
A The Embeddings

In this section, we briefly introduce the four kinds of emebddings consists the fusion embedding.

Positional embedding. The goal of position embedding module is to calibrate the position of each
time point in the sequence so that the self-attention mechanism can recognize the relative positions
between different time points in the input sequence. The positional embedding method we use is the
same as [9]: EP (pos, 2i) = sin(pos/100002i/d)EP (pos, 2i+1) = cos(pos/100002i/d), where pos
refers to the position in the input sequence, i 2 [0, ..., d/2] denotes to embedding feature dimension,
and d denotes the feature dimensions of the layer modules.

Token embedding. We design the token embedding module in order to enrich the features of each
time point by fusion of other features from the adjacent time points within a certain interval. We use
Conv1D operation along the time dimension to perform token embedding [31], thus providing more
effective information and reference for the subsequent computation of the self-attention mechanism:

EV = Conv1D(X) . (3)

Spatial embedding. The role of spatial embedding is to locate and encode the spatial locations of
different nodes, by which each node at different location possesses a unique spatial embedding. Thus,
it enabling the model to identify nodes in different spatial and temporal planes after the dimensionality
is compressed in the later computation. The spatial embedding module stores a learnable vector for
each differently numbered node as follows:

ES = Embed(nodes) , (4)

where nodes refers to the list of node numbers. [25] also introduces similar spatial embeddings. For
N nodes, ES 2 RN⇥d.

Temporal embedding. Temporal embedding aims to map the temporal attributes inherent to the ST
sequence into a matrix that serves as an informative complement to the original data. The temporal
features that can be extracted from the timestamp include the day-of-week, the time-of-day, and the
hour, minute, and other features of the time point. The various temporal features are normalized
by value

0 = value/max(value)� 0.5 scaling it to the range [-0.5, 0.5]. The normalized temporal
features are then concatenated as a matrix and projected by another learnable matrix to obtain the
corresponding temporal embedding:

ET = (concat[TDoW , TToD, THour, Tminute]WT ) , (5)

where TDoW , TToD, THour, Tminute represents different normalized temporal features that indicate
the day-of-week, the time-of-day, the hours, and the minutes, respectively. WT 2 Rd⇥4 denotes a
learnable projection matrix.

B Experiment Details

Dataset Task Spatial info. # Sensors # Time slices Time span

METR-LA speed distance 207 6519002 2012/03/01 - 2021/06/30
PEME-BAY speed distance 325 16937179 2017/01/01 - 2017/03/31

PEMS-03 flow connectivity 358 9382464 2018/09/01 - 2018/11/30
PEMS-04 flow connectivity 307 5216544 2018/01/01 - 2018/02/28
PEMS-08 flow connectivity 170 3035520 2016/07/01 - 2016/08/31

Table 3: Statistics of the datasets.

B.1 Data Preprocessing

Given the original dataset, we first conduct data preprocessing to build the spatial relationship,
normalize the inputs and split the dataset for training and testing.

Spatial relationship building. We organize the given relationships in the datasets as graphs. (1) For
datasets which providing distance information between nodes, we construct the adjacency matrix

14



Figure 9: The forecasting visualization in one day of PEMS-BAY dataset.

using a thresholded Gaussian kernel [13] as shown in the formula: Aij = exp
⇣
�dist(vi,vj)

2

�2

⌘
if

dist (vi, vj) < k, else Aij = 0, where dist (vi, vj) represents the distance between node i and node
j, k denotes the threshold. (2) For dataset with only connectivity information between nodes, we use
the connectivity matrix to construct an adjacency matrix. If there is a direct connection between node
i and node j, Aij will be set to 1, and if the two nodes are not directly connected, it will be set to 0.

Data normalization. We normalize the ST sequence using the Z-score normalization so that the
model can be better trained and converged, and its definition is shown as: X 0 = X�X̄

� , where X̄ , �
denotes the mean and standard deviation of the original data.

Dataset split. We first split the sequence data in chronological order, taking the first 70% of the
original complete sequence as the training set, the next 10% as the validation set, and the last
20% as the test set. After the splitting of each part, the long sequence needs to be divided into
multiple subsequences with fixed lengths, which are served as model inputs and labels. The final
train/validation/test set consists of these fixed length subsequences. Among them, random operations
can be performed to disrupt the order of the subsequences for the training set and the validation set,
and the order of the subsequences is maintained for the test set.

B.2 Spatio-temporal Sequence Forecasting Task Design

In order to fully test the forecasting ability of the model for short-term, medium-term and long-term
sequences variation and the effectiveness of spatio-temporal representation learning, we conduct
experiments on two traffic speed datasets, METR-LA and PEMS-BAY to predict the data variation of
each sensor in the next 15 minutes, 30 minutes and 60 minutes. In order to test the model’s ability to
learn and forecast the long-term dependence of the ST sequence, we conduct experiments to predict
the data variation of each sensor in the next hour on three traffic flow datasets PEMS-03/04/08.

B.2.1 Metrics

The evaluation metrics we use are Root Mean Square Error (RMSE), Mean Absolute Error (MAE),
and Mean Absolute Percentage Error (MAPE). They are calculated as follows:

RMSE(Ŷ , Y ) =

vuut 1

M

MX

i=1

⇣
Ŷl � Yi

⌘2
,

MAE(Ŷ , Y ) =
1

M

MX

i=1

���Ŷl � Yi

��� ,

MAPE(Ŷ , Y ) =
100%

M

MX

i=1

�����
Ŷl � Yi

Yi

����� .

(6)

15



where M denotes the total sample number.

B.2.2 Baseline Methods

We compared a variety of models and algorithms including statistical methods, traditional machine
learning methods, commonly used deep learning methods, and the latest researches.

VAR [18]: Vector Autoregressive Model, a statistical model for multi-sequence forecasting.

SVR [4]: Support Vector Regression, a machine learning model for regression forecasting using
linear support vector machines.

ARIMA [2]: Autoregressive Differential Moving Average Model, a statistical model for time series
forecasting.

WaveNet [20]: A fully connected convolutional network for processing audio sequence data.

DCRNN [13]: Diffusion convolution is introduced into the recurrent neural network kernel, which
enables the network to deal with spatial relationships and realize the ST sequence forecasting.

STGCN [26]: Combines 1D convolution with graph convolution and uses a sequence-to-sequence
structure to process ST sequence data.

Graph WaveNet [23]: Using dilated 1D convolution to obtain the time-series dependencies within
the sequence, and use the adaptive matrix to enhance the spatial relationship. And it uses diffusion
convolution to obtain the ST sequence forecasting. It is represented by G.WaveNet in the table of
experimental results.

STFGNN [12]: Simultaneous acquisition of local and global spatio-temporal correlations is achieved
by fusing a dilated convolutional neural network with gating mechanism and a spatio-temporal fusion
graph module.

GMAN [29]: First obtain the graph representation by performing random walks on the graph, and
then obtain the spatio-temporal features separately through the Encoder-Decoder structure similar to
the Transformer model using independent temporal and spatial attention modules, and then the ST
sequence representation is obtained by gating network fusion.

B.3 Experiments on Computation Resource Consumption

B.3.1 Running Time

We compare the training and inference time consumption of our proposed method with various deep
learning methods. The experiment is conducted on PEMS-BAY dataset. The speed of baseline
methods are from their respective published papers, or calculated with their recommended parameters.
The proposed methods all use a 3-layer model structure, and the dimension of each core vector
representation is set to 32. The experiments recorded the time for the model to complete one epoch
in the training phase, including forwarding and backpropagation, and the time to complete the entire
prediction on the test set. The results are shown as lines in Fig.10. Experiment results show that
compared with the GMAN model that also uses the self-attention mechanism and the state-of-the-art
method STFGNN, the model proposed in this paper has greatly improved the training speed, and is
second only to the STGCN model in the overall training speed. In terms of inference speed, since
both the STGCN model and the DCRNN model use a step-by-step dynamic decoding method, it
will cause accumulated errors and increase the time overhead. Our proposed model performs better
inference speed, second only to the Graph WaveNet and GMAN models.

For the two types of AutoST, we report the overall searching time in Table 4. Compared to timings in
Fig.10, AutoST1 and AutoST2 take much longer time due to the search process, but a few hours are
still acceptable. In real-world application, there are commonly two situations: (1) For a known task
with new data, the model can directly use the former searched model architecture, and AutoST have
comparable timing as other baselines. (2) For a new task, the model does not know the spatio-temporal
model architecture, and needs to search it once.

16



Figure 10: The training/inference time (lines) and the parameter number (bars) of the models.

Table 4: The searching time of AutoST.
Search Time (h) AutoST1 AutoST2

METR-LA (60min) 1.50 2.76
PEMS-BAY (60min) 3.74 5.97
PEMS-03 (60min) 1.63 3.01
PEMS-04 (60min) 0.87 1.53
PEMS-08 (60min) 0.45 0.88

B.3.2 Parameter Number

We also conduct experiments on METR-LA and PEMS-BAY datasets to count the parameter numbers
of each model. The results of comparison methods are acquired from published paper/code, or use
their recommended setting to conduct statistics. The results are shown as bars in Fig.10. The results
show that our proposed model has a relatively more minor number of parameters, second only to the
STGCN model, but far outperforms STGCN and other methods. Compared with the GMAN model
that also uses the self-attention mechanism, the methods proposed in this paper reduce the number
of parameters by up to 89%. Compared with the state-of-the-art method STFGNN, the proposed
methods reduce up to 98% parameter.

C Limitations and Potential Negative Impacts

Although our AutoST achieved best forecasting performance, the architecture search process is
time-consuming. Therefore, AutoST is more suitable for scenarios with static graph such as traffic
and body pose, and is inefficient for dynamic graphs like social networks. In the future, we will
investigate efficient AutoST for dynamic graphs based on incremental learning and transfer learning.
A potential negative impact could be the privacy management in the traffic data.

17


	Introduction
	Related Work
	Preliminary
	Spatio-temporal Sequence Forecasting
	Network Architecture Search

	Methods
	Spatial / Temporal Modeling Unit
	Time Series Linear Self-Attention
	High-order Mix Graph Convolution

	Unified Spatio-temporal Modeling Backbone
	Spatial-first Modeling Layer
	Temporal-first Modeling Layer
	Spatial-temporal Synchronous Layer

	Universal Modeling Framework
	Spatio-temporal Embedding Layer
	Encoder
	Decoder

	Automated Search for UniST
	AutoST Cell
	Sequential Stacking Search
	Hybrid Assembling Search


	Experiments
	Datasets
	Main Results
	Ablation Study
	Result Visualization

	Conclusion
	The Embeddings
	Experiment Details
	Data Preprocessing
	Spatio-temporal Sequence Forecasting Task Design
	Metrics
	Baseline Methods

	Experiments on Computation Resource Consumption
	Running Time
	Parameter Number


	Limitations and Potential Negative Impacts

