Lvv
t ϵ1

)]
= g2tP11

[(
−(t− 1)(t3 − 3t2 + 3t+ 3)

3(1− t)
− 4t

3
(t2 − 3t+ 3)

)
x1 −

(
Lxx
t

1− t
ϵ0 + Lxv

t ϵ0 + Lvv
t ϵ1

)]
= g2tP11

[(
(t3 − 3t2 + 3t+ 3)

3
− 1

3
(4t3 − 12t2 + 12t)

)
x1 −

(
Lxx
t

1− t
ϵ0 + Lxv

t ϵ0 + Lvv
t ϵ1

)]
= g2tP11

[
(1− t)3x1 −

(
Lxx
t

1− t
ϵ0 + Lxv

t ϵ0 + Lvv
t ϵ1

)]
= 4(1− t)2x1 + g2tP11

(
Lxx
t

1− t
ϵ0 + Lxv

t ϵ0 + Lvv
t ϵ1

)

C.7 REPRESENTATION OF ACCELERATION at

We use

λ(t) =
1

1− t
For all experiments. We admit that this might not be an optimal selection.
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C.8 NORMALIZER OF AGM-SDE AND AGM-ODE

Since the optimal control term can be represented as,

a∗(mt, t) = 4x1(1− t)2 − g2tP11

[(
Lxx
t

1− t
+ Lxv

t

)
ϵ0 + Lvv

t ϵ1

]
.

Then we introduce the normalizer as

zSDE =

√√√√(4(1− t)2 · σdata)2 + g2tP11

[(
Lxx
t

1− t
+ Lxv

t

)2

+ (Lvv
t )2

]

zODE =

√√√√(4(1− t)2 · σdata)2 + g2tP11 + g2tP11

(
Lxx
t

1− t
+ Lxv

t

)2

+

[(
g2tP11Lvv

t − 1

2
g2t ℓt

)2
]

Where ℓ :=
√

Σxx
t

Σxx
t Σvv

t −(Σxv
t )2

C.9 EXPONENTIAL INTEGRATOR DERIVATION

As suggested by Zhang & Chen (2022), one can write the discretized dynamics as,[
xti+1

vti+1

]
= Φ(ti+1, ti)

[
xt

vt

]
+

r∑
j=0

Ci,j

[
0

sθ(mti−j , ti−j)

]

Where Ci,j =

∫ t+δt

t

Φ(t+ δt, τ)

[
0 0
0 zτ

]∏
k ̸=j

[
τ − ti−k

ti−j − ti−k

]
dτ, Φ(t, s) =

[
1 t− s
0 1

] (23)

After plugging in the transition kernel Φ(t, s), one can easily obtain the results shown in (10).

C.10 PROOF OF PROPOSITION.5

The estimated data point x1 can be represented as

x̃SDE
1 =

(1− t)(Fθ
t + vt)

g2tP11
+ xt, or x̃ODE

1 =
Fθ

t + g2tP11(αtxt + βtvt)

4(t− 1)2 + g2tP11(αtµx
t + βtµv

t )
(24)

for SDE and probablistic ODE dynamics respectively, and βt = Lvv
t + 1

2P11
,αt =

(
Lxx
t

1−t +Lxv
t )−βtL

xv
t

Lxx
t

.

Proof. It is easy to derive the representation of x1 of the SDE due to the fact that the network is
essentially estimating:

Fθ
t ≈ g2tP11

(
x1 − xt

1− t
− vt

)
⇔ x1 ≈ (1− t)(Fθ

t + vt)

g2tP11
+ xt

It will become slightly more complicated for probabilistic ODE cases. We notice that

mt = µt + Lϵ

⇔ xt = µx
t + Lxx

t ϵ1, vt = µv
t + Lxv

t ϵ0 + Lvv
t ϵ1

In probabilistic ODE case, the force term can be represented as,

F(mt, t) = 4x1(1− t)2 − g2tP11

[(
Lxx
t

1− t
+ Lxv

t

)
ϵ0 + Lvv

t ϵ1

]
− 1

2
g2t ℓϵ1

17
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In order to use linear combination of xt and vt to represent F one needs to match the stochastic
term in Ft by using

αtL
xx
t + βtL

xv
t =

Lxx
t

1− t
+ Lxv

t︸ ︷︷ ︸
At

,

βtL
vv
t = Lvv

t +
1

2P11︸ ︷︷ ︸
Bt

.

The solution can be obtained by:

βt =
Bt

Lvv
t

αt =
At − βtL

xv
t

Lxx
t

By subsitute it back to Ft, one can get:

F(mt, t) = 4x1(1− t)2 − g2tP11 [αt(xt − µx
t ) + βt(vt − µv

t )]

=
[
4(1− t)2 + g2tP11(αtµ

x
t + βtµ

v
t )
]
x1 − g2tP11 [αtxt + βtvt]

⇔ x1 =
Fθ

t + g2tP11(αtxt + βtvt)

4(t− 1)2 + g2tP11(αtµx
t + βtµv

t )

D EXPERIMENTAL DETAILS

Training: We stick with hyperparameters introduced in the section.4. We use AdamW(Loshchilov
& Hutter, 2017) as our optimizer and Exponential Moving Averaging with the exponential decay
rate of 0.9999. We use 8 × Nvidia A100 GPU for all experiments. For further, training setup, please
refer to Table.6.

Table 6: Additional experimental details

dataset Training Iter Learning rate Batch Size network architecture
toy 0.05M 1e-3 1024 ResNet(Dockhorn et al., 2021)

CIFAR-10 0.5M 1e-3 512 NCSN++(Karras et al., 2022)
AFHQv2 0.5M 1e-3 512 NCSN++(Karras et al., 2022)

ImageNet-64 0.8M 2e-4 512 ADM(Dhariwal & Nichol, 2021)

Sampling: For Exponential Integrator, we choose the multistep order w = 2 consistently for all
experiments. Different from previous work (Dockhorn et al., 2021; Karras et al., 2022; Zhang et al.,
2023), we use quadratic timesteps scheme with κ = 2:

ti =

(
N − i

N
t

1
κ
0 +

i

N
t

1
κ

N

)κ

Which is opposite to the classical DM. Namely, the time discretization will get larger when the
dynamics is propagated close to data. For numerical stability, we use t0 = 1E−5 for all experiments.
For NFE = 5, we use tN = 0.5 and NFE = 10, TN = 0.7. For the rest of the sampling, we use
tN = 0.999.

Due to the fact that EDM(Karras et al., 2022) is using second-order ODE solver, in practice, we
allow it to have an extra one NFE as reported for all the tables.
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E ADDITIONAL FIGURES

We demonstrate the samples for different datasets with varying NFE.

E.1 CIFAR-10

Figure 7: AGM-ODE Uncurated CIFAR-10 samples with NFE=5
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Figure 8: AGM-ODE Uncurated CIFAR-10 samples with NFE=10
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Figure 9: AGM-ODE Uncurated CIFAR-10 samples with NFE=20
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Figure 10: AGM-ODE Uncurated CIFAR-10 samples with NFE=50
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E.2 AFHQV2

Figure 11: AGM-ODE Uncurated CIFAR-10 samples with NFE=5
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Figure 12: AGM-ODE Uncurated CIFAR-10 samples with NFE=10
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Figure 13: AGM-ODE Uncurated CIFAR-10 samples with NFE=20
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Figure 14: AGM-ODE Uncurated CIFAR-10 samples with NFE=50
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E.3 IMAGENET-64

Figure 15: AGM-ODE Uncurated CIFAR-10 samples with NFE=10
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Figure 16: AGM-ODE Uncurated CIFAR-10 samples with NFE=20
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Figure 17: AGM-ODE Uncurated CIFAR-10 samples with NFE=50
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