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ABSTRACT

In this supplementary material, 1) we present the gradients of Firth Bias Reduction
loss to analyze its effectiveness; 2) the analytic formulation of LP-FT-FB’s gradi-
ents is presented for understanding; 3) the whole flow of the proposed LP-FT-FB
is given; 4) the ablation study is given to show the effectiveness of the proposed
i-FBR; 5) the related meta-learning-based works are given.

A THE DERIVATION OF FIRTH BIAS REDUCTION LOSS

The derivative of FBR with respect to ¥ is given. Here r¥ = 8, - B(x;, 0). i is the index of sample
number (1 < 7 < M) and k is the index of class number (1 < k£ < O).
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where M is the typical gradient of the cross entropy loss and y¥ is k¢, element of iy, sample

label y; (deﬁned in Section 3.1). P = {P M, and P; = {pF}{_,. Then we give the loss of i,
sample and its gradients with respect to r¥ Flrstly, the analytic formula of Firth loss of ¢, sample
is
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Secondly, we have p¥ = 671 . The gradient of logistic regression is
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With Eq. [3} the gradients of £ g;,.¢;, with respect to rf is derivated as follows.
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where 1, is an one-hot manner vector and k;j, value is 1.
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where E is a one-full vector with the same size as P;. As given in Eq. [6] we found that when
y: = 1. (i.e., x; belongs to class ¢) and A > O:

MC-pf—1)<0, k#c ®)
MC-pF—1)>0, k=c
because pf is usually larger than % and other logit ({pf}k#) is usually smaller than é In other

words, FBR increases the gradients with respect to r§ and decreases other gradients to strengthen
the influence of y; to the trained model.

B THE ANALYTIC GRADIENTS OF LP-FT-FB

We give the analytic formula of LP-FT-FB as follows. The gradients of linear classifier in LP are
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Then, at the FT stage, the gradients of feature extractor are
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C ALGORITHM

We give the whole flow as follows for a better understanding of the proposed method and reproduc-
ing it.

Algorithm 1 LP-FT-FB
Require: D = {(x;,¥;)}1<i<m. Episodic Sampler Operator (ES), pre-trained Bo(-,6p), A, Ainy,
a1, and ag;
1: for1 <p < Pdo
2 Tp=ES(D) = {(xi,¥:) }; Cf“” for C'yeyp-way-K-shot FSL tasks;
3 z — Bo (X7 90),
4: Initialize randomly a linear classifier v (-, 5);
s r=pny =vind)
6.
7
8
9

LP:L(3,y) = ¢ S LS, yi):
v(-, 8) is updated by Eq. f|to obtain v’(-, 5');
¥’ is computed;
: FT: The loss of FT is computed;

10: The feature extractor By (-, 8y) is updated by Eq. |1 Mto obtain B(-, 6);
11: The classifier is updated by Eq. |11]to obtain V(- B):
12: Output: {B(-,0),v(-, 8)};
13: Evaluated by on OQutput on test samples
14: end for

D EXTRA EXPERIMENTS

D.1 CROSS-DOMAIN RESULTS

Besides the cross-domain tasks with DC|Yang et al.|(2021)), we also give some experimental results
without DC to show the equivariance brought by LP-FT-FB. The evaluated tasks are 5-way tasks.
As given in Table[T} LP-FT-FB outperforms S2M2 by a large margin. This verifies the equivariance
adapting the novel features to target domain.
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Table 1: 5-way experiments for cross-domain FSL tasks.

mini-Imagenet — CUB | tiered-Imagenet — CUB
Methods 1-shot 5-shot 1-shot 5-shot
S2M2 Mangla et al.[(2020) | 48.24 70.44 72.46 88.02
LP-FT-FB 50.47 71.62 74.56 89.42

D.2 EXPERIMENTS ON 2-LAYER MLP

We added experiments with a 2-layer-MLP linear layer. The results are given as follows. The ex-
perimental settings: we add a fully-connected layer and a ReLU layer before the cosine normalized
layer|Chen et al.|(2019). The added fully-connected layer contains d x d weight parameters without
bias. d is the length of the extracted features. The experiments are conducted on mini-Imagenet
for the 5-way-1-shot task. The 2-layer MLP improved the performance of FBR by 0.2%. And the
proposed LP-FT-FB outperforms it by 1.38%. It still works well.

Table 2: The experiments on 2-layer MLP.

Method 5-way-1-shot
FBR |Ghaffari et al.[(2022) 65.59
LP-FT-FB 67.04
FBR + 2-layer-MLP 65.80
LP-FT-FB + 2-layer-MLP 67.18

E RELATED META-LEARNING-BASED METHODS

The meta-learning FSL methods used meta-learning methods to learn the learning patterns of the
models from different N-way-K-shot tasks instead of learning the pattern of the target tasks. It can
be viewed as a special regularization method to avoid the learned models being over-fitted on the
pre-training samples. The learning patterns contain the gradients for updating the models and the
metrics of the responding features, i.e., gradient-based and metric-based methods.

The gradient-based methods are original from Model-Agnostic Meta-Learning (MAML) Finn et al.
(2017). MAML learned second-order gradients to update the pre-trained model for each task. Fol-
lowing MAML, Nichol er al. proposed Reptile Nichol et al.| (2018) to use the learned first-order
gradients to approximate the second-order gradients to avoid complex computation of Hessian ma-
trices. Song et al. proposed using Evolution Strategies [Song et al.| (2020) to obtain an algorithm,
which avoids the problem of estimating second derivatives for solving the complex computation
problem.

However, gradient-based methods are at high computation costs, Snell proposed Prototypical Net-
works Snell et al.| (2017) to use Euclidean distance to replace the linear classifier, which is over-
sensitive to the base samples. Then sung et al. proposed Relation Networks |Sung et al.| (2018) to
improve the distance by learning the similarity between the support and query features. Recently,
Zhang et al. proposed a variational method|Zhang et al.|(2019) to address the biased point estimation
problem of metric-based methods.
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