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A PROOF OF PROPOSITION 1

Let F denote the function class {fr : fr(τ
0, τ1) = Pr(o = 1|τ0, τ1), r ∈ Gr}. Let IF (ϵ) denote

the ϵ-bracket number with respect to ℓ∞-norm, i.e., the minimum integer M such that there exist
M functions {f i}Mi=1 such that for each fr ∈ F , we have supτ0,τ1 |fr(τ0, τ1)− f i(τ0, τ1)| ≤ ϵ for
some i ∈ [M ]. Then we know there exists a set of function F with |F| = IF (ϵ/4) such that for each
fr ∈ F , there exists f ∈ F satisfying

sup
τ0,τ1

|fr(τ0, τ1)− f(τ0, τ1)| ≤ ϵ/4.

Now we construct a bracket (g1
f
, g2

f
) defined as follows:

g1
f
(o = 1|τ0, τ1) = f(τ0, τ1)− ϵ/4, g1

f
(o = 0|τ0, τ1) = 1− f(τ0, τ1)− ϵ/4,

g2
f
(o = 1|τ0, τ1) = f(τ0, τ1) + ϵ/4, g2

f
(o = 0|τ0, τ1) = 1− f(τ0, τ1) + ϵ/4.

Then clearly we have g1
f
(·|τ0, τ1) ≤ Pr(·|τ0, τ1) ≤ g2

f
(·|τ0, τ1) and ∥g1

f
(·|τ0, τ1) −

g2
f
(·|τ0, τ1)∥1 ≤ ϵ. This implies that NGr

(ϵ) ≤ IF (ϵ/4).

Now we only need to bound IF (ϵ/4). Consider θ and θ′ with ∥θ − θ′∥2 ≤ ϵ1 and let r (r′) denote
the reward ⟨ϕ, θ⟩ (⟨ϕ, θ′⟩). Then we know for all τ ,

|r(τ)− r′(τ)| ≤ Rϵ1.

Fix the trajectory pair (τ0, τ1). Without loss of generality, we assume exp(r(τ0)) + exp(r(τ1)) ≤
exp(r′(τ0)) + exp(r′(τ1)). Then we have

exp(r(τ0)) + exp(r(τ1)) ≤ exp(r′(τ0)) + exp(r′(τ1)) ≤ exp(Rϵ1)
(
exp(r(τ0)) + exp(r(τ1))

)
.

On the other hand, we have

|fr(τ0, τ1)− fr′(τ
0, τ1)|

=

∣∣∣ exp(r(τ1))( exp(r′(τ0)) + exp(r′(τ1))
)
− exp(r′(τ1))

(
exp(r(τ0)) + exp(r(τ1))

)∣∣∣(
exp(r′(τ0)) + exp(r′(τ1))

)(
exp(r(τ0)) + exp(r(τ1))

) .

Therefore, if exp(r(τ1))
(
exp(r′(τ0))+exp(r′(τ1))

)
−exp(r′(τ1))

(
exp(r(τ0))+exp(r(τ1))

)
≥

0, then we have∣∣∣ exp(r(τ1))( exp(r′(τ0)) + exp(r′(τ1))
)
− exp(r′(τ1))

(
exp(r(τ0)) + exp(r(τ1))

)∣∣∣
≤ exp(Rϵ1) exp(r(τ

1))
(
exp(r(τ0)) + exp(r(τ1))

)
− exp(−Rϵ1) exp(r(τ

1))
(
exp(r(τ0)) + exp(r(τ1))

)
=(exp(Rϵ1)− exp(−Rϵ1)) exp(r(τ

1))
(
exp(r(τ0)) + exp(r(τ1))

)
.

Otherwise, we have∣∣∣ exp(r(τ1))( exp(r′(τ0)) + exp(r′(τ1))
)
− exp(r′(τ1))

(
exp(r(τ0)) + exp(r(τ1))

)∣∣∣
≤ exp(Rϵ1) exp(r(τ

1))
(
exp(r(τ0)) + exp(r(τ1))

)
− exp(r(τ1))

(
exp(r(τ0)) + exp(r(τ1))

)
=(exp(Rϵ1)− 1) exp(r(τ1))

(
exp(r(τ0)) + exp(r(τ1))

)
.

Therefore we have

|fr(τ0, τ1)− fr′(τ
0, τ1)|
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≤
(exp(Rϵ1)− exp(−Rϵ1)) exp(r(τ

1))
(
exp(r(τ0)) + exp(r(τ1))

)
(
exp(r′(τ0)) + exp(r′(τ1))

)(
exp(r(τ0)) + exp(r(τ1))

) ≤ exp(2Rϵ1)− 1.

This implies that for any ϵ ≤ 1,

log IF (ϵ/4) ≤ log Id,B
(2 ln 2

R
ϵ
)
≤ O

(
d log

BR

ϵ

)
,

where Id,B(·) is the covering number of a d-dimensional ball centered at the origin with radius B
with respect to ℓ2-norm and the last step is from Wainwright (2019). This concludes our proof.

B FEASIBLE IMPLEMENTATION OF FREEHAND

In this section we show how to implement the robust optimization step (Line 4) of FREEHAND in
practice. Our idea is inspired by standard offline RL (Rigter et al., 2022) where the authors rely on
Lagrangian formulation to make the theoretical algorithm CPPO (Uehara and Sun, 2021) practical
enough to achieve good performance on the D4RL datasets. We believe the empirical insights
provided in (Rigter et al., 2022) can be applied here as well.

First for the Lagrangian relaxation, the original inner minimization problem in Line 4 of FREEHAND
is

min
r∈R(D)

J(π; r, P ∗)− Eτ∼µref
[r(τ)].

Note that the only constraint is r ∈ R(D). Then by introducing a Lagrangian multiplier β, we
can convert such constrained minimization problem into an unconstrained regularized minimization
problem:

min
r

J(π; r, P ∗)− Eτ∼µref
[r(τ)]− β

N∑
n=1

logPr(o = on|τn,0, τn,1).

Consequently, Line 4 in FREEHAND can be converted to the following unconstrained regularized
max-min problem:

max
π

min
r

L(π, r) := J(π; r, P ∗)− Eτ∼µref
[r(τ)]− β

N∑
n=1

logPr(o = on|τn,0, τn,1).

Since now we are facing an unregularized problem, the most common way to solve L(π, r) in practice
is gradient ascent-descent. Suppose π and r are parametrized by θ and λ (usaully neural networks).
Then gradient ascent-descent requires us to compute an unbiased stochastic gradient with respect to
θ and λ respectively. Fortunately, this can be easy to achieve in practice. On the one hand, for the
gradient of θ, we only need to compute ∇θJ(πθ; r, P

∗). This task has been thoroughly discussed in
the literature of policy gradient and one example is REINFORCE, which samples a trajectory τ by
executing πθ in P ∗ and then the estimated graidient can be expressed as

r(τ)

H∑
h=1

∇θπθ,h(ah|sh),

where (sh, ah) is the h-step of τ .

On the other hand, for the gradient of λ, we only need to sample independent trajecotories τ ′ by
executing πθ in P ∗ and τ ′′ from µref and an index i ∈ [N ]. Then the unbiased estimated gradient
can be directly written as

∇λrλ(τ
′)−∇λrλ(τ

′′)− β∇λ logPrλ(o = oi|τ i,0, τ i,1).

Therefore, with the above estimated gradients, we can then run graident ascent-descent happily to
solve maxπ minr L(π, r) in practice.
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C PROOF OF THEOREM 1

The proof of Theorem 1 consists of two steps, deriving the guarantee of MLE and analyzing the
performance of pessimistic offline RL.

Step 1: MLE guarantee. We first need to show that the confidence set R(D) contains the true
reward r⋆ with high probability. This can be proved via the following lemma which characterizes the
guarantee of MLE:
Lemma 1 (Performance of MLE). Fix any δ ∈ (0, 1]. Then with probability at least 1− δ/2 we have
that for all reward function r ∈ Gr,

N∑
n=1

log

(
Pr(o

n|τn,0, τn,1)
Pr⋆(on|τn,0, τn,1)

)
≤ cMLE log(NGr

(1/N)/δ),

where cMLE > 0 is a universal constant.

We defer the proof to Appendix C.1. Denote the event in Lemma 1 by E1, then we know P(E1) ≥
1− δ/2. Under the event E1, we have

N∑
n=1

logPr⋆(o
n|τn,0, τn,1) ≥

N∑
n=1

logPr̂(o
n|τn,0, τn,1)− cMLE log(NGr (1/N)/δ),

which implies that r⋆ ∈ R(D) since we know r⋆ ∈ Gr from Assumption 2.

Nevertheless, the confidence set R(D) is constructed via loglikelihood and we indeed prefer a bound
on the total variation (TV) distance between Pr and Pr⋆ where r ∈ R(D) to facilitate our subsequent
analysis. We can obtain such a bound as shown in the following lemma from the literature (Liu et al.
(2022)[Proposition 14],Zhan et al. (2022b)[Lemma 9]):
Lemma 2. With probability at least 1− δ/2, we have for all reward function r ∈ Gr that

Eτ0∼µ0,τ1∼µ1

[∥∥∥Pr(·|τ0, τ1)− Pr⋆(·|τ0, τ1)
∥∥∥2
1

]
≤ cTV

N

( N∑
n=1

log

(
Pr⋆(o

n|τn,0, τn,1)
Pr(on|τn,0, τn,1)

)
+ log(NGr (1/N)/δ)

)
,

where cTV > 0 is a universal constant.

Denote the event in Lemma 2 by E2 and then we know P(E2) ≥ 1− δ/2. Then from Lemma 1 and
Lemma 2 we know that under event E1 ∩ E2, we have for all r ∈ R(D):

Eτ0∼µ0,τ1∼µ1

[∥∥∥Pr(·|τ0, τ1)− Pr⋆(·|τ0, τ1)
∥∥∥2
1

]
≤ c log(NGr

(1/N)/δ)

N
, (4)

where c > 0 is a universal constant.

Then under Assumption 3, we can apply the mean value theorem between r⋆(τ1) − r⋆(τ0) and
r(τ1)− r(τ0) to (4) and ensure for all r ∈ R(D) that

Eτ0∼µ0,τ1∼µ1
[|(r⋆(τ1)− r⋆(τ0))− (r(τ1)− r(τ0))|2] ≤

cκ2 log(NGr
(1/N)/δ)

N
, (5)

where κ := 1
infx∈[−rmax,rmax] Φ′(x) measures the non-linearity of the link function Φ.

Step 2: Pessimistic offline RL. Let rinfπ denote argminr∈R(D) J(π; r, P
⋆)− Eτ∼µref

[r(τ)]. Then
we can bound the suboptimality of π̂ as follows:

J(πtar; r
⋆, P ⋆)− J(π̂; r⋆, P ⋆)

=
(
J(πtar; r

⋆, P ⋆)− Eτ∼µref
[r⋆(τ)]

)
−

(
J(π̂; r⋆, P ⋆)− Eτ∼µref

[r⋆(τ)]
)

≤
((

J(πtar; r
⋆, P ⋆)− Eτ∼µref

[r⋆(τ)]
)
−

(
J(πtar; r

inf
πtar

, P ⋆)− Eτ∼µref
[rinfπtar

(τ)]
))

−
((

J(π̂; r⋆, P ⋆)− Eτ∼µref
[r⋆(τ)]

)
−

(
J(π̂; rinfπ̂ , P ⋆)− Eτ∼µref

[rinfπ̂ (τ)]
))
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≤
(
J(πtar; r

⋆, P ⋆)− Eτ∼µref
[r⋆(τ)]

)
−

(
J(πtar; r

inf
πtar

, P ⋆)− Eτ∼µref
[rinfπtar

(τ)]
)

=Eτ0∼πtar,τ1∼µref
[(r⋆(τ0)− r⋆(τ1))− (rinfπtar

(τ0)− rinfπtar
(τ1))]

≤Cr(Gr, πtar, µref)
√

Eτ0∼µ0,τ1∼µ1 [|r⋆(τ0)− r⋆(τ1)− rinfπtar
(τ0) + rinfπtar

(τ1)|2]

≤
√

cC2
r (Gr, πtar, µref)κ2 log(NGr

(1/N)/δ)

N
,

where the second step is due to π̂ = argmaxπ∈Πhis
minr∈R(D) J(π; r, P

⋆) − Eτ∼µref
[r(τ)], the

third step is due to rinfπ̂ = argminr∈R(D) J(π̂; r, P
⋆) − Eτ∼µref

[r(τ)], the fifth step comes from
the definition of Cr(Gr, πtar, µref) (Definition 2) and the last step leverages (5). This concludes our
proof.

C.1 PROOF OF LEMMA 1

The proof largely follows Zhan et al. (2022b). Suppose F is a 1/N -bracket of Gr with
|F| = NGr (1/N) and we denote the set of all right brackets in F by F̃ , i.e., F̃ := {f :

∃f ′, such that [f ′, f ] ∈ F}. Then fix any f ∈ F̃ , we have:

E
[
exp

( N∑
n=1

log

(
f(on|τn,0, τn,1)
Pr⋆(on|τn,0, τn,1)

))]
=

N∏
n=1

E
[
exp

(
log

(
f(on|τn,0, τn,1)
Pr⋆(on|τn,0, τn,1)

))]

=

N∏
n=1

E
[

f(on|τn,0, τn,1)
Pr⋆(on|τn,0, τn,1)

]
=

N∏
n=1

E
[∑

o

f(o|τn,0, τn,1)
]
≤

(
1 +

1

N

)N

≤ e,

where the first step is due to each sample in D is i.i.d., the third step uses Tower property and the
fourth step is from the fact that F is a minimum 1/N -bracket.

Then by Markov’s inequality we have for any δ ∈ (0, 1],

P
( N∑

n=1

log

(
f(on|τn,0, τn,1)
Pr⋆(on|τn,0, τn,1)

)
> log(1/δ)

)

≤ E
[
exp

( N∑
n=1

log

(
f(on|τn,0, τn,1)
Pr⋆(on|τn,0, τn,1)

))]
· exp[− log(1/δ)] ≤ eδ.

By union bound, we have for all f ∈ F̃ ,

P
( N∑

n=1

log

(
f(on|τn,0, τn,1)
Pr⋆(on|τn,0, τn,1)

)
> cMLE log(NGr

(1/N)/δ)

)
≤ δ/2,

where cMLE > 0 is a universal constant.

Therefore from the definition of 1/N -bracket net, we know for all r ∈ Gr, there exists f ∈ F̃ such
that Pr(·|τ0, τ1) ≤ f(·|τ0, τ1) for any trajectories (τ0, τ1). This implies that for all r ∈ Gr,

P
( N∑

n=1

log

(
Pr(o

n|τn,0, τn,1)
Pr⋆(on|τn,0, τn,1)

)
> cMLE log(NGr

(1/N)/δ)

)
≤ δ/2,

This concludes our proof.

D COMPARISON WITH ZHU ET AL. (2023)

Zhu et al. (2023) considers the linear reward setting under BTL model and they can achieve the
following sample complexity:

N = O
(
C2

lin exp(4BR)d log(1/δ)

ϵ2

)
,
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where R and B are the norm bounds on the feature vectors ϕ and parameter θ (defined in Proposi-
tion 1).The concentrability coefficient Clin is defined as

Clin := ∥Eτ0∼πtar,τ1∼µref
[ϕ(τ0)− ϕ(τ1)]∥Σ−1

D
,

and ΣD is the empirical covariance matrix of the dataset 1
N

∑N
n=1(ϕ(τ

n,0)− ϕ(τn,1))(ϕ(τn,0)−
ϕ(τn,1))⊤.

Note that all the analysis and proofs in this paper still hold when we define the concentrability
coefficient as

C ′
r(Gr, πtar, µref) := max

{
0, sup

r∈Gr

Eτ0∼πtar,τ1∼µref
[r⋆(τ0)− r⋆(τ1)− r(τ0) + r(τ1)]√

1
N

∑N
n=1 |r⋆(τn,0)− r⋆(τn,1)− r(τn,0) + r(τn,1)|2

}
.

Then when specializing the result in Theorem 1 to the linear reward setting under BTL model with
this version of concentrability coefficient, the sample complexity is

N = Õ
(
(C ′

r(Gr, πtar, µref))
2 exp(2rmax)d log(BR/δ)

ϵ2

)
.

We know that BR ≥ rmax. In addition, note that in this case, we have Clin ≥ 0 and for any r ∈ Gr,∣∣Eτ0∼πtar,τ1∼µref
[r⋆(τ0)− r⋆(τ1)− r(τ0) + r(τ1)]

∣∣
=

∣∣⟨Eτ0∼πtar,τ1∼µref
[ϕ(τ0)− ϕ(τ1)], θ⋆ − θ⟩

∣∣
≤ ∥Eτ0∼πtar,τ1∼µref

[ϕ(τ0)− ϕ(τ1)]∥Σ−1
D

· ∥θ⋆ − θ∥ΣD

= ∥Eτ0∼πtar,τ1∼µref
[ϕ(τ0)− ϕ(τ1)]∥Σ−1

D
·

√√√√ 1

N

N∑
n=1

|r⋆(τn,0)− r⋆(τn,1)− r(τn,0) + r(τn,1)|2,

where we suppose r⋆(τ) = ⟨ϕ(τ), θ⋆⟩ and r(τ) = ⟨ϕ(τ), θ⟩. Therefore we have
C ′

r(Gr, πtar, µref) ≤ Clin.

This implies that Theorem 1 can recover the sample complexity for linear reward setting under BTL
model in Zhu et al. (2023) with only some additional log factors.

E OMITTED DETAILS

In this section we supplement the definition of bracket number for the transition class and advantage
function class.
Definition 5 (ϵ-bracket number of transition probability classes). Suppose f1, f2 is a function
with f1(·|s, a), f2(·|s, a) ∈ R|S| for all (s, a) ∈ S × A. Then we say (f1, f2) is a ϵ-bracket if
f1(·|s, a) ≤ f2(·|s, a) and ∥f1(·|s, a)− f2(·|s, a)∥1 ≤ ϵ for all (s, a). The ϵ-bracket number of a
transition probability class GPh

where h ∈ [H − 1] is the minimum integer N satisfying that there
exist N ϵ-brackets (fn,1, fn,2)Nn=1 such that for any function Ph ∈ GPh

there is a bracket (f i,1, f i,2)
where i ∈ [N ] containing it, i.e., f i,1(·|s, a) ≤ Ph(·|s, a) ≤ f i,2(·|s, a) for all (s, a).

Definition 6 (ϵ-bracket number of initial state distribution classes). Suppose f1, f2 ∈ R|S|. Then
we say (f1, f2) is a ϵ-bracket if f1 ≤ f2 and ∥f1 − f2∥1 ≤ ϵ. The ϵ-bracket number of a
initial state distribution class GP0

is the minimum integer N satisfying that there exist N ϵ-brackets
(fn,1, fn,2)Nn=1 such that for any P0 ∈ GP0

there is a bracket (f i,1, f i,2) where i ∈ [N ] containing
it, i.e., f i,1 ≤ P0 ≤ f i,2.
Definition 7 (ϵ-bracket number of advantage function classes). Suppose g1, g2 is a function with
g1(·|s, a0, a1), g2(·|s, a0, a1) ∈ R2 for all (s, a0, a1) ∈ S × A × A. Then we say (g1, g2) is a
ϵ-bracket if g1(·|s, a0, a1) ≤ g2(·|s, a0, a1) and ∥g1(·|s, a0, a1) − g2(·|s, a0, a1)∥1 ≤ ϵ for all
(s, a0, a1) ∈ S ×A×A. The ϵ-bracket number of a reward class GAh

where h ∈ [H] is the minimum
integer N satisfying that there exist N ϵ-brackets (gn,1, gn,2)Nn=1 such that for any function Ah ∈ GAh

there is a bracket (gi,1, gi,2) where i ∈ [N ] containing it, i.e., gi,1(·|s, a0, a1) ≤ PAh
(·|s, a0, a1) ≤

gi,2(·|s, a0, a1) for all (s, a0, a1) ∈ S ×A×A.

We use NGPh
(ϵ) and NGAh

(ϵ) to denote the ϵ-bracket number of GPh
and GAh

. Similarly, when the
transition probability or the advantage function possesses a low-dimension embedding, we can also
bound the ϵ-bracket number efficiently.

17



Under review as a conference paper at ICLR 2024

F PROOFS OF LOWER BOUNDS

F.1 PROOF OF PROPOSITION 2

Given any S,A,H , consider a MDP with horizon H , state space S = {s1, s2, · · · , sS} and action
space A = {a1, a2, · · · , aA}. In the following discussion we consider the case C ≥ 2 and 1 < C < 2
respectively.

Case 1: C ≥ 2. Consider the case where the state is fixed throughout an episode. We suppose
the initial state distribution P ⋆

0 is P ⋆
0 (s

1) = 1
2 and P ⋆

0 (s
i) = 1

2(S−1) for all 2 ≤ i ≤ S. Let
πtar,h(a

1|s) = 1 for all h ∈ [H] and s ∈ S. Then we can set the dataset distribution µ0 as

µ0(τ) =


1
2C , if the state is s1 and all actions in τ are a1 except aH−1 = a2,
1
2 − 1

2C , if the state is s1 and all actions in τ are a1 except aH = a2,
1

2(S−1) , if the state is not s1 and all actions in τ are a1,
0, otherwise,

where ah is the action at step h in τ . Then we know

µ0,h(s, a
1) =

1

2(S − 1)
, ∀h ∈ [H], s ∈ S \ {s1},

µ0,h(s
1, a1) =

1

2
, µ0,H−1(s, a

1) =
1

2
− 1

2C
, µ0,H(s, a1) =

1

2C
.

It is obvious we have Cst ≤ C in this setting. On the other hand, since the trajectory whose state is
s1 and all actions are a1 is covered by πtar but not by µ0, we have Ctr = ∞.

Case 2: 1 < C < 2. Consider the case where the state is fixed throughout an episode. We suppose
the initial state distribution of P ⋆

0 is P ⋆
0 (s

1) = C−1
2 , P ⋆

0 (s
2) = 2−C

2 and P ⋆
0 (s

i) = 1
2(S−2) for all

3 ≤ i ≤ S. Note that here we require S ≥ 3. When S = 2, we can let P ⋆
0 (s

1) = C − 1 and
P ⋆
0 (s

2) = 2− C and the following analysis will still hold. Therefore here we assume S ≥ 3 without
loss of generality. Let πtar,h(a

1|s) = 1 for all h ∈ [H] and s ∈ S. Then we can set the dataset
distribution µ0 as

µ0(τ) =



C−1
2C , if the state of τ is s1 and all actions in τ are a1 except aH−1 = a2,
C−1
2C , if the state of τ is s1 and all actions in τ are a1 except aH = a2,
2−C
2C , if the state of τ is s2 and the actions are all a1,

1
2(S−2) , if the state of τ is not s1 or s2 and the actions are all a1,
0, otherwise.

Then we know

µ0,h(s, a
1) =

1

2(S − 2)
, ∀h ∈ [H], s ∈ S \ {s1, s2},

µ0,h(s
2, a1) =

2− C

2C
, ∀h ∈ [H],

µ0,h(s
1, a1) =

2C − 2

2C
, ∀h ∈ [H − 2],

µ0,H−1(s
1, a1) = µ0,H(s1, a1) =

C − 1

2C
.

It is obvious we have Cst ≤ C in this setting. On the other hand, since the trajectory whose state is s1
and all actions are a1 is covered by πtar but not by µ0, we have Ctr = ∞. This concludes our proof.

F.2 PROOF OF THEOREM 2

We consider the case C ≥ 2 and 1 < C < 2 respectively.
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Case 1: C ≥ 2. Consider the case where there is only one state s and two actions a1, a2. Set the
dataset distribution µ0 = µ1 where

µ0(τ) =


1
C , if all actions in τ are a1 except aH−1 = a2,
1− 1

C , if all actions in τ are a1 except aH = a2,
0, otherwise,

where ah is the action at step h in τ . In the following discussion we will use τ1 to denote the
trajectory where all actions are a1 except aH−1 = a2 and τ2 to denote the trajectory where all actions
are a1 except aH−1 = a2. Then we know

µ0,h(s, a
1) = 1, ∀h ∈ [H − 2],

µ0,H−1(s, a
1) = 1− 1

C
, µ0,H−1(s, a

2) =
1

C
,

µ0,H(s, a1) =
1

C
, µ0,H(s, a2) = 1− 1

C
.

We consider two different reward function r1 and r2:

r1h(s, a
1) = r1h(s, a

2) = r2h(s, a
1) = r2h(s, a

2) = 0, ∀h ∈ [H − 2],

r1H−1(s, a
1) = r2H−1(s, a

2) = 1, r1H−1(s, a
2) = r2H−1(s, a

1) = 0,

r1H(s, a1) = r2H(s, a2) = 1, r1H(s, a2) = r2H(s, a1) = 0,

Then we have two MDPs, M1 and M2 whose reward functions are r1 and r2 respectively. It can be
easily verified that (M1, µ0) ∈ Θst(C), (M2, µ0) ∈ Θst(C).

Further, let L(π;M) denote the suboptimality of policy π in M, then we have for all policies π,

L(π;M1) + L(π;M2) ≥ 2.

Now we can apply Le Cam’s method, which leads to the following inequality

inf
π̂

sup
M∈{M1,M2}

ED[L(π,M)] ≥ 1

2
exp(−NKL

(
µ0 ⊗ µ1 ⊗ Pr1∥µ0 ⊗ µ1 ⊗ Pr2

)
).

It can be observed that KL
(
µ0⊗µ1⊗Pr1∥µ0⊗µ1⊗Pr2

)
= 0 since r1(τ1) = r1(τ2) = r2(τ1) =

r2(τ2) = 1. Therefore we have

inf
π̂

sup
M∈{M1,M2}

ED[L(π,M)] ≥ 1

2
.

Case 2: 1 < C < 2. Consider the case where there are two one states s1, s2 and two actions a1, a2.
We suppose the initial state distribution of P ⋆

0 is fixed as P ⋆
0 (s

1) = C − 1 and P ⋆
0 (s

2) = 2 − C.
In addition, the state will stay the same throughout the whole episode. Then we can set the dataset
distribution µ0 = µ1 where

µ0(τ) =


C−1
C , if the state of τ is s1 and all actions in τ are a1 except aH−1 = a2,

C−1
C , if the state of τ is s1 and all actions in τ are a1 except aH = a2,

2−C
C , if the state of τ is s2 and the actions are all a1,

0, otherwise.

In the following discussion we will use τ3 to denote the trajectory where state is s1 and all actions
are a1 except aH−1 = a2; τ4 to denote the trajectory where state is s1 and all actions are a1 except
aH−1 = a2; τ5 to denote the trajectory where state is s2 and all actions are a1. Then we know

µ0,h(s
2, a1) =

2− C

C
, ∀h ∈ [H],

µ0,h(s
1, a1) =

2C − 2

C
, ∀h ∈ [H − 2],
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µ0,H−1(s
1, a1) = µ0,H−1(s

1, a2) =
C − 1

C
,

µ0,H(s1, a1) = µ0,H(s1, a2) =
C − 1

C
.

We consider two different reward function r1 and r2:

r1h(s
1, a1) = r1h(s

1, a2) = r2h(s
1, a1) = r2h(s

1, a2) = 0, ∀h ∈ [H − 2],

r1H−1(s
1, a1) = r2H−1(s

1, a2) = 1, r1H−1(s
1, a2) = r2H−1(s

1, a1) = 0,

r1H(s1, a1) = r2H(s1, a2) = 1, r1H(s1, a2) = r2H(s1, a1) = 0,

r1h(s
2, a1) = r1h(s

2, a2) = r2h(s
2, a1) = r2h(s

2, a2) = 0, ∀h ∈ [H − 1]

r1H(s2, a1) = r2H(s2, a1) = 1, r1H(s2, a2) = r2H(s2, a2) = 0.

Then we have two MDPs, M1 and M2 whose reward functions are r1 and r2 respectively. It can be
easily verified that (M1, µ0) ∈ Θst(C), (M2, µ0) ∈ Θst(C).

In addition, we have for all policies π,

L(π;M1) + L(π;M2) ≥ 2(C − 1).

Therefore by Le Cam’s method, we have

inf
π̂

sup
M∈{M1,M2}

ED[L(π,M)] ≥ (C − 1)

2
exp

(
−N ·KL

(
µ0 ⊗ µ1 ⊗ Pr1∥µ0 ⊗ µ1 ⊗ Pr2

))
,

where the KL divergence is 0 since r(τ) = 1 for all r ∈ {r1, r2} and τ ∈ {τ3, τ4, τ5}. Therefore,
we have

inf
π̂

sup
M∈{M1,M2}

ED[L(π,M)] ≥ C − 1

2
.

In conclusion, we have for any C > 1 and H ≥ 2,

inf
π̂

sup
(M,µ0)∈Θst(C)

ED[J(π
⋆; r⋆, P ⋆)− J(π̂; r⋆, P ⋆)] ≳ min

{
C − 1, 1

}
.

F.3 PROOF OF THEOREM 3

The proof is inspired by the hard instances in Rashidinejad et al. (2021b). We consider the case
C ≥ 2 and 1 < C < 2 respectively.

Case 1: C ≥ 2. Consider the case where there is only one state s and two actions a1, a2. Set the
dataset distribution µ0 = µ1 where

µ0(τ
⋆) =

1

C
, µ0(τ

†) = 1− 1

C
,

where τ⋆ is the trajecotry where the actions are all a1 and τ † is the trajecotry where the actions are
all a2.

We consider two different reward function r1 and r2:

r1(τ) =

{
1
2 + x, if all the actions in τ are a1,
1
2 , otherwise.

r2(τ) =

{
1
2 − x, if all the actions in τ are a1,
1
2 , otherwise.

Here 0 < x < 1
2 is a quantity we will specify later. Then we have two MDPs, M1 and M2

whose reward functions are r1 and r2 respectively. It can be easily verified that (M1, µ0) ∈
Θtr(C), (M2, µ0) ∈ Θtr(C).
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Further, let L(π;M) denote the suboptimality of policy π in M, then we have for all policies π,

L(π;M1) + L(π;M2) ≥ x.

Now we can apply Le Cam’s method, which leads to the following inequality

inf
π̂

sup
M∈{M1,M2}

ED[L(π,M)] ≥ x

4
exp

(
−N ·KL

(
µ0 ⊗ µ1 ⊗ Pr1∥µ0 ⊗ µ1 ⊗ Pr2

))
.

Now we only need to bound KL
(
µ0⊗µ1⊗Pr1∥µ0⊗µ1⊗Pr2

)
, which can be computed as follows:

KL
(
µ0 ⊗ µ1 ⊗ Pr1∥µ0 ⊗ µ1 ⊗ Pr2

)
=2

∑
τ0=τ⋆,τ1=τ†

µ0(τ
0)µ1(τ

1)KL
(
Bern(σ(x))∥Bern(σ(−x))

)
≤2 exp(1/2)x2

C
.

Then by letting x = min

{
1
2 ,
√

C
2 exp(1/2)N

}
, we have

inf
π̂

sup
M∈{M1,M2}

ED[L(π,M)] ≥ exp(−1)

4
x =

exp(−1)

4
min

{
1

2
,

√
C

2 exp(1/2)N

}
.

Case 2: 1 < C < 2. Consider the case where there are two one states s1, s2 and two actions a1, a2.
We suppose the initial state distribution of P ⋆

0 is fixed as P ⋆
0 (s

1) = C − 1 and P ⋆
0 (s

2) = 2 − C.
In addition, the state will stay the same throughout the whole episode. Then we can set the dataset
distribution µ0 = µ1 where

µ0(τ) =


2(C−1)

C · 1
2 , if the state of τ is s1 and the actions are all a1 or all a2,

2−C
C , if the state of τ is s2 and the actions are all a1,

0, if the state of τ is s2 and the actions contain a2.

Let τ⋆ be the trajectory where the state is s1 and the actions are all a1.

We further consider two different reward function r1 and r2:

r1(τ) =

{
1
2 + x, if the state is s1 and all the actions in τ are a1,
1
2 , otherwise.

r2(τ) =

{
1
2 − x, if the state is s1 and all the actions in τ are a1,
1
2 , otherwise.

Here 0 < x < 1
2 is a quantity we will specify later. Then we have two MDPs, M1 and M2

whose reward functions are r1 and r2 respectively. It can be easily verified that (M1, µ0) ∈
Θtr(C), (M2, µ0) ∈ Θtr(C).

In addition, we have for all policies π,

L(π;M1) + L(π;M2) ≥ (C − 1)x.

Therefore by Le Cam’s method, we have

inf
π̂

sup
M∈{M1,M2}

ED[L(π,M)] ≥ (C − 1)x

4
exp

(
−N ·KL

(
µ0 ⊗ µ1 ⊗ Pr1∥µ0 ⊗ µ1 ⊗ Pr2

))
,

where the KL divergence can be computed as follows:

KL
(
µ0 ⊗ µ1 ⊗ Pr1∥µ0 ⊗ µ1 ⊗ Pr2

)
=2

∑
τ0=τ⋆,τ1 ̸=τ⋆

µ0(τ
0)µ1(τ

1)KL
(
Bern(σ(x))∥Bern(σ(−x))

)
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≤2(C − 1) exp(1/2)x2

C
.

Then by letting x = min

{
1
2 ,
√

C
2 exp(1/2)(C−1)N

}
, we have

inf
π̂

sup
M∈{M1,M2}

ED[L(π,M)] ≥ (C − 1) exp(−1)

4
x =

exp(−1)

4
min

{
C − 1

2
,

√
(C − 1)

2 exp(1/2)N

}
.

In conclusion, we have for any C > 1 and H ≥ 1,

inf
π̂

sup
(M,µ0)∈Θst(C)

ED[J(π
⋆; r⋆, P ⋆)− J(π̂; r⋆, P ⋆)] ≳ min

{
C − 1,

√
C − 1

N

}
.

G PROOF OF THEOREM 4

The proof still consists of two steps, deriving the guarantee of MLE and analyzing the performance
of pessimistic offline RL.

Step 1: MLE guarantee. Note that Lemma 1 and Lemma 2 still applies here. Let E1 and E2 denote
the event in Lemma 1 and Lemma 2 respectively. Following almost the same arguments, we have the
following guarantee for the estimation of the system dynamics:

Lemma 3. Under Assumption 4, with probability at least 1− δ/2, the following event holds true:

(1)P ⋆
h ∈ Ph(D), P ⋆

0 ∈ Pini(D), ∀h ∈ [H − 1],

(2)E(sh,ah)∼µ0,h

[∥∥∥Ph(·|s, a)− P ⋆
h (·|s, a)

∥∥∥2
1

]
+ E(sh,ah)∼µ1,h

[∥∥∥Ph(·|s, a)− P ⋆
h (·|s, a)

∥∥∥2
1

]
≤

c log(HNGPh
(1/N)/δ)

N
, ∀h ∈ [H − 1], Ph ∈ Ph(D),

(3)Es∼µ0,1

[∥∥∥P0(s)− P ⋆
0 (s)

∥∥∥2
1

]
+ Es∼µ1,1

[∥∥∥P0(s)− P ⋆
0 (s)

∥∥∥2
1

]
≤

c log(HNGP0
(1/N)/δ)

N
, ∀P0 ∈ P0(D).

The proof is omitted here. Let E3 denote the event in Lemma 3.

Step 2: Pessimistic offline RL. We first introduce the following lemma which suggests that under
event E3, we can evaluate the expected cumulative reward of πtar with respect to any reward function
r ∈ Gr via the system dynamics Ph ∈ Ph(D):

Lemma 4. Suppose Asusmption 3 is true. Then under E3, we have for all reward function r ∈ Gr

and P = ({Ph}H−1
h=0 ) where Ph ∈ Ph(D) that

J(πtar; r, P
⋆)− J(πtar; r, P ) ≤ Hrmax

√
cC2

P ({GPh
}, πtar) log(HNP (1/N)/δ)

N
,

where NP = max0≤h≤H−1{NGPh
}.

The proof is deferred to Appendix G.1.

Let (rinfπ , P inf
π ) denote argminr∈R(D),P∈Pini(D)×

∏H−1
h=1 Ph(D) J(π; r, P )− Eτ∼µref

[r(τ)]. Then un-
der the event E3, we can bound the suboptimality of π̂ as follows:

J(πtar; r
⋆, P ⋆)− J(π̂; r⋆, P ⋆)

=
(
J(πtar; r

⋆, P ⋆)− Eτ∼µref
[r⋆(τ)]

)
−
(
J(π̂; r⋆, P ⋆)− Eτ∼µref

[r⋆(τ)]
)

=
((

J(πtar; r
⋆, P ⋆)− Eτ∼µref

[r⋆(τ)]
)
−
(
J(πtar; r

inf
πtar

, P ⋆)− Eτ∼µref
[rinfπtar

(τ)]
))
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+
((

J(πtar; r
inf
πtar

, P ⋆)− Eτ∼µref
[rinfπtar

(τ)]
)
−

(
J(πtar; r

inf
πtar

, P inf
πtar

)− Eτ∼µref
[rinfπtar

(τ)]
))

+
((

J(πtar; r
inf
πtar

, P inf
πtar

)− Eτ∼µref
[rinfπtar

(τ)]
)
−

(
J(π̂; rinfπ̂ , P inf

π̂ )− Eτ∼µref
[rinfπ̂ (τ)]

))
+
((

J(π̂; rinfπ̂ , P inf
π̂ )− Eτ∼µref

[rinfπ̂ (τ)]
)
−

(
J(π̂; r⋆, P ⋆)− Eτ∼µref

[r⋆(τ)]
))

≤
((

J(πtar; r
⋆, P ⋆)− Eτ∼µref

[r⋆(τ)]
)
−
(
J(πtar; r

inf
πtar

, P ⋆)− Eτ∼µref
[rinfπtar

(τ)]
))

+
((

J(πtar; r
inf
πtar

, P ⋆)− Eτ∼µref
[rinfπtar

(τ)]
)
−

(
J(πtar; r

inf
πtar

, P inf
πtar

)− Eτ∼µref
[rinfπtar

(τ)]
))

+
((

J(π̂; rinfπ̂ , P inf
π̂ )− Eτ∼µref

[rinfπ̂ (τ)]
)
−

(
J(π̂; r⋆, P ⋆)− Eτ∼µref

[r⋆(τ)]
))

≤
((

J(πtar; r
⋆, P ⋆)− Eτ∼µref

[r⋆(τ)]
)
−

(
J(πtar; r

inf
πtar

, P ⋆)− Eτ∼µref
[rinfπtar

(τ)]
))

+
((

J(πtar; r
inf
πtar

, P ⋆)− Eτ∼µref
[rinfπtar

(τ)]
)
−

(
J(πtar; r

inf
πtar

, P inf
πtar

)− Eτ∼µref
[rinfπtar

(τ)]
))

≤
√

cC2
r (Gr, πtar, µref)κ2 log(NGr (1/N)/δ)

N
+Hrmax

√
cC2

P ({GPh
}, πtar) log(HNP (1/N)/δ)

N
,

where the third and fourth step are due to the definition of π̂, (rinfπ̂ , P inf
π̂ ) and (1) in Lemma 3. The

last step comes from Lemma 4 and the proof of Theorem 1. This concludes our proof.

G.1 PROOF OF LEMMA 4

Let Ph be the system dynamics (P ⋆
0 , {P ⋆

t }ht=1, {Pt}H−1
t=h+1) for all 0 ≤ h ≤ H − 1. Then we have

J(πtar; r, P
⋆)− J(πtar; r, P ) =

H−1∑
h=1

(J(πtar; r, P
h)− J(πtar; r, P

h−1)) + (J(πtar; r, P
0)− J(πtar; r, P )).

For any h ∈ [H − 1], we have

J(πtar; r, P
h)− J(πtar; r, P

h−1)

=E(s1,a1,··· ,sh,ah)∼(πtar,P⋆)

[ ∑
sh+1

P ⋆
h (sh+1|sh, ah)E(πtar,P )

[
r(τ)|s1, a1, · · · , sh+1

]
−

∑
sh+1

Ph(sh+1|sh, ah)E(πtar,P )

[
r(τ)|s1, a1, · · · , sh+1

]]
=E(s1,a1,··· ,sh,ah)∼(πtar,P⋆)

[ ∑
sh+1

(P ⋆
h (sh+1|sh, ah)− Ph(sh+1|sh, ah))E(πtar,P )

[
r(τ)|s1, a1, · · · , sh+1

]]
≤rmaxE(sh,ah)∼(πtar,P⋆)

[∥∥P ⋆
h (·|sh, ah)− Ph(·|sh, ah)

∥∥
1

]
≤rmax

√
cC2

P (πtar) log(HNGPh
(1/N)/δ)

N
,

where E(πtar,P )

[
· |s1, a1, · · · , sh+1

]
is the distribution of the trajectory τ when executing policy

πtar under the transition probability {Pt}H−1
t=h+1 while fixing the history to be s1, a1, · · · , sh+1. Here

the first step utilizes the Tower property, the third and fourth step uses Cuachy-Schwartz inequality
and the last step comes from Lemma 3.

For J(πtar; r, P
0)− J(πtar; r, P ), similarly we have

J(πtar; r, P
0)− J(πtar; r, P ) ≤ rmax

√
cC2

P (πtar) log(HNGP0
(1/N)/δ)

N
.

Therefore we conclude that

J(πtar; r, P
⋆)− J(πtar; r, P ) ≤ Hrmax

√
cC2

P (πtar) log(HNP (1/N)/δ)

N
.
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H PROOF OF THEOREM 5

We first derive the guarantee of MLE for estimating A⋆. Similar to Lemma 1 and Lemma 2, we have
the following lemma in the action-based comparison setting:

Lemma 5. Under Assumption 7, with probability at least 1− δ, the following event holds true:

Es∼µh,a0∼µ0,h(·|s),a1∼µ1,h(·|s)

[∥∥∥PÂh
(·|s, a0, a1)− PA⋆

h
(·|s, a0, a1)

∥∥∥2
1

]
≤

c log(HNGAh
(1/N)/δ)

N
,∀h ∈ [H].

The proof is omitted here. Let E4 denote the event in Lemma 5. Then under Assumption 8, we can
apply the mean value theorem and obtain that under E4, we have for all h ∈ [H] that

Es∼µh,a0∼µ0,h(·|s),a1∼µ1,h(·|s)

[
|A⋆

h(s, a
0)−A⋆

h(s, a
1)− Âh(s, a

0) + Âh(s, a
1)|2

]
≤

cκ2 log(HNGAh
(1/N)/δ)

N
,∀h ∈ [H]. (6)

Recall that κ = 1
infx∈[−rmax,rmax] Φ′(x) .

On the other hand, note that we have the following performance lemma:

Lemma 6. For any deterministic Markovian policies π and π′, we have

J(π; r⋆, P ⋆)− J(π′; r⋆, P ⋆) =

H∑
h=1

Es∼dπ′
h

[
Qπ

h(s, π(s))−Qπ
h(s, π

′(s))
]

The proof is deferred to Appendix H.1.

The rest of the proof largely follows Uehara et al. (2023). Under the event E4, we can bound the
suboptimality of π̂ as follows:

J(π⋆; r⋆, P ⋆)− J(π̂; r⋆, P ⋆) ≤ rmax

H∑
h=1

Es∼dπ⋆

h

[
1(π⋆

h(s) ̸= π̂h(s)) · 1(Q⋆
h(s, π̂h(s)) < Q⋆

h(s, π
⋆
h(s)))

]
≤rmax

H∑
h=1

Es∼dπ⋆

h

[ ∑
a∈A

1

(
Âh(s, a) ≥ Âh(s, π

⋆
h(s))

)
· 1

(
Q⋆

h(s, a) < Q⋆
h(s, π

⋆
h(s))

)]
,

where the first step comes from Lemma 6 and the second step is due to the definition of π̂. Then for
any α > 0, we have

Es∼dπ⋆

h

[ ∑
a∈A

1

(
Âh(s, a) ≥ Âh(s, π

⋆
h(s))

)
· 1

(
Q⋆

h(s, a) < Q⋆
h(s, π

⋆
h(s))

)]
≤Es∼dπ⋆

h

[ ∑
a∈A

1

(
Q⋆

h(s, π
⋆
h(s)) > Q⋆

h(s, a) ≥ Q⋆
h(s, π

⋆
h(s))− α

)]
+ Es∼dπ⋆

h

[ ∑
a∈A

1

(
Q⋆

h(s, π
⋆
h(s))−Q⋆

h(s, a)− Âh(s, π
⋆
h(s)) + Âh(s, a) ≥ α

)]
.

By Assumption 6, we have

Es∼dπ⋆

h

[ ∑
a∈A

1

(
Q⋆

h(s, π
⋆
h(s)) > Q⋆

h(s, a) ≥ Q⋆
h(s, π

⋆
h(s))− α

)]
≤ |A|(α/α0)

β .

For the second term, we have

Es∼dπ⋆

h

[ ∑
a∈A

1

(
Q⋆

h(s, π
⋆
h(s))−Q⋆

h(s, a)− Âh(s, π
⋆
h(s)) + Âh(s, a) ≥ α

)]
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=
1

α2
Es∼dπ⋆

h

[ ∑
a∈A

α2
1

(
A⋆

h(s, π
⋆
h(s))−A⋆

h(s, a)− Âh(s, π
⋆
h(s)) + Âh(s, a) ≥ α

)]
≤ 1

α2
Es∼dπ⋆

h

[ ∑
a∈A

∣∣∣A⋆
h(s, π

⋆
h(s))−A⋆

h(s, a)− Âh(s, π
⋆
h(s)) + Âh(s, a)

∣∣∣2]

≤
c|A|Cactκ

2 log(HNGAh
(1/N)/δ)

α2N
,

where the last step comes from the definition of Cact and (6).

Therefore by picking appropriate α, we have with probability at least 1− δ that

J(π⋆; r⋆, P ⋆)− J(π̂; r⋆, P ⋆) ≤ cH|A|
(
2

β

) β−2
β+2

(
1

α0

) 2β
β+2

(
κ2Cact log(HNGA

(1/N)/δ)

N

) β
β+2

.

H.1 PROOF OF LEMMA 6

For any two policies π and π′, we have that

J(π′; r⋆, P ⋆)− J(π; r⋆, P ⋆)

=Eπ′

[
r⋆1(s1, a1) + V π′

2 (s2)
]
− Eπ′ [V π

1 (s1)]

=Eπ′

[
V π′

2 (s2)− (V π
1 (s1)− r⋆1(s1, a1))

]
=Eπ′

[
V π′

2 (s2)− V π
2 (s2)

]
+ Eπ′ [Qπ

1 (s1, a1)− V r,π
1 (s1)]

=Eπ′

[
V π′

2 (s2)− V π
2 (s2)

]
+ Eπ′ [⟨Qπ

1 (s1, ·), π′
1(·|s1)− π1(·|s1)⟩]

= · · · =
H∑

h=1

Eπ′ [⟨Qπ
h(sh, ·), π′

h(·|s)− πh(·|s)⟩] .

This concludes our proof.
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