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1. Introduction
Physics-informed neural networks (PINNs) [1]
have emerged as a transformative approach to scien-
tificmachine learning, integrating physical laws and
constraints into the modeling process. This inno-
vative framework has found applications in various
fields, including fluid dynamics, electromagnetism,
and material science [2, 3, 4], where it has been
shown to improve learning efficiency, improve inter-
pretability, and achieve superior generalization [5].
Despite their advantages, PINNs remain frag-

ile. Most studies evaluate PINN performance using
error-based metrics [6], which often fail to provide
a complete picture of the model’s performance. In-
deed, in real-world applications, data can be noisy
or incomplete, andmodelsmay encounter scenarios
that differ from their training environments.

Uncertainty. Therefore, beyond assessing accu-
racy, it is crucial to assess the uncertainty of the
model predictions. We can distinguish two types of
uncertainty: aleatoric and epistemic uncertainty [7].
Aleatoric uncertainty is the inherent randomness in
the data due to sensor noise,measurement errors, or
underlying stochasticity in the data and is thus irre-
ducible. Epistemic uncertainty, on the other hand, is
the uncertainty in the model’s parameters. This can
bedue to themodel’s inability to capture theunderly-
ing data distribution or insufficient training data (ei-
ther on the entire input space or in specific regions).
Epistemic uncertainty can, in principle, be reduced.
Uncertainty quantification (UQ) [8, 9] provides con-

fidence estimates in conjunction with the predic-
tions, providing us insight into the reliability of
model prediction. This is particularly crucial for
PINNs as they are often deployed in high-stakes sce-
narios, such as predicting the behavior of complex
physical systems or optimizing critical processes,
where the consequences of inaccurate predictions
can be severe. A PINN prediction with a high de-
gree of uncertainty should be carefully verified and
replaced, e.g., by a fallback method or any number
of other appropriate actions to mitigate risks.

Research gap. Despite its significance, traditional
PINNs lack robust mechanisms to capture and use
uncertainty [10]. Here, we explore state-of-the-art
UQ techniques in PINNs, comparing their strengths
and weaknesses. We also introduce an approach to
quantify uncertainty in PINNs via deep evidential re-
gression (DER) [11] and evaluate it on two canonical
PINN benchmarks: Burgers and Laplace equations.

2. Related works
Uncertainty quantification in PINNs remains an

open challenge. Several UQ-enhanced extensions of
PINNs have been proposed using techniques such as
deep ensembles [12], Bayesian learning [13], or spec-
tral expansions into a polynomial basis [14, 10]. Al-
though these approaches have shown promising re-
sults, they each have their limitations [8].
Specifically, deep ensembles require training

(and inferring) multiplemodels to infer uncertainty,
which can be computationally expensive. Bayesian
learning approaches incorporate uncertainty di-
rectly into the model’s weight during training, thus
learning a single model. However, to obtain un-
certainty estimates, multiple forward passes are of-
ten required during model inference, leading to a
similarly high computational cost. Lastly, spectral
expansions allow uncertainty to be evaluated dur-
ing inference in a single forward pass but often do
not scale to high-dimensional systems due to rapid
growth in the number of polynomial terms required.
In contrast, herewe consider the evidential learn-

ing approach [11]. Evidential learning holds the
promise of an efficient and scalableUQ, but it has not
yet been explored in the context of PINNs. Specif-
ically, evidential learning learns a single model that
can be evaluated in a single forward pass, like spec-
tral expansions. In contrast to spectral expansions,
it only requires learning the hyperparameters of an
evidential distribution, giving it better scaling prop-
erties. The closest to our approach is Tan et al. [15],
which also considers evidential learning in PINNs.
Both methods were developed independently, with
neither party aware of the other’s research initially.
Our work distinguishes itself by comparing standard
PINNswith evidential PINNs andalso by considering
different metrics and benchmarks.

3. The PINN-DERmethod
PINNs fundamentally work by training a neural

network on amodified loss function. Instead of rely-
ing solely on data-driven loss functions, PINNs also
use the residual obtained from the partial differen-
tial equation (PDE) describing the system’s physics.
This added prior knowledge can improve the train-
ing process, but traditional PINNs still provide only
a point estimate prediction of the system’s output.

PINN-DER. To address this, we integrate eviden-
tial learning [11] via DER with PINNs. In a nutshell,
DER works by assuming that the target distribution
follows a Gaussian with unknown mean µ and vari-
ance σ2, a normal-inverse-gamma (NIG) distribution
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Table 1: Error metrics for Burgers and Laplace equations under PINN and PINN-DER models.

Metric PINN PINN-DER
Burgers Laplace Burgers Laplace

Max Error 1.6624 0.7147 1.2026 0.6690
MSE 0.0179 0.0027 0.0385 0.0108
NRMSE 0.0655 0.0339 0.0927 0.0845
RMSE 0.1310 0.0399 0.1854 0.0996

can act as a conjugate prior [16, 17, 18]. DER aims
to learn the parameters of the NIG distribution by
minimizing the negative log-likelihood (NLL) of the
true output given the predicted distribution. The
learned NIG distribution allows us to directly obtain
the mean E[µ], aleatoric E[σ2], and epistemic Var[µ]
uncertainty during inference. In contrast, a tradi-
tional PINN would predict only E[µ]. Refer to Ap-
pendix A for details on DER.
To implement PINN-DER, we modify the tradi-

tional PINN loss function and learn the NIG param-
eters. Instead of minimizing the NLL of the true out-
put given the predicted distribution, we minimize
the PDE residual NLL. Thus, we combine the bene-
fits of both PINNs and DER into PINN-DER. The net-
work learns a distribution modeling the underlying
physical equations rather than just fitting observed
data points. This distribution can then be used to
quantify the uncertainties in the predictions. PINN-
DER is available as open-source software (https://
github.com/yipjunkai/pinn-der-ai4x).

4. Experiments
We evaluate PINN-DER against traditional PINNs

on Burgers’ and Laplace benchmarks for PINNs.
These benchmarks were chosen as they are pub-
lic benchmarks widely used in PINN research. The
Burgers’ equation is a fundamental PDE used in fluid
dynamics, non-linear wave theory, and turbulence
modeling. It is used in the testing of PINNs as it con-
tains non-linear and diffusive terms. It is an excel-
lent showcase of the models’ ability to learn smooth
and discontinuous (shock wave) solutions. Similarly,
the Laplace equation is used in physics and engineer-
ing to describe steady-state heat conduction, electro-
statics, and fluid flow. The PDE defining the Laplace
equation is relatively simple and often serves as an
initial validation.
We observe that PINN-DER without hyperparam-

eter changes reduces themaximum error across both
benchmarks with marginal difference to other met-
rics, as seen in Table 1. The maximum error mea-
sures the worst-case error and can indicate howwell
the network learned discontinuities and challenging
regions of input space [19]. For the Burgers equation,
the absolute error (Fig. 1) indicates that PINN-DER
can learn a smoother prediction on sharp regions.
This can likely be attributed to the model minimiz-
ing the epistemic uncertainty in that region. Lastly,
PINN-DER can also split the aleatoric and epistemic
uncertainties (Fig. 2).

Fig. 1: Absolute error for Burgers equation by PINN
(left), PINN-DER (right) after 8000 epochs.

Fig. 2: PINN-DER relative uncertainties for Burgers
equation: aleatoric (left), epistemic (right)

5. Conclusion
Uncertainty quantification is critical to ensure the

reliability of predictions in real-world applications,
but it remains an open challenge in PINNs. Indeed,
traditional PINNs lack mechanisms to provide con-
fidence estimates. In this work, we introduce PINN-
DER, a framework that enhances PINNswith eviden-
tial learning to provide uncertainty estimates along-
side PINN prediction. Our results on the Burgers
and Laplace equations indicate that PINN-DER effec-
tively captures uncertainty while maintaining pre-
dictive accuracy. Furthermore, our approach re-
duces the maximum error in regions with high vari-
ability, reinforcing the role of uncertainty quantifi-
cation in improving the reliability of PINN. Thus,
PINN-DER represents a step toward making PINNs
more reliable and practical for real-world use.
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Appendix A. Deep evidential regression (DER)

DER [11] aims to estimates themean µ and evidential
uncertainty for a regression task. This technique as-
sumes that a target y is drawn i.i.d. from the Gaus-
sian distribution, with unknown mean µ and vari-
ance σ2. Bayesian statistics tell us that a Gaussian
prior can act as a conjugate prior for the unknown
mean µ, an inverse-Gamma prior for the unknown
variance σ2, and consequently a normal inverse-
Gamma (NIG) prior for bothmean µ and variance σ2

[16, 17, 18].

y ∼ N (µ, σ2)

µ ∼ N (γ, σ2v−1) σ2 ∼ Γ−1(α, β)

(µ, σ2) ∼ NIG(γ, v, α, β)
(A1)

wherem = (γ, v, α, β) are the parameters of theNIG.

DER models the mean µ and variance σ2 of the
target y by minimizing the negative logarithm of the
marginal likelihood (NLL) as an objective function,
with a regularization term (REG) to minimize evi-
dence on incorrect regions.

m∗ = argmin
m

(
LNLL(m) + λLREG(m)

)
(A2)

where m∗ represents the optimal parameters,
LNLL(m) is the NLL loss, LREG(m) is the REG term,
and λ is the regularization weight controlling the
trade-off between the two terms.

The associated mean and uncertainties can then
be calculated:

E[µ] = γ︸ ︷︷ ︸
prediction

, E[σ2] =
β

α− 1︸ ︷︷ ︸
aleatoric

, Var[µ] =
β

ν(α− 1)︸ ︷︷ ︸
epistemic

.

In the case of NIG distribution, an analytical solu-
tion exists:

p(y | m) = St
(
y; γ,

β(1 + v)

vα
, 2α

)
(A3)

where St is the Student-t distribution. The corre-
sponding losses are as follows:

LNLL =
1

2
log

(π
v

)
− α log (Ω)

+(α+
1

2
) log

(
(y − γ)2v +Ω

)
+Γ(α)− Γ(α+

1

2
)

(A4)

where Ω = 2β(1 + v)

LREG = |y − γ| · (2v + α) (A5)

Implementation. PINN-DER replaces the differ-
ence term (y−γ) inside Eq. A4 and A5with the resid-
ual of the PDE of the PINN. We also apply a scaling
for increased learning rate and L2 normalization.

Appendix B. Experimental Setup

We evaluated the proposed method for UQ on the
Burgers and Laplace benchmarks for PINNs.

2.1 PINN
For the Burgers equation, the baselinemodel con-

sists of a multi-layer perceptron (MLP) with two hid-
den layers of size 32, using the Tanh activation func-
tion. For the Laplace equation, the model is also an
MLPbutwith twohidden layers of size 30, employing
the SiLU activation function. The objective function
was the PDE of the respective equation.

2.2 PINN-DER
The DER extension only modifies the MLP to

output 4 variables (µ, v, α, β). To enforce the non-
negative property of (v, α, β), a Softplus function is
used, and an additional +1 is added to α. All other
hyperparameters remain consistent. The objective
functionwas replacedby themodifiedEq.A4 andA5.

2.3 Training Setup
All Burgers’ benchmarks were run for 8000

epochs, and all Laplace benchmarks were run for
5000 epochs. PINN and PINN-DER were compared
to test the severity impact on performance metrics.

Appendix C. Experimental results

The following figures are the graphical output of the
PINN-DERmethod for both the Burgers and Laplace
equations, for their respective domains.

3.1 Burgers results using PINN-DER

Fig. A1: Comparison of true (left), predicted (center),
and absolute difference (right) of Burgers equa-
tion using PINN-DER after 8000 epochs.
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3.2 Laplace results using PINN-DER

Fig. A2: Comparisonof true (left), predicted (center),
and absolute difference (right) of Laplace equa-
tion using PINN-DER after 5000 epochs.

Fig. A3: Temperature Profiles at Key Center-lines
with aleatoric (left) and epistemic (right) uncer-
tainties of Laplace equation using PINN-DER af-
ter 5000 epochs.
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