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0.1 More Theoretical Insight

Most existing domain adaption methods are based on the adaption
theory proposed by [1], which is described as follows:

THEOREM 0.1. Let H be the hypothesis space and eg(h) and
€q-(h) are the generalization error of a hypothesis h € H on the
source domain Ds and target domain 9y, respectively. For any
hypothesis h € H, there is:

er(h) < es(h) + %dﬂ(s, T)+ 1 )

The Eq.(1) shows that the upper bound of the expected target
error is mainly relative to three terms: (i) The first term, the expected
source error €g(h), is expected to be small because reliable labels
are owned in the source domain; (ii) As for the second term, the
domain discrepancy dg,(S, 7)) can be made smaller by alignment
learning; (iii) The third term, the combined error A of the ideal joint
hypothesis h* (i.e., h* = arg minyc ¢(es (h)+e5-(h))) ., is considered
sufficiently small.

With the thoughts above, to minimize the upper bound of the
expected target error, the designed model needs to keep the second
term (i.e., dgy(S, 7)) of the above to a small value. For the cross-
domain adversarial alignment, the domain discrepancy represented
by dg((S,T") is usually measured by H-divergence.

Potential Problem of /{-divergence. As for the sample x5 and
x¢ drawn from the source domain S (domain label d=1) and target
domain 7~ (domain label d=0), the domain discriminator 9 aims to
predict the source sample x; to be 1 and target sample x; to be 0.
Then H-divergence across domains is formulated as:

de(S,T) = 2[1 — min(err(D(xs)) + err(D(xs)))] (2)
where err(D(x;)) and err(D(x;)) represent the prediction error
of the domain classifier D on the source and the target domain
samples, respectively. The Eq.(2) implies that the domain distance
between source and target is inversely proportional to the error rate
of the domain classifier D. Intuitively, larger domain prediction
error means smaller domain discrepancy.

Rationality of Virtual-H-divergence. In order to fully fool
the discriminator, we propose the Virtual-H-divergence which aims
at minimizing the domain discrepancy without information loss.
Specifically, we introduce the virtual source domain S (domain label
d=0) and the virtual target domain 7" (domain label d=1) by copying
the real source S (domain label d=1) and target 7 (domain label
d=0), and assign labels different from the real domain to improve
the error rate of the classifier h. We measure the distances between
S and S, and the distances between the 7" and 9. Formally,

dy (S, S) =2[1 — min(err(D(xs)) + err(D(¥s)))] 3)
dg(7,7) = 2[1 —min(err(D(%7)) + err(D(x)))]  (4)

Due to the err(-) refers to the cross entropy loss with the averaging
operation, and the source and target domains have the same number

of instance-level samples during the batch training, the Virtual-H-
divergence can be written as:
Ay p(S.T) = 5 1du(S, ) + dyy(F.7)]
=2 - min (err(Z)(x})) +err(D(xs))
+err(D(%)) + err(Z)(xt)))

= 2[1 — min (err(D(xs ® A1)

+ err(D(x} ® xt)))]

=dy(SeT.Se7T)
where @ denotes the union operator. Because the features of the
(S@7) and (S @ 7") are identical except for the domain labels, the
error rate of the domain classifier D is very large. This means the
value of dgy (S o7, S @®7) is much smaller than dg( (S®S, T & 7).
Formally,

dy_ (S, T)=dp(SeT,.SeT)

<dy(SoS,ToT) =dy(S,T) ©

Considering Eq.(1) and Eq.(6) jointly, the upper bound of the ex-
pected target error can be written as:

er(h) < es(h) + %dv_(H(S, T)+ 2
()
<es(h)+ %d(,{(s, T) 42

In this way, the upper bound of the expected target error, i.e., e7-(h),
can be effectively reduced in our work.

0.2 More Experimental Results

Visualization. For Figure 4 (a) and (b) in our main manuscript,
to save space, we only present the visualization results of one
improved method. Here, we also present the detailed results for
other improved methods in Figure 1. The detection results fully
demonstrate our method VFDD could alleviate the domain shift
and improve the universality of detectors. The visualization feature
distributions employed VFDD have better clustering effect and have
fewer samples distributed across class boundaries, which intuitively
boosts the feature discriminability.

Comparisons with SOTA Methods. In our main manuscript,
Tables 1, 2, and 3 primarily pertain to object detection. To showcase
the effectiveness of VFDD, we extend our experimentation to the
image classification datasets of Office-31, as presented in Table 1.
We can observe that our method VFDD can be easily plugged and
played in the existing alignment-based UDA methods to enhance
their recognition performance on image classification task. The
methods(DANN [4], JAN [11], CAT [3], ETD [7], MCD [12], CDAN
[10], TADA [13], MDD [15], GVB [2], DWL [14], DAN [9], DRCN
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Figure 1: (a) Qualitative comparison of DAF+VFDD and MAF+VFDD with previous SOTA method and GT in different scenarios.

o The red circle area reflects the superiority of our method. (b) In Cityscapes to Foggy Cityscapes, instance-level feature t-SNE

1:2 results. Colors in the first row represent classes, while orange signifies the source domain and blue signifies the target domain Z;
in second row.
155 213
156 Methods | A-D A->W D->W W —D Do A W—oA [ Average 2
7 DANN 79.7 82.0 96.9 99.1 68.2 67.4 82.2 o
1% JAN 84.7 85.4 97.4 99.8 68.6 70.0 84.3 e
e CAT 90.6 91.1 98.6 99.6 70.4 66.5 86.1 2
100 ETD 88.0 92.1 100.0 100 71.0 67.8 86.2 e
1ol MCD 92.2 88.6 98.5 100.0 69.5 69.7 86.5 o
102 CDAN 92.9 93.1 98.6 100.0 71.0 69.3 87.5 0
109 TADA 91.6 943 98.7 99.8 72.9 73.0 88.4 2
b MDD 935 94.5 98.4 100.0 74.6 72.2 88.9 e
1 GVB 91.4 92.0 98.7 100.0 74.9 73.4 88.3 223
:: DWL 91.2 89.2 99.2 100.0 73.1 69.8 87.1 z;’
. CDAN(baseline) 92.9 931 98.6 100.0 71.0 69.3 87,5 e
. CDAN+VFDD 94.5(+1.6) 94.3(+1.2) 99.2(+0.6) 100.0(+0.0) 74.6(+3.6) 72.7(+3.4) 89.2(+1.7) .
170 Table 1: Performance (%) comparisons with the previous UDA approaches on Office-31. All experiments are conducted based on 228
71 ResNet-50 pre-trained on ImageNet. 229
172 230
173 231

174 232
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Methods [ per rider car truck bus train mcy bicy [ mAP
DAF 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6
DAF+Flip 28.7 40.6 42.2 20.4 33.3 5.3 22.8 33.6 28.4(+0.8)
DAF+Repeat 27.4 39.6 42.0 22.3 35.0 11.8 20.2 31.8 28.7(+1.1)
DAF+VFDD 31.4 40.8 43.3 16.4 38.7 27.6 23.5 33.2 31.9(+4.3)
MAF 28.2 39.5 43.9 23.8 39.9 333 29.2 33.9 34.0
MAF+Flip 32.1 44.9 43.5 24.6 34.9 26.4 32.4 36.6 34.4(+0.4)
MAF+Repeat 32.9 434 47.9 26.2 39.1 314 23.2 33.3 34.7(+0.7)
IDF+VFDD 30.6 41.7 46.1 24.7 42.0 43.1 30.7 355 36.8(+2.8)

Table 2: Results on the task from Cityscape to Foggy Cityscape.

[5],CoGAN [8], CyCADA [6]) contrasted herein are commonplace
methodologies; as such, exhaustive elaboration of their particulars
is deemed unnecessary.

Comparisons with Data Augmentation Methods. In Table 2,
a comparative analysis is conducted between VFDD and conven-
tional data augmentation techniques (Flip, Repeat) for the task
of transitioning from Cityscape to Foggy Cityscape. It should be
noted that the term ‘virtual copy’ of our VFDD refers to altering
the domain label (be it real or virtual) while retaining the orig-
inal feature representation of each sample. As evidenced by the
results presented in Table 2, the proposed VFDD method demon-
strates a significant performance advantage over traditional data
augmentation methods.

REFERENCES

[1] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. 2007. Anal-
ysis of representations for domain adaptation. In NeurIPS. 137-144.

[2] Shuhao Cui, Shuhui Wang, Junbao Zhuo, Chi Su, Qingming Huang, and Qi Tian.
2020. Gradually vanishing bridge for adversarial domain adaptation. In CVPR.
12455-12464.

[3] Zhijie Deng, Yucen Luo, and Jun Zhu. 2019. Cluster alignment with a teacher for
unsupervised domain adaptation. In CVPR. 9944-9953.

[4] Yaroslav Ganin and Victor Lempitsky. 2015. Unsupervised domain adaptation by
backpropagation. In ICML. PMLR, 1180-1189.

[5] Muhammad Ghifary, W Bastiaan Kleijn, Mengjie Zhang, David Balduzzi, and
Wen Li. 2016. Deep reconstruction-classification networks for unsupervised
domain adaptation. In ECCV. 597-613.

[6] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko,

Alexei Efros, and Trevor Darrell. 2018. Cycada: Cycle-consistent adversarial

domain adaptation. In ICML. Pmlr, 1989-1998.

Mengxue Li, Yi-Ming Zhai, You-Wei Luo, Peng-Fei Ge, and Chuan-Xian Ren.

2020. Enhanced transport distance for unsupervised domain adaptation. In CVPR.

13936-13944.

Ming-Yu Liu and Oncel Tuzel. 2016. Coupled generative adversarial networks. In

NeurIPS, Vol. 29.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. 2015. Learning

transferable features with deep adaptation networks. In International conference

on machine learning. PMLR, 97-105.

[10] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. 2018.

Conditional adversarial domain adaptation. In NeurIPS, Vol. 31.
[11] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. 2017. Deep
transfer learning with joint adaptation networks. In ICML. PMLR, 2208-2217.
[12] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada. 2018.
Maximum classifier discrepancy for unsupervised domain adaptation. In CVPR.
3723-3732.

[13] Ximei Wang, Liang Li, Weirui Ye, Mingsheng Long, and Jianmin Wang. 2019.

Transferable attention for domain adaptation. In AAAL Vol. 33. 5345-5352.

Ni Xiao and Lei Zhang. 2021. Dynamic weighted learning for unsupervised

domain adaptation. In CVPR. 15242-15251.

[15] Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael Jordan. 2019. Bridging

theory and algorithm for domain adaptation. In ICML. 7404-7413.

[7

8

[

[14

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
334

336
337
338
339
340
341
342
343
344
345
346
347
348



	0.1 More Theoretical Insight
	0.2 More Experimental Results
	References

