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Dual-stream Feature Augmentation for Domain Generalization
Anonymous Authors

ABSTRACT
Domain generalization (DG) task aims to learn a robust model from
source domains that could handle the out-of-distribution (OOD)
issue. In order to improve the generalization ability of the model
in unseen domains, increasing the diversity of training samples is
an effective solution. However, existing augmentation approaches
always have some limitations. On the one hand, the augmentation
manner in most DG methods is not enough as the model may not
see the perturbed features in approximate the worst case due to the
randomness, thus the transferability in features could not be fully ex-
plored. On the other hand, the causality in discriminative features is
not involved in these methods, which is harm for the generalization
of model due to the spurious correlations. To address these issues,
we propose a Dual-stream Feature Augmentation (DFA) method
by constructing some hard features from two perspectives. Firstly,
to improve the transferability, we construct some targeted features
with domain related augmentation manner. Through the guidance
of uncertainty, some hard cross-domain fictitious features are gen-
erated to simulate domain shift. Secondly, to take the causality into
consideration, the spurious correlated non-causal information is
disentangled by an adversarial mask, then the more discriminative
features can be extracted through these hard causal related infor-
mation. Different from previous fixed synthesizing strategy, the
two augmentations are integrated into a unified learnable model
with disentangled feature strategy. Based on these hard features,
contrastive learning is employed to keep the semantics consistent
and improve the robustness of the model. Extensive experiments
on several datasets demonstrated that our approach could achieve
state-of-the-art performance for domain generalization.

CCS CONCEPTS
• Computing methodologies → Transfer learning; Object
recognition.

KEYWORDS
Domain Generalization, Feature Augmentation, Feature Disentan-
glement

1 INTRODUCTION
Deep neural networks [15, 20, 39] have seen widespread integra-
tion into various fields, showcasing significant potential for diverse
applications. While deep learning models are effective, real-world
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Figure 1: 𝑋1 and 𝑋2 represent two different domains, and 𝑌

represents the label space shared by both source domains.
(a) The dashed areas represent the mathematical statistical
relationship between each domain and labels. Obviously, the
areas not only include the shared part, but also contains the
specific parts. (b) The dashed area represents the domain
invariant information across multiple source domains. How-
ever, the spurious correlation information still exists in it.
(c) Our motivation is to learn domain invariant features that
have causal relationships with the labels.

scenarios often pose challenges such as non-stationary and un-
known distributions in testing data. To address distribution shifts
between training and testing data, the domain generalization task
has emerged. This task aims to make the model robust and gen-
eralized across multiple source domains, enabling its application
in unknown target domains. In order to obtain the generalizable
and accurate features in DG task, the criteria of transferability and
discriminability are both important. As shown in Fig 1(a), due to the
existence of domain shift, the mathematical statistical relationship
between features and labels are different in different domains. Even
the model has high discriminability in source domains, it can not
work well in target domains due to domain shift. However, only
concerned about the transferability is not enough. Shown in Fig 1(b),
the dashed area refers to the domain-invariant information learned
from multiple domains. Although leveraging domain adversarial
learning can get good transferability of features, the model only
focuses on the domain shared information, which maybe harm the
final downstream tasks. e.g., some non-causal information that has
spurious correlations with labels can not be distinguished. Then
the model could not generalize well to unseen domains. Based on
this, in order to relieve the above issue, we want to achieve the
goal shown in Fig 1(c), which could not only eliminate the spuri-
ous correlated non-causal information, but also exploit the domain
invariant features with sufficient causality.

Data augmentation has been demonstrated effective in DG task
recently. Generally speaking, these augmentation methods keep
the semantics consistent and modify the style of samples to en-
hance the diversity. This strategy goes against domain shift and
makes the model pay more attention to features that are invariant
to domain transfer. If the model could fully focus on capturing the
statistical dependency between the semantic information and the
corresponding labels, it could eliminate bias toward a particular
domain distribution. According to the Empirical Risk Minimiza-
tion (ERM) principle, to improve the generalization capability of

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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a model, an effective way is to optimize the worst-domain risk
over the set of possible domains. However, despite the performance
could be promoted by generating samples that are created to ap-
proximate the worst case across the entire family of domains, it
is hard to generate ”fictitious” samples in the input space without
losing semantic discriminative information. Moreover, previous
methods always adopt the two-stage data perturbation training
procedure, and the perturbed samples can not achieve the self-
adaptation with the different samples. Fourier transform [46] is a
well-known data augmentation manner and obtains competitive
results. Usually, in order to avoid the semantic changes, domain
transfer is achieved by adding random noise to the Fourier spectrum
amplitude components of the sample, then the new data augmen-
tation can be generated. However, this random way may induce
unpredictable alterations in the image style. Minor disturbances
might have no significant impact on the domain style, rendering
the style transformation ineffective. Conversely, substantial per-
turbations could distort the image style, potentially affecting its
semantics and introducing label noise.

Based on this, we aim to achieve the data augmentation by hard
perturbing features without changing the semantics. In order to
fully explore the generalization boundaries and avoid the semantic
level collapse, instead of samples, the data augmentation in our
method is performed on the feature level. We propose to perturb
the hard features based on a feature disentanglement framework,
as shown in Fig 2. On the one hand, to obtain the transferability, we
aim to construct the consistent semantic augmented features with
another domain information. As illustrated in Fig 2 left, the domain-
specific information with the most abundant style attributes is
selected to construct domain related hard features. In information
theory, the entropy is an uncertainty measure which can be lever-
aged to quantify the domain style. However, only rely on reducing
the domain difference to improve the generalization is not enough,
although the feature disentanglement could guarantee the seman-
tics not be changed, it does not involve the spurious correlation
and non-causal information in the features. In DG task, causality
is an important factor for the discriminability. On the other hand,
to improve the reliablity of the statistical dependence, the spuri-
ous non-causal correlations should be eliminated and the invariant
causal correlations should be mined. Based on the semantic features
of disentanglement, we propose to construct the causal related hard
features. As shown is Fig 2 right, the non-causal information with
similar labels exhibits spurious correlation with semantics, which
could be used to construct causal related hard features. These fea-
tures consist of the domain-invariant semantics and the spurious
correlated non-causal information from another class. The causal
and non-causal related information in our method can be sepa-
rated by an adversarial mask. With the help of the two stream
hard features, our model could fully explore the causal factor based
on the domain invariant features, thereby the transferability and
discriminability of features can be fully preserved.

In this paper, we integrate the two feature augmentation man-
ner into one unified framework and propose a dual stream feature
augmentation based on the feature disentanglement framework.
In the framework, domain-invariant causal features are obtained
through the feature disentanglement strategy with the help of do-
main related and causal related hard features. To keep the semantics

√

domain related 
hard feature

causal related 
hard feature

×

√

×

Figure 2: Diagram of our feature augmentation. For domain
related augmentation, the domain-specific information with
the most abundant style attributes is selected to construct
hard features. For causal related augmentation, the most
correlated non-causal information within the most similar
class is selected to construct hard features.

consistent, contrastive learning is leveraged to dual-stream aug-
mented hard features respectively. Noteworthily, the perturbed
features are created during the training process, therefore the on-
line features can adapt with the different inputs. The contributions
of our work are as follows:

• We point out the disadvantages of present data augmenta-
tion methods, and propose a domain related hard feature
perturbation strategy with semantic consistency based on
an end-to-end stable disentanglement framework, thereby
improving the transferability of features.

• To fully explore the discriminability in generalized features,
the causality is considered in ourmethod. Causal related hard
features are created with the disentanglement framework,
thus eliminating the underlying non-causal information hid-
den in features.

• We conduct extensive experiments on several public bench-
marks, which clearly demonstrate the effectiveness of our
approach.

2 RELATEDWORK
Domain Generalization. The goal of DG task is to learn the gen-
eralizable representations from source domains to ensure stable
performance to unknown target domain. Existing methods can be
roughly divided into domain-invariant or causal-related feature
learning [3, 26, 28, 29], data augmentation [10, 18, 44, 46] and other
learning strategies, such as meta-learning [3, 7, 49] and contrastive
learning [8, 17, 47]. Domain-invariant representation learning has
become an important method in DA and DG since [13] was pro-
posed. This method facilitates the model in learning domain in-
variant features through min-max adversarial training between
the semantic feature extractor and domain discriminator. [3] also
employed a dual path strategy, integrating domain-invariant and
domain-specific encoders, similar to our approach. However, they
trained two domain classifier for two encoder respectively, which
still constitutes an adversarial training process. In recent years,
there has been increasing interest in investigating domain gener-
alization from the causal perspective. [28, 42, 45] derived causal
information that truly determine the category label from the statis-
tical relationship between the sample and the label. [28] analyzed
the three fundamental properties that causal factors should satisfy,
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thereby achieving the objective by ensuring the learned represen-
tations comply with these three properties. However, this may lead
the model to learn some domain-specific information from the
source domains. An adversarial mask is employed to disentangle
spurious correlated non-causal information as in [28]. However, in
our work, the mask is applied to domain-invariant features to avoid
negative impacts. [17] employed a domain-aware contrastive learn-
ing that aims to minimize the distance between stylized and original
feature representations. [47] proposed an proxy-based contrastive
learning approach. This method used proxies as the representatives
of sub-datasets and managed the distance between features and
proxies, thereby enhancing the robustness against noise samples
or outliers. [8] generated domain-invariant paradigms for each in-
stance and then conducted contrast learning between the features
of image instances and their paradigms. In our work, we apply
supervised contrastive learning strategy to dual stream augmented
features and domain-invariant features. This enables the model to
eliminate potential stylistic information and non-causal informa-
tion inherent in the domain-invariant features, thereby enhancing
the model‘s generalization ability.

Data Augmentation. Data augmentation techniques for Do-
main Generalization (DG) can be broadly categorized into image
generation [53, 55], image transformation [41, 46], and feature aug-
mentation [48, 56]. However the offline two-stage image generation
training procedure is complex, as both training a generative-based
model and inferring it to obtain perturbed samples present signifi-
cant challenges. [46] perturbed the style of a sample through linear
interpolation between the Fourier spectrum amplitude components
of the sample. However, it randomly selected the exchange sample
and ratio. [48] employed Wavelet Transforms to decompose the
features into high and low frequencies. [27, 41] achieved feature
style transformation by executing a series of processes on the low-
frequency component of features. The statistical properties [33] of
the feature maps can represent stylistic information as they capture
visual properties, [18, 44, 52, 56] achieved style transformation by
perturbing statistics of features. However, these methods directly
interfere with feature statistics and often fail to maintain semantic
consistency. Very recently, [22] is proposed to explicitly enforce
semantic consistency preserving class-discriminative information.
It generated learnable scaling and shifting parameters for features
to enhance domain transfer from the original ones and this idea
is very similar with ours. However, it is essentially still a random
augmentation method, while our method aims to generate targeted
features. In our method, we construct hard augmented features
through DFA, enhancing the generalization capacity of the model.
Not only domain style transformation but also causal related infor-
mation augmentation is implemented in our work.

3 METHOD
The source domains Ds and target domain Dt share the same
label space in DG task. Each source domain consists of Ds =

{(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1, in which 𝑥 represents sample and 𝑑 represents label.
In our method, we use dual path feature disentangle module to ob-
tain domain-invariant features and domain-specific features. Then
the adversarial mask module is introduced, the potential causal
information is mined through it to disentangle spurious correlated

non-causal information among domain-invariant features. Finally,
we present the dual-stream feature augmentation.

3.1 Dual path feature disentangle module
Domain-invariant features refer to the shared semantic character-
istics across multiple domains, which remain consistent despite
domain shifts. Features that cannot be distinguished by the domain
classifier are considered effective domain-invariant features. En-
suring that the domain classifier can accurately identify domain
features is crucial. Most methods are updating both the domain-
invariant encoder 𝐹𝐼 and the domain classifier 𝐶𝑑 together. How-
ever, training domain classifier with domain-invariant features
which do not contain domain-specific information could not guar-
antee its effectiveness. Therefore, we propose a dual path feature
disentangle module, which ensures the accuracy of the domain
classifier by leveraging an extra domain-specific encoder. The pro-
posed method consists of a domain-invariant encoder 𝐹𝐼 , a domain-
specific encoder 𝐹𝑆 and a domain classifier 𝐶𝑑 . To achieve an op-
timal domain classifier, we conduct the training of the domain-
specific encoder and the domain classifier as a 𝑘 classification task,
as defined by Eq 1, where 𝑑𝑖 represents domain label and 𝑘 repre-
sents the number of source domains.

L𝑠𝑝𝑒

𝑑𝑐
= ℓ (𝐶𝑑 (𝐹𝑆 (𝑥𝑖 )) , 𝑑𝑖 ) (1)

Regarding the domain-invariant features 𝑓𝐼 , they are passed through
the domain classifier 𝐶𝑑 to obtain the domain classification prob-
ability 𝑃𝑓𝐼 . The domain-invariant encoder 𝐹𝐼 is then updated by
Eq 2. Noteworthily, to force the features not containing domain
specific information, instead of the cross entropy loss, we use the
mean square error (MSE) loss to make the classification probabili-
ties as smooth as possible. The reason is that the domain classifier is
supposed to be impossible to distinguish domain-invariant features.

L𝑖𝑛𝑣
𝑑𝑐

= (𝑃𝑓𝐼 −
1
𝑘
)2 (2)

3.2 Adversarial Mask Module
To ensure that the features are causally sufficient and contain more
potential causal information, the adversarial mask module [28] is
employed to achieve the goal. We aim to categorize the feature
dimensions into superior dimensions, which are related to causal
information, and inferior dimensions, which lack sufficient causal
information and exhibit spurious correlations with the labels. Obvi-
ously, the superior dimensions of features have stronger relevance
to the semantics than the inferior. Through the adversarial training
between two classifiers, the two kinds of features can be separated.
Specifically, a neural network𝑀 is built, by using derivable Gum-
belSoftmax to sample the mask 𝑀 (𝑥) . Through multiplying the
domain-invariant features with the resulting masks𝑀𝑠𝑢𝑝 = 𝑀 (𝑓𝐼 )
and𝑀𝑖𝑛𝑓 = 1−𝑀 (𝑓𝐼 ), we can obtain superior and inferior features,
respectively, and then feed them into two different classifiers𝐶1and
𝐶2. The optimization process between encoder, classifier and mask
is an adversarial learning process. On the one hand, two classifiers
and encoder are optimized by cross-entropy loss, so that they can
mine more semantic information, as shown in Eq 3. On the other
hand, the mask is optimized through adversarial training by maxi-
mizing the classification loss of the inferior dimensions, as shown
in Eq 4, to better distinguish superior and inferior dimensions.
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Figure 3: The framework of DFA. We first generate domain-invariant features and domain-specific features by dual path
feature disentangle module, and employ adversarial mask module to disentangle spurious correlated non-causal information
from domain-invariant features. We combine superior features with domain-specific information and non-causal inferior
information by special strategy respectively to achieve dual-stream feature augmentation. At last, contrastive learning is
adopted to the augmented features and domain-invariant features. The dashed lines represent that the gradient is detached.

L𝑠𝑢𝑝

𝑐𝑙𝑠
= ℓ (𝐶1 (𝐹𝐼 (𝑥𝑖 ) ∗𝑀𝑠𝑢𝑝 ), 𝑦𝑖 )

L𝑖𝑛𝑓

𝑐𝑙𝑠
= ℓ (𝐶2 (𝐹𝐼 (𝑥𝑖 ) ∗𝑀𝑖𝑛𝑓 ), 𝑦𝑖 )

(3)

The overall loss of the adversarial mask module is depicted in Eq 4
and Eq 5.

L𝑚𝑎𝑠𝑘 = L𝑠𝑢𝑝

𝑐𝑙𝑠
− L𝑖𝑛𝑓

𝑐𝑙𝑠
(4)

L𝑐𝑙𝑠 = L𝑖𝑛𝑓

𝑐𝑙𝑠
+ L𝑠𝑢𝑝

𝑐𝑙𝑠
(5)

3.3 Dual-stream feature augmentation
In this section, we will introduce the two types of feature augmenta-
tion methods respectively. Assuming that each domain contributes
𝑛 samples to a batch and there are 𝑘 source domains in total, the
batch size is calculated as 𝐵 = 𝑛 × 𝑘 .

3.3.1 Domain related feature augmentation. Dual path fea-
ture disentangle module enables the model concentrate on domain-
invariant information, partial mitigating performance degradation
induced by domain shift. However, only rely on feature disentangle-
ment does not ensure that domain-invariant features are completely
separated from domain-specific information. Therefore, we propose
a domain related feature augmentation to generate fictitious data.
According to the Empirical Risk Minimization (ERM) principle, the
model could improve the generalization capability by optimizing
the worst-domain risk with the perturbed cross-domain features.

To construct domain related hard features, the superior dimen-
sions of domain-invariant features and the most distinct style from
the domain-specific features in other domains should be selected.
To achieve this goal, information entropy is leveraged as the cri-
terion for evaluating style features, as illustrated in Eq 6. Lower
information entropy indicates a more distinct style information.
To ensure augmentation diversity, we select one sample from each
domain sequentially, using 𝑘 samples as a group to implement the

aforementioned augmentation. And there are 𝑛 groups within a sin-
gle iteration. The chosen domain-specific features and disentangled
superior dimensions features are merged via the concatenation
operation. Then subsequently the feature dimension is reduced
through a fully connected layer, as shown in Eq 7. The [·, ·] is a
concatenation operation and FC is a fully connected layer. 𝑓 ′

𝑆
rep-

resents the domain-specific features that belong to other domains
in a group.

𝐼𝐸 (𝑋 ) = −𝑃 (𝑥)𝑙𝑜𝑔(𝑃 (𝑥)) (6)
𝑓𝐷𝑅−𝐴𝑢𝑔 = FC( [𝑓𝑠𝑢𝑝 ,𝑚𝑖𝑛(𝐼𝐸 (𝑓 ′𝑆 ))]) (7)

Intuitively, the semantic information of domain related hard fea-
tures aligns with domain-invariant features, and domain-invariant
features inevitably retain some aspects of their original domain-
specific information. To eliminate potential domain-specific infor-
mation in domain-invariant features, the supervised contrastive
learning is applied to domain-invariant features and domain related
hard features, as shown in Eq 8. By drawing the positive samples
close and the negative samples separated in the feature space, the
transferability of the domain-invariant features can be enhanced.

L𝐷𝑅
𝑐𝑙

= ℓ𝑐𝑙 (𝑓𝐼 , 𝑓𝐷𝑅−𝐴𝑢𝑔) (8)

3.3.2 Causal related feature augmentation. Due to the limi-
tations of the dataset and the insufficient diversity of samples, the
model would inevitably learn some spurious correlated non-causal
information when capturing the statistical relationship between
samples and labels. In our framework, although we employ ad-
versarial mask module to disentangle the spurious correlated non-
causal information of domain-invariant features, it can not entirely
eliminate the non-causal information due to the lack of diversity.

Therefore, we propose the causal related feature augmentation to
create causal related hard features to enhance the diversity. To con-
struct cross-class causal related hard features, we select a cross-class
non-causal information, which is in the form of inferior dimensions
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of domain-invariant features, for each disentangled feature. Intu-
itively, the spurious correlated non-causal information in one class
may also exhibit a degree of spurious correlation with its similar
categories. With this insight, the class with the greatest classifica-
tion probability excluding its label class is selected as objective for
non-causal information selection. Similar with the domain related
feature augmentation, information entropy is served as the criterion
for selecting non-causal information among objective classes. As
illustrated in Eq 6, lower information entropy indicates a more cer-
tain spurious causal correlation. Specifically, to mitigate the impact
of varying domain information, we implement feature augmenta-
tion within one domain. Within a specific domain, the information
entropy criterion is leveraged to select a non-causal information
feature for different categories, resulting in the selection of 𝐶 fea-
tures for 𝐶 classification tasks. With 𝑘 source domains in total,
the overall number of selected non-causal information features is
𝑘 ×𝐶 . Subsequently, for each disentangled feature, we select the
non-causal information feature corresponding to its target class
from the 𝐶 non-causal features in its source domain. The chosen
non-causal features and disentangled features are then merged
via the concatenation operation and reduce the feature dimension
through a fully connected layer following the above section opera-
tion, as shown in Eq 9. 𝑓 ′

𝑖𝑛𝑓
represents the inferior dimensions of

domain-invariant features that belong to the objective selection
class within a domain.

𝑓𝐶𝑅−𝐴𝑢𝑔 = FC( [𝑓𝑠𝑢𝑝 ,𝑚𝑖𝑛(𝐼𝐸 (𝑓 ′
𝑖𝑛𝑓

))]) (9)

The domain-invariant features contain the same causal informa-
tion as the causal related hard features. To encourage the domain-
invariant features to disregard the non-causal information, we em-
ploy supervised contrastive learning between domain-invariant
features and causal related hard features, as shown in Eq 10.

L𝐶𝑅
𝑐𝑙

= ℓ𝑐𝑙 (𝑓𝐼 , 𝑓𝐶𝑅−𝐴𝑢𝑔) (10)

The overall loss of the dual-stream feature augmentation is de-
picted in Eq 11.

L𝑐𝑙 = L𝐷𝑅
𝑐𝑙

+ L𝐶𝑅
𝑐𝑙

(11)

3.4 Overall Training and Inference
The overall training process is composed of three components. The
domain-specific encoder 𝐹𝑠 and domain classifier 𝐶𝑑 are updated
according to Eq 12. The domain-invariant encoder 𝐹𝑖 and label clas-
sifier 𝐶1, 𝐶2 are updated according to Eq 13. The adversarial mask
𝑀 is updated according to Eq 14. 𝜆𝑖𝑛𝑣 and 𝜆𝑐𝑙 are the corresponding
trade-off parameters.

min
𝐹𝑠 ,𝐶𝑑

L𝑠𝑝𝑒

𝑑𝑐
(12)

min
𝐹𝑖 ,𝐶1,𝐶2

L𝑐𝑙𝑠 + 𝜆𝑖𝑛𝑣L𝑖𝑛𝑣
𝑑𝑐

+ 𝜆𝑐𝑙L𝑐𝑙 (13)

min
�̂�

L𝑚𝑎𝑠𝑘 (14)

During the inference, the parameters in model are fixed. Domain-
invariant encoder 𝐹1 and the label classifier 𝐶1 are leveraged for
inference.

Table 1: leave-one-domain-out results on PACS

Target Art Cartoon Photo Sketch Ave.

ResNet18

DeelAll [54] 77.63 76.77 95.85 69.50 79.94
EISNet [43] 81.89 76.44 95.93 74.33 82.15
MixStyle [56] 84.10 78.80 96.10 75.90 83.73
MSAM [26] 85.50 78.75 96.53 75.28 84.02
FACT [46] 85.37 78.38 95.15 79.15 84.51

MatchDG [29] 81.32 80.70 96.53 79.72 84.56
DSON [35] 84.67 77.65 95.87 82.83 85.11
RSC [16] 83.43 80.31 95.99 80.85 85.15
IPCL [8] 85.35 78.88 95.63 81.75 85.40

StyleNeo [18] 84.41 79.25 94.93 83.27 85.47
FSDCL [17] 85.30 81.31 95.63 81.19 85.86
FSR [44] 84.49 81.15 96.13 82.01 85.95
FFDI [41] 85.2 81.5 95.8 82.8 86.3
CIRL [28] 86.08 80.59 95.93 82.67 86.32
XDED [21] 85.60 84.20 96.50 79.10 86.40
DFA(ours) 87.20 80.88 96.22 82.92 86.80

ResNet50

mDSDI [3] 87.70 80.40 98.10 78.40 86.20
FSDCL [17] 88.48 83.83 96.59 82.92 87.96
CCFP [22] - - - - 88.40
PCL [47] 90.20 83.90 98.10 82.60 88.70
FFDI [41] 89.30 84.70 97.10 83.90 88.80

StyleNeo [18] 90.35 84.2 96.73 85.18 89.11
FACT [46] 90.89 83.65 97.78 86.17 89.62
CIRL [28] 90.67 84.30 97.84 87.68 90.12
DFA(ours) 90.62 85.87 97.60 87.52 90.40

4 EXPERIMENTS
4.1 Dataset
To verify the effectiveness of the proposed method, we evaluate
our method on four public datasets, which cover various recogni-
tion scenes. PACS [24] is a public object recognition dataset which
has large discrepancy in different domains. It contains 999,1 im-
ages from four domains (Art-Painting, Cartoon, Photo and Sketch),
and in each domain, it contains 7 categories. For fair compari-
son, we follow the original training-validation split provided by
[24]. OfficeHome [40] is a large public dataset with 4 domains,
and each domain consists of 65 categories. The four domains are
Art, Clipart, Product and Real-World. It contains 15,500 images,
with an average of around 70 images per class. Following [28],
we randomly split each domain into 90% for training and 10% for
validation. VLCS [14] is a mixture of different datasets, named as
VOC2007 [11], LabelMe [34], Caltech101 [12] and SUN09 [9]. Each
domain contains 5 categories. Following [8], we randomly split 80%
for training and 20% for validation. TerraIncognita [2] is a very
large dataset includeing 24,778 photographs of wild animals, which
are divided into 10 categories. It contains 4 camera-trap domains:
L100, L38, L43, L46.
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Table 2: leave-one-domain-out results on OfficeHome

Target Art Clipart Product Real Avg.

ResNet18

DeepAll [54] 57.88 52.72 73.50 74.80 64.72
JiGen [5] 53.04 47.51 71.47 72.79 61.20
RSC [16] 58.42 47.90 71.63 74.54 63.12

MixStyle [56] 57.20 52.90 73.50 75.30 64.87
MSAM [26] 57.56 53.54 73.76 75.97 65.21
StyleNeo [18] 59.55 55.01 73.57 75.52 65.89
FSDCL [17] 60.24 53.54 74.36 76.66 66.20
IPCL [8] 61.56 53.13 74.32 76.22 66.31
FFDI [41] 61.70 53.80 74.40 76.20 66.50
FSR [44] 59.95 55.07 74.82 76.34 66.55
FACT [46] 60.34 54.85 74.48 76.55 66.56
CIRL [28] 61.48 55.28 75.06 76.64 67.12
DFA(ours) 61.22 55.41 75.12 76.81 67.14

ResNet50

MixStyle [56] 51.1 53.2 68.2 69.2 60.4
MLDG [23] 61.5 53.2 75.0 77.5 66.8
ERM [38] 63.1 51.9 77.2 78.1 67.6
SagNet [32] 63.4 54.8 75.8 78.3 68.1
CORAL [36] 65.3 54.4 76.5 78.4 68.7
mDSDI [3] 68.1 52.1 76.0 80.4 69.2
CCFP [22] - - - - 69.7
SWAD [6] 66.1 57.7 78.4 80.2 70.6
PCL [47] 67.3 59.9 78.7 80.7 71.6
DFA(ours) 67.6 60.7 79.4 80.7 72.1

4.2 Implementation Details
ImageNet pretrained on ResNet [15] is used as our backbone. We
train the network with SGD, batch size of 16 and weight decay of
5e-4 for 50 epochs. The initial learning rate is 0.001 and decayed
by 0.1 at 80% of the total epochs. For all datasets, images are re-
sized to 224 × 224. The standard augmentation protocol in [4] is
followed, which consists of random resized cropping, horizontal
flipping and color jittering. We also adopt the Fourier data augmen-
tation as in [46] and construct different domain-specific encoder for
different source domain. Following the commonly used leave-one-
domain-out protocol [25], we specify one domain as the unseen
target domain for evaluation and train with the remaining domains.
The parameter 𝜆𝑖𝑛𝑣 of the domain classifier loss is set to 1 and use
a sigmoid ramp-up strategy [31] with a length of 5 epochs follow-
ing [28]. To promote greater stability during training, we apply
identity operations to the mask throughout the initial five epochs
as [28]. The parameter 𝜆𝑐𝑙 of the contrastive learning loss is set to
0.001 after the initial five epochs. Inspired by [19] , the temperature
parameter 𝜏 of ℓ𝑐𝑙 is set to 0.07.

4.3 Results
Results on PACS is shown in Table 1. We compare our method
with previous SOTA methods. Our method surpasses CIRL [28]
by 0.48% on ResNet18 and 0.28% on ResNet50, respectively. This

Table 3: leave-one-domain-out results on VLCS with
ResNet18

Target V L C S Avg.

DeelAll [15] 67.48 61.81 91.86 68.77 72.48
JiGen [5] 70.93 62.06 96.17 71.40 75.14
FACT [46] 71.83 64.38 92.79 73.28 75.57
FSR [44] 71.94 61.03 97.95 71.42 75.59
RSC [16] 73.81 62.51 96.21 72.10 76.16

MMLD [30] 73.01 62.20 97.01 72.49 76.18
MSAM [26] 76.31 63.74 97.64 69.34 76.76
IPCL [8] 74.47 66.83 92.51 73.25 76.77

MVDG [50] 75.26 63.79 98.40 71.05 77.13
StableNet [51] 73.59 65.36 96.67 74.97 77.65
CIRL [28] 73.04 68.22 92.93 77.27 77.87
DFA(ours) 76.45 67.00 97.38 72.51 78.33

Table 4: leave-one-domain-out results onTerraIncognitawith
ResNet50

Target L100 L38 L43 L46 Avg.

Mixstyle [56] 54.3 34.1 55.9 31.7 44.0
RSC [16] 50.2 39.2 56.3 40.8 46.6

DANN [13] 51.1 40.6 57.4 37.7 46.7
IRM [1] 54.6 39.8 56.2 39.6 47.6

CORAL [36] 51.6 42.2 57.0 39.8 47.7
MLDG [23] 54.2 44.3 55.6 36.9 47.8
ERM [38] 54.3 42.5 55.6 38.8 47.8
mDSDI [3] 53.2 43.3 56.7 39.2 48.1
SagNet [32] 53.0 43.0 57.9 40.4 48.6
SWAD [6] 55.4 44.9 59.7 39.9 50.0
PCL [47] 58.7 46.3 60.0 43.6 52.1
DFA(ours) 59.9 50.2 57.0 42.8 52.5

improvement is attributed to learning causal information from
domain-invariant information, thereby excluding causal-related
but domain-specific information. Furthermore, our method outper-
forms data augmentation methods such as FSR [44] and FFDI [41],
because we encompasses not only feature stylization augmentation
but also causal-related feature augmentation. Specifically, com-
pared with CCFP [22], which also adopt feature augmentation, DFA
surpasses CCFP by 2%. Through dual-stream feature augmenta-
tion, both the transferability and discriminability of features are
enhanced. Our method achieves the best performance, achieving an
average accuracy of 86.80% on ResNet18 and 90.40% on ResNet50.
Results on OfficeHome is shown in Table 2 which illustrates
that DFA outperforms data augmentation methods like FACT [46],
FSR [44] and FFDI [41]. However, the impact of DFA on ResNet18 is
limited due to the image number per category is small in this dataset
and the data style is similar to its pretrained dataset ImageNet with
a small domain gap. In such scenarios, some domain style informa-
tion may enhance the classification results. On ResNet50, DFA is
2.9% higher than mDSDI [3] method, and 0.5% higher than PCL [47]
method. Results on VLCS is shown in Table 3. we use ResNet18
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Table 5: An ablation study of baseline method and our DFA.

Model DFD AdvM DR CR A C P S Avg.

Model1 ✓ - - - 85.25 78.62 96.22 79.15 84.81
Model2 - ✓ - - 85.93 80.07 96.28 81.52 85.95
Model3 ✓ ✓ - - 86.57 79.94 96.28 81.92 86.17
Model4 ✓ ✓ ✓ - 87.06 80.46 96.46 82.28 86.56
Model5 ✓ ✓ - ✓ 86.86 80.33 96.22 82.64 86.51
DFA ✓ ✓ ✓ ✓ 87.20 80.88 96.22 82.92 86.80

as the backbone and our DFA demonstrates superior performance,
outperforming CIRL [28] by an average of 0.46%, and surpassing
FSR [44] by an average of 2.74%. Results on TerraIncognita is
shown in Table 4 and ResNet50 is employed as the backbone. Our
DFA exhibits superior performance, surpassing mDSDI [3] by an
average margin of 4.4%. DFA outperforms PCL [47] by an average
of 0.4% which is a robust contrastive learning method.

Based on the above results from four benchmarks in DG task,
DFA outperforms other data augmentation methods, particularly
in situations with large domain gaps. DFA achieves the feature
augmentation by considering both domain-specific information
and causally correlated information, thereby the generalization
capability of the model is improved.

5 DISCUSSION
Ablation Study.We conduct ablation studies to demonstrate the
significance of each module in Table 5. "DFD" and "AdvM" represent
dual path feature disentangle module and adversarial mask module,
respectively. "DR" and "CR" represent domain-related feature aug-
mentation and causal-related feature augmentation, respectively.
We employ ResNet18 as the backbone and train on the PACS dataset.
Firstly, we discuss the ablation study of the baseline ( corresponds
to model3 in the table) which represents the feature disentangle-
ment framework without the hard feature perturbation. Comparing
model3 with model1 and model2, it is obvious that the performance
of combining both Adversarial Training and Adversarial Mask is
much better. This observation suggests that for DG problems, it is in-
sufficient to learn only domain-invariant features or causal features.
Rather, considering causal information within domain-invariant
features can directly improve model performance. Additionally, the
performance enhancements seen in Model4 and Model5 indicate
that the two types of feature augmentation methods we proposed
can help the model concentrate on hard features, thereby improving
the model’s ability to discriminate hard features. Finally, based on
the baseline, the DFA achieves the SOTA result of 86.80%, demon-
strating that the two types of feature augmentation methods further
enhance the transferability and discriminability of features.

Analysis with GradCAM. In Figure 4, we visualize the atten-
tion maps of the last convolutional layer to verify the efficacy of
causal related feature augmentation. The second row presents the
baseline, while the last row demonstrating the efficacy of causal
related feature augmentation. It is evident that, despite the base-
line achieving relatively satisfactory test results, it still encounters
challenges with samples that have spurious correlations. It fails
to capture the causal information, instead focusing on non-causal

Figure 4: Visualization of attention maps of the last con-
volutional layer for our base framework and DFA. We use
ResNet18 as the backbone and train on the PACS dataset,
with Art Painting serving as the target domain.
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Figure 5: The visualization of feature statistics. The top raw
is the mean statistics and the bottom raw is the std statistics.
We use ResNet18 as the backbone and train on the PACS
dataset, with Art Painting serving as the target domain.

information, as demonstrated in Figure 4. These results suggest
that causal related feature augmentation can effectively enhance
the model’s ability to identify the causal information of samples,
consequently strengthening discriminability of features.

Analysis of Feature Statistics. To confirm that domain re-
lated feature augmentation can effectively mitigate the effects of
domain shift, we visualize the feature statistics distribution based
on Mixstyle, baseline and DFA. Compared with Mixstyle [56], the
baseline successfully learns domain-invariant information, exhibit-
ing minimal shifts in feature statistics and our feature augmentation
clearly mitigates the domain shift between different domain fea-
tures, indicating a higher purity of domain-invariant features.

Confusion Matrix.We have plotted confusion matrix for our
baseline and DFA, as illustrated in Fig. 7. We employ ResNet18
as backbone and train on the PACS dataset.It can be obviously
found that in the art and cartoon domains, the baseline still has
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Figure 6: The t-SNE visualization of feature representations
extracted by the feature extractor of the baseline and DFA
on PACS. Different colors mean different classes in (a) and
(b), and different domains in (c) and (d), respectively.

Figure 7: The confusion matrix of baseline and DFA. Each
color represents a target domain, ordered from left to right
as follows: Art, Cartoon, Photo, Sketch. The top row is the
baseline, and the bottom row is our DFA.

some incorrect classifications due to non-causal information and
domain shift. In contrast, DFA displays a significant reduction in
classification errors. This evidence suggests that DFA is capable
of eliminating such spurious correlations in samples and paying
attention to domain-invariant and causally related information,
thereby enhancing the model’s generalization ability.

Visualization of Features. We employ t-SNE [37] to display
the visualization results of features extracted by the semantic fea-
ture extractor, as depicted in Fig. 6. From Fig. 6(a), where different
colors denote different classes, it becomes clear that although the
baseline can distinguish each category in the feature space, it still
struggles to differentiate samples with similar semantics. This chal-
lenge is indicated by a mixture of points from different class labels
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Figure 8: (a) is the sensitivity analysis of the parameter 𝜆𝑐𝑙 .
(b) is loss curve of training process. All results are obtained
on PACS dataset with ResNet18 as backbone.

in the middle. Considering that horses, elephants, and dogs are all
tetrapods, the baseline fails to capture information that determines
class labels, such as elephants’ trunk, ears, and instead focuses on
non-causal information such as body or legs. Through DFA, we
can construct more hard features to train the model, thereby elim-
inating the spurious correlations contained in semantic features,
as evidenced in Fig. 6(b). Compared with Fig. 6(c) and 6(d), DFA
can reduce the distance between different domains in the feature
space, enabling the model to learn domain-invariant features and
eliminate potential domain-specific information. Thus, these results
reveal that DFA is indeed capable of directing the feature extractor
to focus more on domain-invariant and causal related information,
thereby enhancing the model’s generalization capability on unseen
target domains.

Parameter Sensitivity.We analyze the sensitivity of Parameter
𝜆𝑐𝑙 on the PACS dataset with ResNet18 as the backbone, as depicted
in Fig. 8(a). DFA robustly achieves competitive performances across
a broad range of values. Fig. 8(b) illustrates the loss decline curve,
where 𝜆𝑐𝑙 is 0.005 and 𝜆𝑖𝑛𝑣 employs a sigmoid ramp-up [31] with a
length of 5 epochs. The orange line in the Fig. 8(b) is converging
quickly which is the domain classification loss of domain-invariant
features. It indicates that our dual path disentangle module can
learn domain-invariant features in a significantly more stable man-
ner, demonstrating an advantage compared to traditional domain
adversarial training. The entire training process exhibits stability,
with both L𝑖𝑛𝑣

𝑑𝑐
and L𝑐𝑙 converging, indicating that our method

provides a stable end-to-end framework.

6 CONCLUSION
In this paper, a dual stream feature augmentation is proposed based
on the disentanglement framework. Previous work always applied
random perturbations on style, however, they do not exploit po-
tentialities of feature transferability. Differently, on the one hand,
we construct domain related hard features to explore harder and
broader style spaces while preserving semantic consistency. On the
other hand, considering that the spurious correlated non-causal
information can harm the discriminability of model, the causal
related hard features are also constructed to better disentangle
the non-causal information hidden in domain-invariant features,
thereby improving the generalization and robustness of the model.
Trough dual-stream feature augmentation based on a stable feature
disentanglement framework, we successfully learn causal related
domain-invariant features, and a variety of experiments demon-
strate the effectiveness of our method. In the future, we will try to
integrate our work with the challenging multimodel learning task.
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