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0.1 More Theoretical Insight
Most existing domain adaption methods are based on the adaption
theory proposed by [1], which is described as follows:

Theorem 0.1. Let H be the hypothesis space and 𝜖S (ℎ) and
𝜖T (ℎ) are the generalization error of a hypothesis ℎ ∈ H on the
source domain D𝑠 and target domain D𝑡 , respectively. For any
hypothesis ℎ ∈ H , there is:

𝜖T (ℎ) ≤ 𝜖S (ℎ) +
1
2
𝑑H (S,T) + 𝜆 (1)

The Eq.(1) shows that the upper bound of the expected target
error is mainly relative to three terms: (i) The first term, the expected
source error 𝜖S (ℎ), is expected to be small because reliable labels
are owned in the source domain; (ii) As for the second term, the
domain discrepancy 𝑑H (S,T) can be made smaller by alignment
learning; (iii) The third term, the combined error 𝜆 of the ideal joint
hypothesisℎ∗ (i.e.,ℎ∗ = argminℎ∈H (𝜖S (ℎ)+𝜖T (ℎ))) , is considered
sufficiently small.

With the thoughts above, to minimize the upper bound of the
expected target error, the designed model needs to keep the second
term (i.e., 𝑑H (S,T)) of the above to a small value. For the cross-
domain adversarial alignment, the domain discrepancy represented
by 𝑑H (S,T) is usually measured byH -divergence.

Potential Problem ofH -divergence. As for the sample 𝑥𝑠 and
𝑥𝑡 drawn from the source domain S (domain label d=1) and target
domain T (domain label d=0), the domain discriminator D aims to
predict the source sample 𝑥𝑠 to be 1 and target sample 𝑥𝑡 to be 0.
ThenH -divergence across domains is formulated as:

𝑑H (S,T) = 2[1 −min(𝑒𝑟𝑟 (D(𝑥𝑠 )) + 𝑒𝑟𝑟 (D(𝑥𝑡 )))] (2)
where 𝑒𝑟𝑟 (D(𝑥𝑠 )) and 𝑒𝑟𝑟 (D(𝑥𝑡 )) represent the prediction error
of the domain classifier D on the source and the target domain
samples, respectively. The Eq.(2) implies that the domain distance
between source and target is inversely proportional to the error rate
of the domain classifier D. Intuitively, larger domain prediction
error means smaller domain discrepancy.

Rationality of Virtual-H-divergence. In order to fully fool
the discriminator, we propose theVirtual-H -divergencewhich aims
at minimizing the domain discrepancy without information loss.
Specifically, we introduce the virtual source domain Ŝ (domain label
d=0) and the virtual target domain T̂ (domain label d=1) by copying
the real source S (domain label d=1) and target T (domain label
d=0), and assign labels different from the real domain to improve
the error rate of the classifier ℎ. We measure the distances between
S and Ŝ, and the distances between the T and T̂ . Formally,

𝑑H (S, Ŝ) = 2[1 −min(𝑒𝑟𝑟 (D(𝑥𝑠 )) + 𝑒𝑟𝑟 (D(𝑥𝑠 )))] (3)

𝑑H (T̂ ,T) = 2[1 −min(𝑒𝑟𝑟 (D(𝑥𝑡 )) + 𝑒𝑟𝑟 (D(𝑥𝑡 )))] (4)

Due to the 𝑒𝑟𝑟 (·) refers to the cross entropy loss with the averaging
operation, and the source and target domains have the same number

of instance-level samples during the batch training, the Virtual-H -
divergence can be written as:

𝑑𝑉 −H (S,T) = 1
2
[𝑑H (S, Ŝ) + 𝑑H (T̂ ,T)]

= 2 −min
(
𝑒𝑟𝑟

(
D(𝑥𝑠 )

)
+ 𝑒𝑟𝑟

(
D(𝑥𝑠 )

)
+ 𝑒𝑟𝑟

(
D(𝑥𝑡 )

)
+ 𝑒𝑟𝑟

(
D(𝑥𝑡 )

) )
= 2

[
1 −min

(
𝑒𝑟𝑟

(
D(𝑥𝑠 ⊕ 𝑥𝑡 )

)
+ 𝑒𝑟𝑟

(
D(𝑥𝑠 ⊕ 𝑥𝑡 )

) )]
= 𝑑H (S ⊕ T̂ , Ŝ ⊕ T )

(5)

where ⊕ denotes the union operator. Because the features of the
(S ⊕ T̂ ) and (Ŝ ⊕ T ) are identical except for the domain labels, the
error rate of the domain classifier D is very large. This means the
value of 𝑑H (S⊕ T̂ , Ŝ ⊕T ) is much smaller than 𝑑H (S⊕S,T ⊕T).
Formally,

𝑑𝑉 −H (S,T) = 𝑑H (S ⊕ T̂ , Ŝ ⊕ T )
≤ 𝑑H (S ⊕ S,T ⊕ T) = 𝑑H (S,T)

(6)

Considering Eq.(1) and Eq.(6) jointly, the upper bound of the ex-
pected target error can be written as:

𝜖T (ℎ) ≤ 𝜖S (ℎ) +
1
2
𝑑𝑉 −H (S,T) + 𝜆

≤ 𝜖S (ℎ) +
1
2
𝑑H (S,T) + 𝜆

(7)

In this way, the upper bound of the expected target error, i.e., 𝜖T (ℎ),
can be effectively reduced in our work.

0.2 More Experimental Results
Visualization. For Figure 4 (a) and (b) in our main manuscript,
to save space, we only present the visualization results of one
improved method. Here, we also present the detailed results for
other improved methods in Figure 1. The detection results fully
demonstrate our method VFDD could alleviate the domain shift
and improve the universality of detectors. The visualization feature
distributions employed VFDD have better clustering effect and have
fewer samples distributed across class boundaries, which intuitively
boosts the feature discriminability.
Comparisons with SOTA Methods. In our main manuscript,
Tables 1, 2, and 3 primarily pertain to object detection. To showcase
the effectiveness of VFDD, we extend our experimentation to the
image classification datasets of Office-31, as presented in Table 1.
We can observe that our method VFDD can be easily plugged and
played in the existing alignment-based UDA methods to enhance
their recognition performance on image classification task. The
methods(DANN [4], JAN [11], CAT [3], ETD [7], MCD [12], CDAN
[10], TADA [13], MDD [15], GVB [2], DWL [14], DAN [9], DRCN
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Figure 1: (a) Qualitative comparison of DAF+VFDD and MAF+VFDD with previous SOTA method and GT in different scenarios.
The red circle area reflects the superiority of our method. (b) In Cityscapes to Foggy Cityscapes, instance-level feature t-SNE
results. Colors in the first row represent classes, while orange signifies the source domain and blue signifies the target domain
in second row.

Methods A→ D A→W D→W W → D D → A W→ A Average
DANN 79.7 82.0 96.9 99.1 68.2 67.4 82.2
JAN 84.7 85.4 97.4 99.8 68.6 70.0 84.3
CAT 90.6 91.1 98.6 99.6 70.4 66.5 86.1
ETD 88.0 92.1 100.0 100 71.0 67.8 86.2
MCD 92.2 88.6 98.5 100.0 69.5 69.7 86.5
CDAN 92.9 93.1 98.6 100.0 71.0 69.3 87.5
TADA 91.6 94.3 98.7 99.8 72.9 73.0 88.4
MDD 93.5 94.5 98.4 100.0 74.6 72.2 88.9
GVB 91.4 92.0 98.7 100.0 74.9 73.4 88.3
DWL 91.2 89.2 99.2 100.0 73.1 69.8 87.1
CDAN(baseline) 92.9 93.1 98.6 100.0 71.0 69.3 87.5
CDAN+VFDD 94.5(+1.6) 94.3(+1.2) 99.2(+0.6) 100.0(+0.0) 74.6(+3.6) 72.7(+3.4) 89.2(+1.7)

Table 1: Performance (%) comparisons with the previous UDA approaches on Office-31. All experiments are conducted based on
ResNet-50 pre-trained on ImageNet.
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Methods per rider car truck bus train mcy bicy mAP
DAF 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6
DAF+Flip 28.7 40.6 42.2 20.4 33.3 5.3 22.8 33.6 28.4(+0.8)
DAF+Repeat 27.4 39.6 42.0 22.3 35.0 11.8 20.2 31.8 28.7(+1.1)
DAF+VFDD 31.4 40.8 43.3 16.4 38.7 27.6 23.5 33.2 31.9(+4.3)
MAF 28.2 39.5 43.9 23.8 39.9 33.3 29.2 33.9 34.0
MAF+Flip 32.1 44.9 43.5 24.6 34.9 26.4 32.4 36.6 34.4(+0.4)
MAF+Repeat 32.9 43.4 47.9 26.2 39.1 31.4 23.2 33.3 34.7(+0.7)
IDF+VFDD 30.6 41.7 46.1 24.7 42.0 43.1 30.7 35.5 36.8(+2.8)

Table 2: Results on the task from Cityscape to Foggy Cityscape.

[5],CoGAN [8], CyCADA [6]) contrasted herein are commonplace
methodologies; as such, exhaustive elaboration of their particulars
is deemed unnecessary.
Comparisons with Data Augmentation Methods. In Table 2,
a comparative analysis is conducted between VFDD and conven-
tional data augmentation techniques (Flip, Repeat) for the task
of transitioning from Cityscape to Foggy Cityscape. It should be
noted that the term ‘virtual copy’ of our VFDD refers to altering
the domain label (be it real or virtual) while retaining the orig-
inal feature representation of each sample. As evidenced by the
results presented in Table 2, the proposed VFDD method demon-
strates a significant performance advantage over traditional data
augmentation methods.
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