Appendix

A Performance on real-world based instances

We further evaluate SGBS+EAS on nine real-world based instance sets from [15]. Each instance
set consists of 20 instances that have similar characteristics (i.e., they have been sampled from the
same underlying distribution). The instance sets differ significantly in terms of several structural
properties, for example, the number of customers n and their position (e.g., clustered vs. random
positions). A more detailed description of instance sets can be found in [15].

One major advantage of neural combinatorial optimization approaches over traditional handcrafted
optimization methods is their ability to quickly learn customized heuristics for new problem settings.
With the intention to evaluate the ability of SGBS+EAS to adapt towards different problem settings,
we train a different model for each of the nine instance sets. This also makes sense in light of the fact
that in real-world scenarios, the characteristics of instances usually do not change unexpectedly. We
train each of the nine models using the POMO method [[14]] for 3, 000 epochs (with 10, 000 instances
each).

The operations research literature has almost exclusively focused on solving instances sequen-
tially, even though there are real-world scenarios in which a large number of instances need to
be solved in parallel. Thus, to allow for a more fair comparison to established approaches, we solve
instances sequentially and not in batches. We note that this is a slightly unfavorable setting for
SGBS+EAS, which has been specifically designed to exploit the parallel computing capabilities of
GPUs. To account for this new evaluation setting, we always perform 10 runs in parallel for EAS
and SGBS+EAS. This improves the solution quality, while leading only to a slight increase of the
required runtime.

We compare the performance of SGBS+EAS to only EAS, LKH3 [52], and HGS [47, 48]]. For
SGBS+EAS we set (3, v) = (35,5), the learning rate &« = 0.005 and A = 0.05. We limit the
search to 8 iterations of SGBS+EAS, and perform 30 EAS updates in each iteration (instead of
only one EAS iteration as in previous experiments). We found that performing SGBS less often,
but with higher /3 values improves the performance when solving instances sequentially because it
better uses the available GPU memory. For EAS (without SGBS) we use identical values for o and
A and we limit the runtime to the runtime of SGBS+EAS. For HGS and LKH3, we use the default
parameters suggested by their developers. Note that we round the distances between customers to
the nearest integer for all algorithms, as is common practice in the operations research literature. For
each instance, we perform three independent runs per algorithm.

Table E] shows the results. For HGS, we report the mean costs over all instances and runs. For EAS,
SGBS+EAS, and LKH3 we report the absolute gap between their respective mean performance and
the HGS mean. On all nine instance sets, SGBS+EAS significantly outperforms EAS. SGBS+EAS
also finds solutions of higher quality than LKH3 for all nine instance sets, albeit while requiring
more time to do so. Overall, SGBS+EAS almost matches the solution quality of HGS with relative
gaps between 0.07% (for XE_5) to 0.83% (for XE_11). This is an impressive achievement given that

Table A: Performance for the CVRP on the XE instance sets from [[15]].

Absolute gap to HGS mean Avg. runtime in seconds
SGBS SGBS
Set n HGS Costs EAS +EAS LKH3 || HGS EAS +EAS LKH3

XE_1 100 30143.7 +63.1 +27.1 +641.4 22 125 125 372
XE3 128 33435.9 +93.5 +42.1 +184.2 52 178 178 122

XE.5 180 26561.5 +32.3 +17.4 +42.9 44 341 341 65
XE.7 199 28608.5 || +142.7 +94.1 +216.4 81 400 400 215
XE9 213 11947.2 +78.1 +42.3 +131.4 82 440 440 66
XE_ 11 236 27487.1 || +266.2 +229.1 +244.4 117 556 556 67

XE_13 269 339493 || +169.6 +139.0 +572.3 103 921 920 343
XE_15 279 44597.8 || +353.6 +304.9 +626.9 178 870 869 347
XE_17 297 36536.4 || +205.0 +161.0 +495.5 126 1118 1117 152

14

HGS is a highly specialized solver, relying on handcrafted heuristics that are the result of decades
of research.

B Implementation of greedy rollouts of SGBS

In each simulation phase of Algorithm[I] we perform + greedy rollouts for each node contained in
the set B (of size). Among these -y rollouts, one rollout is redundant, as it begins with the child
node assigned with the largest probability. This rollout creates the same solution as one of nodes
already examined in the previous simulation phase (unless we are at the root node). Therefore, in
our implementation of SGBS, we improve the efficiency of our code by conducting only meaningful
~v—1rollouts. We skip the redundant rollout and simply reuse the result from the previous simulation.
All in all, a total of 8 x (v — 1) new candidate solutions are examined in each simulation phase.

C Search efficiency experiments in Section 3.3

The greedy method provides a single shot solution that represents the baseline quality of the policy
network on a given problem instance. To improve the solution quality, each search method employs
different tactics on how to make use of the information offered by the policy network (other than
what its first choices are), as well as the evaluation results of the candidate solutions already pro-
duced. By limiting the total number of candidate solutions to the same value for all search methods,
we aim to compare how effectively each search method utilizes all the information given to them.

The measurement of search efficiency in this way also reflects real-world application scenarios.
While calculating the reward (or cost) of an arbitrary candidate solution is nearly instant for many
benchmark CO problems used in the literature (e.g., the TSP), many industry applications involve
expensive reward functions R (e.g., if the task is optimization of training hyperparameters for a
neural model, the reward is its measured performance after the training has been executed), making
it the most expensive part throughout the whole optimization process. Thus, in such cases, it is more
natural to seek the best performing search method under the restriction of the allowed number of
reward evaluations of candidate solutions.

The number of candidate solutions allowed For experiments based on the CVRP instances with
n =100 (Figures [2] (a) and (c)), the number of candidate solutions allowed is 1.2K. For CVRP ex-
periments with n =200 instances (Figure [2| (b)), this number is limited to 2.4K. These limits are
chosen to match the estimated total number of greedy rollouts simulated by the SGBS method when
its hyperparamters (3, ~y) are set to (4, 4).

This estimation works as follows. As explained in Section[B] SGBS with =4, and y =4 makes at
most S X (v — 1) = 12 new candidate solutions (greedy rollouts) at each simulation phase. A sim-
ulation phase is needed whenever it adds a customer node to a partially completed solution, which
happens 100 (200) times for n =100 (200). This results in 1.2K (2.4K) total greedy rollouts for each
problem instance. This is actually a slightly overestimated value, because SGBS sometimes runs
less than 12 rollouts during a simulation phase. This happens when there are only a few unvisited
customer nodes left towards the end of the search, or when the load on the vehicle limits the number
of valid next customer nodes available.

Search details The sampling, active search and EAS methods can repeat the search process freely
and produce as many candidate solutions as desired. Thus, we re-apply these search methods until
enough candidate solutions are collected. Beam Search and MCTS, on the other hand, cannot simply
be repeated. Beam Search is explicitly given a beam width of 1.2K (2.4K) from the beginning of
the search, which then creates that number of complete solutions all at once. MCTS runs 12 greedy
simulations at each depth level in the search tree, similar to SGBS. Our implementation of MCTS is
similar to that of Xing et al. [35] but with their Eq.(8) changed to

Zb N(Sa b)

U(S, a) = CpuCtP(Sa a)m

(C.1)

Here, N (s, a) is the visit count from a node s to its child a. The value of U (s, a) decreases as more
visits are made to a, and this encourages exploration within the MCTS algorithm. Note that cpyc is

15

a constant, and P(s, a) is the prior probability for choosing a. The constant 0.1 in the denominator
has been changed from 1 to improve the performance of MCTS. This change induces reasonable
exploration within the 12-simulation-limit, which is much less than the usual number of simulations
(> 100) expected by the original MCTS algorithm. Finally, we do not use the X8 instance augmen-
tation technique [[14]] on any of the search methods being compared in this experiment, as it would
increase the number of the produced candidate solutions by a factor of 8.

Adjustments made for POMO-trained policy network We use the policy neural network that is
trained with RL by the POMO method [[14]. The high performance of the POMO training method
on the CVRP relies on the diversification of the candidate solutions induced by its manual (user-
designated) selection of the first nodes. While this POMO approach leads to a significant improve-
ment in the quality of the trained model, it results in the policy network never being properly trained
for making good suggestions for the first node. This causes a complication for our search efficiency
experiment, as our search methods are not provided with a proper policy for what to choose for the
first customer nodes.

For the greedy results used as the baselines in Figure[2] we actually make 100 (200) different greedy
solutions starting from each node, and sort them based on their performance. We use the best one
to represent the greedy method. Note that this is how the inference is done in the original POMO
paper. For the other search methods, however, we do not repeat the search 100 (200) times like this,
as this would mean that, for example, the sampling method only gets to create 12 candidate solutions
per starting node. This is wasteful, as most of the nodes are unfit to be used as the starting node.
Instead, we choose =4 nodes as the “official” first node candidates, based on the greedy rollout
results. Note that all of them are likely to be the optimal choices for starting the CVRP solution. For
the sampling, active search, and EAS methods, we generate 0.3K (0.6K) candidate solutions starting
from each of these four nodes. For the beam search and SGBS, we use these four nodes as the initial
beam front and have the search tree expand from there. For MCTS, we simply choose just one node,
which is the best out of the four, as the starting node and the MCTS method expands from there.

D Different sets of (3,) for SGBS

Figure D] shows the runtime and the performance of the SGBS algorithm with different values for /3
and y on the test set [4] of 10,000 CVRP instances with n =100. The performance gap drops sharply
from the greedy result as the SGBS algorithm is applied, and, with larger 5 and ~, higher quality
solutions are achieved. However, the performance gain quickly becomes marginal. Table [I] in the
main text contains the result of (5,) = (4, 4).

E Different sets of (3, v) for SGBS+EAS

Using a small set of instances, the performance of SGBS+EAS can be examined over different
choices of 3 and ~ in a relatively short time. In Figure[E| we find that (53,) = (4, 4) gives the best

greedy
SGBS (2,2)
SGBS (3,3)
SGBS(4, 4)
SGBS (6,6)
SGBS (8,8)
0.8 1 SGBS (10,8)
SGBS (12,10)
SGBS (12,12)
SGBS (14,14)
o b ° ° ® SGBS (16,14)
0.4 4 ® SGBS(16,16)

0 20 40 60 80

Runtime (min)

1.2 4

1.0 1

oo o

Gap from HGS (%)
)
°

o
=)
)

»

Figure D: SGBS results on the CVRP with n =100, with different choices for parameters (3, 7).

16

result for the CVRP with 100 nodes. However, as long as the values for 5 and are not chosen
too small or too large, the search algorithm consistently finds decent solutions. Within the range of
[2, 12] for both § and v, SGBS+EAS displays less than 0.15% gaps from the HGS solution.

Gap from HGS (%)

0.25
0.20
0.15
0.10
0.05
0.00

12 10

8
6, 5
8ammg, 5 2

Figure E: The quality of incumbent solutions after 3-hour runs of SGBS+EAS with different values
for parameters 3 and -, on 1,000 instances of the CVRP with n =100.

F TSP & CVRP experiments

Baselines We run all the baseline algorithms ourselves and compare their results and runtimes
based on identical test sets in Table [T} Note that most neural baseline approaches are not explicitly
designed for the generalization tests we conduct. Also, for each search method we simply re-use
the hyperparameters optimized for =100 problems across all problem sizes, and therefore some
generalization test results may improve substantially with appropriate adjustments to the hyperpa-
rameters. As for the DACT results on the TSP generalization tests, we opt to report no values in
Table|[T]as the results are not that satisfying.

POMO model For our SGBS+EAS experiments and the ablation tests, we use the neural policy
networks trained by the POMO method [[14] ourselves. Models are regularly saved during training,
and we select intermediate models that have not fully converged (i.e., early stop, see Appendix|[l) for
our experiments. The model we choose for the TSP100 experiments is trained for 1900 epochs (10
days) and for CVRP100 experiments the model is trained for 10,000 epochs (8 days).

G FFSP experiments

Baselines CPLEX, Genetic Algorithm (GA), and Particle Swarm Optimization (PSO) results are
adopted from the MatNet paper [13]. The authors have provided us the raw data so that we can
display more digits for the baseline results in Table [2} The original MatNet paper reports runtimes
of single-thread processes after dividing them by 8 (in an attempt to provide a more balanced view
between the runtimes of CPU- and GPU-based methods). Our paper, however, uses the wall-clock
time convention, so the runtimes of GA and PSO in Table [2lhave been adjusted accordingly.

MatNet model training For the SGBS(+EAS) experiments and the related ablation tests on the
FFSP, we use MatNet architecture [13] for the policy neural network. To solve the FFSP with job
count n=20, 50 and 100, we train the MatNet model for 54, 95, 120 epochs (2 hours, 5 hours, 35
hours), respectively. We build and train the models based on the MatNet codes shared on the public
repository, using the default hyperperameters.

Instance augmentation MatNet allows different instance augmentation technique than what is
used for the routing problems. By shuffling the order of the one-hot vector sequence fed to the
MatNet during the initialization, one can effectively achieve different augmentations for the given

17

FFSP instance. Hence, for the FFSP, one can freely choose any large number as the augmentation
factor. In the MatNet paper, the x 128 instance augmentation is used as the default setting.

While the x 128 augmentation is a reasonable choice for the greedy inference, it is too much for the
SGBS(+EAS) algorithm. For better time efficiency, we use the x 8 instance augmentation for all the
MatNet-based search methods compared on Table 2] except for the greedy result. More specifically,
we first run the greedy search using the x 128 instance augmentation. Based on this result, we select
the best 8 instance augmentations and use these 8 for all the other MatNet-based methods we test.

H Short pre-tain

In Figure [H} solutions found by the greedy and SGBS+EAS methods are compared to those of
LKH3. A test set of 1,000 instances of CVRP with n =100 is used, and SGBS+EAS is run for 3
hours. This is equivalent to a 30-hour run of SGBS+EAS on 10K problem instances, as demonstrated
in Table |1} We find that the models with only a 2-hour pre-train or more can produce solutions of
higher quality than those of the LKH3.

17.5

o O Greedy
A SGBS+EAS
1709 °© — - LKH3 (15.680)

o
£ 165 ° 5 ° o,

ST
SOOI S SRR
F - - = === 2 Ab8_A0 &6 A-A-A-K5 K A
15.5 T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Pre-training time for each model (hour)

Figure H: Mean cost of the CVRP with n =100 solutions produced based on different neural models,
before (blue circle) and after (red triangle) applying the SGBS+EAS algorithm. Here, each model is
pre-trained only for a very short time (< 3 hours) in different durations.

I Early stops and entropy regulation

In Figure [l (a) we show the mean cost of greedy solutions to the CVRP with n=100, generated
from a neural model trained by the POMO method. The quality of the policy network, measured by
the performance of its greedy solutions, continues to improve with longer (pre-)training. While not
shown in the figure, the training curve never converges completely even after 1,000 hours of training.
Hence, in order to prepare a policy network to its highest quality, one is forced to wait many weeks
before stopping the training.

To our surprise, however, when we use the SGBS+EAS algorithm at test time, we found that such
extended pre-training of the policy neural network actually degrades the solution quality. The red
triangles in Figure [I| (b) are the mean cost of the incumbent solutions found by a 3-hour run of
SGBS+EAS. It is observed that pre-training longer than 200 hours does not help improve the solution
quality, and in fact, the longer the training the worse results are returned (a positive slope of the red
line). In a sense, these models are “overfit” to the distribution of the training instances, which make
it more difficult to fine-tune the models to a single, specific target instance.

In order to alleviate this overfitting problem, we try regulating the entropy of the model during
training. The policy gradient V.J used by the POMO training method is described in Eq.(3) of [14]],
which we modify by adding the entropy regulation as

N M
1 .
Vot =VoJ +)\1N Z Z VoH(po(-|s,ai;_1))- L1

i=1 t=2

18

Here, H is the entropy function. Note that the notations used in this equation follows those defined
in [14]], and they are slightly different from the notations used in our paper (e.g., the meaning of IV,
etc.). By using a positive value for A;, we can increase the entropy on the output of the model. Blue
squares in Figure[l] (b) show that this entropy regulation scheme works, and we can prevent (or at
least mitigate) the overfitting problem at the pre-training stage.

We can further improve the search performance by incorporating the entropy regulation into the
SGBS+EAS algorithm as well, by replacing V,Jry, in line 8 of Algorithmwith

M N-1

1 N .
va;%L = VyJrL +)\QM Z Z V/,/,’H(ﬂ'g,w(wsé)). (L.2)
i=1 d=0

Green diamond markers in Figure [I| (b) show that if the value of A5 is tuned effectively, the quality
of the incumbent solutions found by SGBS+EAS can be boosted a little further.

Greedy, SGBS+EAS, SGBS+EAS, SGBS+EAS,
M =0 20 =0, =0 B x=let M=0 ¢ N=le N=2e2

15.95 15.624
o (a) 4 (b)
15.93
15.620 —
15.90
3 15.88 3 15.616*\\
15.85
15.612
15.83
15.80 T T T T —— 15.608 T \ \ \ T T
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Pre-training time (hour) Pre-training time (hour)

Figure I: The mean cost of the CVRP with n =100 solutions found by different search methods on
various models. A test set consisting of 1,000 problem instances is used. (a) shows the greedy results,
and (b) shows three SGBS+EAS results with different A\; and A\, (explained in the text) after 3-hour
search processes. Each data point represents a different model, pre-trained in varying degrees. Lines
are drawn to guide the eye only.

19

	Performance on real-world based instances
	Implementation of greedy rollouts of SGBS
	Search efficiency experiments in Section 3.3
	Different sets of (,) for SGBS
	Different sets of (,) for SGBS+EAS
	TSP & CVRP experiments
	FFSP experiments
	Short pre-tain
	Early stops and entropy regulation

