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Figure 1: Visualization of attention maps across the 12 layers of the CLIP ViT-B model, demonstrating how focus areas shift and refine
through each layer.

Figure 2:More visualization results of feature maps and final predicted mask in CRIS [1] and ASDA respectively. The coarse feature map
represents the features without interaction with word-level language features, while the fine feature map results from the fusion and
interaction between word-level features afterwards.

APPENDICES
We provide supplementary information in the following order: er-
ratum in Appendix A, extended experiments in Appendix B, failure
cases in Appendix C and additional visualizations in Appendix D.

A ERRATUM
Regarding the Figure 3 included in the submitted paper, there was
a typographical error in the spelling of "transformer." It is recom-
mended that readers refer to this correct figure for an accurate
understanding of our model’s functionality.

B EXTENDED EXPERIMENTS
To assess the effectiveness of our approach under real-world condi-
tions, we perform evaluations using the test split of PhraseCut [2].
While RefCOCO features expressions for only 80 salient object
classes, PhraseCut provides a more comprehensive set with 1272
categories in its test set. Regardless of the training dataset, our
method ASDA significantly outperformed previous state-of-the-
art methods, CRIS [1] and LAVT [3], on the PhraseCut test split.
This includes superior performance in categories not seen during
training, highlighting ASDA’s robust generalization capabilities.
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Table 1: phrasecut

Method Train dataset PhraseCut test
all unseen

CRIS
RefCOCO 15.53 13.75
RefCOCO+ 16.3 14.62

G-Ref 16.24 13.88

LAVT
RefCOCO 16.88 14.43
RefCOCO+ 16.64 13.49

G-Ref 16.05 13.48

ASDA(Ours)
RefCOCO 20.86 18.1
RefCOCO+ 20.53 17.8

G-Ref 20.35 17.65

Figure 3: Illustration of single-branch cross-modal alignment in
existing RIS methods and our dual alignment that enables linguistic
descriptors to directly interact with mask prediction.

Specifically, when trained on the RefCOCOdataset, ASDA surpasses
CRIS by 5.33% and LAVT by 3.98% across all categories respectively,
and 4.35% and 3.67% in unseen categories. When trained on other
datasets, ASDA exhibited similarly impressive results.

C FAILURE CASES
We illustrate failure cases of our ASDAmodel in Figure 4. Ourmodel
performs well with simple descriptions and in easily distinguishable
scenes. However, when descriptions are complex and the scenes
contain visually similar objects that are hard to differentiate, we
observe that our model can erroneously locate objects.

D ADDITIONAL VISUALIZATIONS
As shown in Figure 1, we visualize the attention maps across the 12
layers of the CLIP ViT-B model using Grad-CAM. This visualization
allows us to observe how the focus areas shift and refine through
each layer. These insights have inspired us to design an adaptive
selection mechanism to selectively focus on language-preferred
visual features.

Additionally, we have expanded our analysis to include more
visualization results of feature maps and the final predicted masks
in both CRIS and ASDA. It is evident that our proposed ASDA’s

Figure 4: Failure cases

fine feature map more effectively captures the objects specified in
the text. Notably, for item (f) in Figure 2, both CRIS and our ASDA
produce incorrect segmentation results due to the presence of two
very similar objects in the image. Interestingly, the fine feature map
of our ASDA model shows awareness of both confusing objects.
Moving forward, we plan to explore more effective mechanisms to
address this issue.
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