
Published in Transactions on Machine Learning Research (11/2024)

A Network Structure

(a) MLP-based policy (b) RNN-based policy

Figure 10: Policy Network Structure. The detailed architectures of the visuomotor policy networks. We adopt the RNN-
based network for the Pick-And-Place-Can task, and the MLP-based network for other tasks.

Hyperparameter Default
Learning Rate 1× 10−4

Action Decoder MLP Dims [1024, 1024]
GMM Num Modes 5

Image Encoder ResNet-18
SpatialSoftmax (num-KP) 64
Image Embedding Layer 256 units

Low Dim Obs Embedding Layer 64 units

Table 6: MLP-based policy Hyperparameters.

For the baseline methods, we demonstrate the detailed structures of the MLP-base policy network in Fig.
10(a), and the RNN-based policy network in Fig. 10(b). The hyperparameters of the MLP-base network
and the RNN-based network are listed in TABLE 6 and TABLE 7 separately.

The policy network of the Perception Stitching method shares all the network structures and hyperparameters
as that of the baseline method. The only difference is that it calculates the relative representations of the
images after the 256-unit linear layer, as shown in Fig. 2 and equation 3.

B Perception Stitching Algorithm

The algorithm of the Perception Stitching (PeS) is shown in Algorithm 1. The first step of this algorithm is to
collect an expert dataset D1 in the environment E1 by teleoperating the robot by a proficient human expert.

20

Published in Transactions on Machine Learning Research (11/2024)

Algorithm 1 Zero-shot Transfer with Perception Stitching
Collect Dataset 1 with random sampling:
Task T in the environment E1 with two visual configurations oE1

1 and oE1
2 . Initialize an empty dataset

D1 ← ∅.
for each game i of the task do

Random sample the initial state of the task.
Execute the Expert policy to collect the expert trajectory τ1

i of this game.
Push τ1

i into the dataset D1.
end for

Collect Dataset 2 with trajectories replay:
Task T in the environment E2 with two visual configurations oE2

1 and oE2
2 . Initialize an empty dataset

D2 ← ∅.
for each game i of the task do

Replay the trajectory τ1
i in E2 to collect the trajectory τ2

i of this game.
Push τ2

i into the dataset D2.
end for

Collect Anchor States:
Task T in the environment E3 with two visual configurations oE1

1 and oE2
2 .

K-means center set C1 ← k −means(D1).
Select anchor set A1 = {a(j)

1 } from D1 which are images closest to the K-means center set C1.
Select anchor set A2 = {a(j)

2 } from D2 which have the same indices as A1 in D1.
Anchor set A3 = {a(j)

3 } consists of images of oE1
1 from A1 and images of oE2

2 from A2.

Train Modular Policies in Source Environments:
Environment E1 has two visual configurations oE1

1 , oE1
2 and low dimensional observation oE1

l .
Environment E2 has two visual configurations oE2

1 , oE2
2 and low dimensional observation oE2

l .
Initialize policy fE1(gE1

1 (oE1
1), gE1

2 (oE1
2), oE1

l ,A1) in E1.
Initialize policy fE2(gE2

1 (oE2
1), gE2

2 (oE2
2), oE2

l ,A2) in E2.
Optimize fE1(gE1

1 (oE1
1), gE1

2 (oE1
2), oE1

l ,A1) with dataset D1 with the Behavior Cloning algorithm Schaal
(1996).
Optimize fE2(gE2

1 (oE2
1), gE2

2 (oE2
2), oE2

l ,A2) with dataset D2 with the Behavior Cloning algorithm Schaal
(1996).

Perception Stitching:
Environment E3 has visual configurations oE1

1 and oE2
2 .

Initialize the visual encoder 1 with parameters from gE1
1 .

Initialize the visual encoder 2 with parameters from gE2
2 .

Initialize the action decoder with parameters from fE1 .
Construct the stitched policy fE1(gE1

1 (oE1
1), gE2

2 (oE2
2), oE1

l ,A3).

Test the Stitched Policy in the Target Environment:
Rollout the stitched policy fE1(gE1

1 (oE1
1), gE2

2 (oE2
2), oE1

l l,A3) in E3.
Calculate the success rate of task T with the policy fE1(gE1

1 (oE1
1), gE2

2 (oE2
2), oE1

l ,A3) in E3.

21

Published in Transactions on Machine Learning Research (11/2024)

Hyperparameter Default
Learning Rate 1× 10−4

Action Decoder MLP Dims []
RNN Hidden Dim 1000

RNN Seq Len 10
GMM Num Modes 5

Image Encoder ResNet-18
SpatialSoftmax (num-KP) 64
Image Embedding Layer 256 units

Low Dim Obs Embedding Layer 64 units

Table 7: RNN-based policy Hyperparameters.

Then we replay the expert trajectories in D1 to collect another expert dataset D2 in the environment E2.
We collect the anchor set A1 in the dataset D1 via the K-means algorithm Hartigan & Wong (1979). Then
we collect the anchor set A2 which has the same indices in D2 as A1 in D1. For the environment E3 with two
visual configurations oE1

1 and oE2
2 , we assemble an anchor set A3 = {a(j)

3 } consists of images of oE1
1 from A1

and images of oE2
2 from A2. In the next step, we train the two polices fE1(gE1

1 (oE1
1), gE1

2 (oE1
2), oE1

l ,A1) and
fE2(gE2

1 (oE2
1), gE2

2 (oE2
2), oE2

l ,A2) in E1 and E2 with the Behavior Cloning algorithm Schaal (1996) separately.
Then we initialize a stitched policy fE1(gE1

1 (oE1
1), gE2

2 (oE2
2), oE1

l ,A3). This stitched policy is tested in the
task T in E3. Its performance is measured by its success rate.

C Quantitative Analysis of the Module Interface

The cosine and L2 pairwise distance shown in Fig. 8 measures the similarity between two latent represen-
tations. For a group of states SE,T = {si

E,T } in the environment E of task T , they are observed from two
cameras and get two groups of observed images O1,E,T = {oi

1,E,T } and O2,E,T = {oi
2,E,T }. We obtain the

average pairwise distance between the latent representations of two visual encoders by calculating the mean
of the pairwise distances across all input states:

d̄cos =
|SE,T |∑

i=1

(
1− SC

(
gE

1
(
oi

1,E,T

)
, gE

2
(
oi

2,E,T

)))
/ |SE,T | , (11)

d̄L2 =
|SE ,T |∑

i=1
dL2

(
gE

1
(
oi

1,E,T

)
, gE

2
(
oi

2,E,T

))
/ |SE,T | , (12)

where gE
1 and gE

2 are the visual encoders for O1,E,T and O2,E,T separately, SC(a, b) = ab
∥a∥∥b∥ is the cosine

similarity and dL2(p, q) = ∥p − q∥ is the L2 distance. Fig. 8 shows the cosine and L2 distances in all the
experiments in the Push task. We record the distances data and the mean cosine and L2 distances across
all these experiments in Table 8.

D Influence of Using Decoder 1 and Decoder 2

This section aims to answer the question: Is there any difference between choosing which action decoder
(action decoder 1 v.s. action decoder 2)?

We carry out the zero-shot transfer in the Stack task with six different visual configurations. For each
experiment, we try action decoder 1 and action decoder 2, and report their success rates side-by-side in Table
9. We notice that the average success rates of decoder 1 and decoder 2 across the six visual configurations
are close to each other for all the methods, and the maximum difference is within 15%. We believe that this
difference is generated by the randomness of the testing process, but not the systematic advantage of one

22

Published in Transactions on Machine Learning Research (11/2024)

Cosine Distance L2 Distance
ours baseline ours baseline

Masked 0.065 0.422 4.943 6.323
Zoom in 0.083 0.687 4.068 4.469
Blurred 0.043 0.982 4.937 5.828
Gaussian Noise 0.062 1.044 3.196 6.865
Camera Type 0.045 0.759 3.588 5.764
Camera Position 0.003 1.072 1.936 5.314
Mean 0.050 0.828 3.778 5.761

Table 8: Latent Representations Distances Data. The distances of the latent representations in all the experiments in
the Push task are recorded. We also calculate the mean distances across all these experiments.

Mask Zoom in Blurred Noise Fisheye Camera Position Average

Devin et al. 2017 Decoder 1 0.7±0.94 8.0±1.63 0.7±0.94 24.0±2.83 0.0±0.00 14.0±3.27 7.9
Decoder 2 5.3±2.49 0.0±0.00 14.0±2.83 6.7±2.49 3.3±1.89 5.3±2.49 5.8

Cannistraci et al. 2024 (linear) Decoder 1 47.3±0.94 62.0±4.32 32.7±3.77 30.7±0.94 54.0±8.64 14.7±6.18 40.2
Decoder 2 39.3±4.11 56.7±1.89 26.7±6.60 51.3±4.11 46.0±2.83 23.3±1.89 40.6

Cannistraci et al. 2024 (non-linear) Decoder 1 10.0±1.63 12.0±0.00 0.0±0.00 3.3±0.94 0.0±0.00 0.7±0.94 4.3
Decoder 2 5.3±0.94 6.7±0.94 8.0±2.83 14.7±1.89 2.0±1.63 0.0±0.00 6.1

PeS (-w/o disent. loss) Decoder 1 34.0±11.43 10.7±4.11 62.0±10.71 34.0±7.12 22.7±3.77 26.0±4.32 31.6
Decoder 2 31.3±2.49 52.7±6.60 28.0±3.27 26.7±1.89 32.7±3.40 19.3±4.11 31.8

PeS (w. l1 & l2 loss) Decoder 1 92.7±0.94 98.0±0.00 62.7±6.60 24.0±4.90 59.3±7.36 58.7±1.88 65.9
Decoder 2 72.7±3.77 36.0±1.63 88.7±4.99 58.7±1.88 23.3±3.40 33.3±0.94 52.1

PeS Decoder 1 94.7±0.94 96.7±0.94 90.0±1.63 96.7±1.89 97.3±2.49 80.0±4.90 92.6
Decoder 2 83.3±4.11 86.0±4.32 94.0±2.83 92.7±0.94 95.3±0.94 68.7±6.18 85.0

Table 9: Action Decoder 1 V.S. Action Decoder 2. All the experiments are carried out with the Stack task. For the PeS
method and other baseline and ablation methods, the difference in the average success rates of using action decoder 1 or action
decoder 2 is within 15%. The choice of the action decoder does not have distinct influence on the zero-shot transfer success
rates.

decoder to another decoder. This result suggests that the choice of the action decoder during the zero-shot
transfer process does not make a distinct difference for all the methods on average.

If we look at the success rates of each visual configuration, we can see that the success rates difference of the
PeS method is within 11%. The choice of decoder does not affect the reassembled policy’s performance with
PeS, and both decoders can lead to very satisfying success rates over 85%. However, in some experiments
with the baselines and the ablation methods (e.g. PeS (w. l1 & l2 loss)-Fisheye), we can see a huge success
rate difference. It indicates that the choice of different decoders has a random influence on the performance
of the baselines and ablation methods for different visual configurations, but it doesn’t affect the average
success rates drastically.

E Anchors from failure trajectories

Mask Zoom in Blurred Noise Fisheye Camera Position Average
100% success rate 94.7±0.94 96.7±0.94 90.0±1.63 96.7±1.89 97.3±2.49 80.0±4.90 92.6
54% success rate 98.7±0.94 95.3±3.77 46.0±1.63 85.3±0.94 52.7±2.49 84.0±3.27 77.0
6% success rate 49.3±6.80 48.7±4.11 76.7±8.06 98.7±0.94 44.7±3.40 98.0±1.63 69.4

Table 10: Anchors from Failure Trajectories. All the experiments are carried out with the Stack task. We chose anchor
datasets from three different datasets with K-means algorithm: (1) The dataset is collected by an expert agent, and it contains
200 success trajectories. (2) The dataset is collected by an semi-trained policy which has around 50% of success rate. It is
used to collect 200 trajectories, among which 54% are successful trajectories and 46% are failure trajectories. (3) The dataset
is collected by a poorly behaved policy with a close to zero success rate. It is used to collect 200 trajectories, among which
only 6% are successful trajectories and 94% are failure trajectories. The average success rate decreases when the percentage of
successful trajectories in the dataset for anchor selection decreases.

23

Published in Transactions on Machine Learning Research (11/2024)

This section aims to answer the question: Does the data collection process require some success trajectory?
Or even failure/exploratory trajectories are still useful?

We use the Stack task to carry out the experiments. We collect a dataset with 200 successful trajectories and
collect an anchor set 1 from this fully successful dataset. Then we train a policy to about 50% of training
success rates and execute it to collect 200 trajectories during testing. 54% of these trajectories are successful
and the rest 46% are failed. We collect an anchor set 2 from this semi-successful dataset. We also train a
policy for only 1 minute so that it has a very low success rate. We use this poorly trained policy to collect
a dataset of 200 trajectories with only 6% of them being successful. We collect an anchor set 3 from this
dataset in which most trajectories fail. All the anchors are collected with the k-means algorithm as shown
in Figure 3.

We use these three different anchor sets for training the policies across the six visual configurations. The data
set used for training is still the same dataset collected by an expert agent with 200 successful trajectories,
and the only difference is that the anchors are selected from data sets with different success rates. Table 10
reports the success rates. On average, the success rate decreases when the proportion of successful trajectories
decreases for the anchor selection. In addition, we notice that the performance of the trained policy becomes
unstable when the failure trajectory number during anchor selection increases. When there are no failure
trajectories, the policy success rates are stably above 80%. In contrast, with the failure trajectories number
increases, although there are still some cases where the trained policy can get over 90% of success rates,
there appear more cases where the policy gets around 40% to 50% of success rates. These low-performance
experiments make the average success rate decrease.

Since we need to use an expert dataset for training the policies, and it is a small data set with only 200
trajectories that are easy to collect, we encourage the users of the PeS method to directly collect the anchor
set from the training data set with K-means algorithm. Our experiment result shows that this anchor
selection method can lead to more stable zero-shot transfer performance and a higher average success rate.

F Latent Representations Visualization

We visualize the latent representations of the Lift, Can, Stack and Door tasks. Among all the visual
configuration changing experiments, we choose the camera position variation experiments. We first reduced
the 256D representations to 3D with PCA (Hotelling, 1933) for visualization. Since the side view encoder
of the policy 2 is stitched to the policy 1 at the position of its original front view encoder, we compare the
latent representations of these two encoders.

In these visualizations, the red data points are the first 5 steps of images in each of the 200 games in the
dataset of a certain task. The blue data points are the last 5 steps of images, and the green data points are
the 5 steps of images in the middle of each trajectory. Therefore, we have 1000 data points for each color
which represent the starting, middle, and ending stages of a task.

The visualization results show that PeS can better align the latent space and force an approximate invariance
of the latent representations. In contrast, the Devin et al. (2017) baseline without adopting the relative
representation and the disentanglement regularization leads to different latent representations between the
two encoders, and they have an approximately isometric transformation relationship. These visualizations
support our conclusions in the paper.

G Impact of Anchor Number

To study the impact of number of anchors on transfer performance, we picked a challenging task, Stack, and
reported the success rates with standard errors over 3 random seeds on all the different visual configurations
in Table 11. We found that when the anchor number is too small, the latent space of the visual encoder
does not have enough capacity to capture effective visual representations while maintaining an approximate
invariance at the same time. Therefore, the zero-shot transfer performance drops drastically. On the other
hand, when the number of anchors becomes too large, there are more redundant anchors which are similar
to each other. This will make disentangling the features at the latent space with the disentanglement loss

24

Published in Transactions on Machine Learning Research (11/2024)

(a) (b)

(c) (d)

Figure 11: Latent Representations Visualization. We visualize the latent representations of the front-view encoder of
policy 1 and the side-view encoder of policy 2 of the Lift, Can, Stack and Door tasks with the Camera Position changes in the
visual configuration.

25

Published in Transactions on Machine Learning Research (11/2024)

harder, which can also lead to some drop of the performance. We empirically found that an anchor number
between 256 to 512 can achieve optimal performance in our tasks.

Anchor Number Masked Zoom in Blurred Noise Fisheye Position Average
1024 72.7±0.94 56.0±4.32 88.7±3.40 86.7±3.77 65.3±2.49 69.3±2.49 73.1
512 90.7±3.40 94.7±0.94 91.3±0.94 92.7±5.73 95.3±3.40 88.7±9.84 92.2
256 94.7±0.94 96.7±0.94 90.0±1.63 96.7±1.89 97.3±2.49 80.0±4.90 92.6
128 72.7±10.87 43.3±5.73 42.0±1.63 24.0±2.83 73.3±1.89 30.0±7.12 47.6
64 1.3±0.00 6.7±0.94 6.7±4.11 0.0±0.00 5.3±2.49 0.0±0.00 3.3

Table 11: Success rates of the Stack task with different anchor numbers

We also investigated the impact of the anchor number on computational efficiency. We picked the Stack task
and trained the policies on a NVIDIA A6000 GPU with the batch size of 32. As shown in Table 12, a larger
anchor number will lead to a larger model size, longer anchor searching time, and longer training time for
each epoch.

Anchor Number Model Size Anchors Searching Time (s) Training Time Per Epoch (s)
1024 26,835,803 1455 182
512 25,720,667 922 107
256 25,163,099 570 66
128 24,884,315 288 33
64 24,744,923 194 23

Table 12: network model sizes, anchors searching time, and training time per epoch of the Stack task with different anchor
numbers

To sum up, either a too large or too small anchor number can hurt the transfer performance, and larger
anchor numbers can reduce the computational efficiency. It is important to select an appropriate anchor
number for each task.

H Impact of Disentanglement Loss Weight

Weights Masked Zoom in Blurred Noise Fisheye Camera Position Average
0.0 34.0±11.43 10.7±4.11 62.0±10.71 34.0±7.12 22.7±3.77 26.0±4.32 31.6
0.0002 34.7±1.89 8.0±1.63 88.0±2.83 30.0±1.63 16.0±2.83 24.7±2.49 33.6
0.002 94.7±0.94 96.7±0.94 90.0±1.63 96.7±1.89 97.3±2.49 80.0±4.90 92.6
0.02 90.7±2.49 80.7±10.87 92.0±4.90 88.0±3.27 81.3±5.25 70.0±4.32 83.8
0.2 35.3±3.40 56.0±1.63 88.7±2.49 31.3±0.05 48.0±1.63 16.0±4.32 45.9

Table 13: Success rates of the Stack task with different disentanglement loss weight

We have also studied the effect of different weights of disentanglement loss. We picked the Stack task and
tested different weights on all the various visual configurations. When the weight is close to zero, the transfer
performance gets close to that of the PeS (w/o disent. loss) ablation method and is significantly lower than
the PeS full method. When the weight becomes too large, the optimization process leans too much to
disentangling the latent features than imitating the expert behaviors. Therefore, the weaker imitation of
the expert agent will also cause the performance drop. We empirically found that the optimal weight of
the disentanglement loss in our tasks should be around the range of 0.002 to 0.02. The success rates with
standard errors over 3 random seeds are shown in Table 13.

26

Published in Transactions on Machine Learning Research (11/2024)

I Impact of Replay Trajectory Deviations

One limitation of PeS is that it requires a trajectory replay to collect the anchor images. However, in real-
world applications, it is usually hard to accurately replay the exact trajectories. In order to understand
how the trajectory deviation errors in replay could influence the performance of PeS, we conduct additional
experiments to introduce trajectory deviations with different amplitudes.

We use the Stack task in the simulation to test the effect of trajectory deviations. During the trajectory
replaying, we add a random horizontal vector to every position point on the trajectory except for the gripper
close or open action point. The length of the random vector to cause deviation is sampled from a uniform
distribution within a certain range, and we test out the range options of 0 to1 cm, 0 to 3 cm, and 0 to 5 cm.
The direction of the deviation vector is randomly sampled within the x-y plane.

Amplitude Masked Zoom in Blurred Noise Fisheye Position Lighting Average
0 cm 94.7±0.94 96.7±0.94 90.0±1.63 96.7±1.89 97.3±2.49 80.0±4.90 82.0±1.63 91.1
1 cm 72.0±5.89 86.7±4.71 77.3±6.18 88.0±1.63 93.3±0.94 74.7±7.36 78.0±4.32 81.4
3 cm 34.7±3.77 35.3±1.89 44.7±8.22 26.7±1.89 37.3±2.49 19.3±7.36 23.0±2.83 31.6
5 cm 12.0±2.83 14.7±4.99 16.7±0.94 23.3±3.40 16.7±3.40 8.3±1.89 3.3±0.94 13.6

Table 14: Success rates of the Stack task with different replay trajectory deviation amplitudes

The experiment results are shown in the table below. When the trajectory deviation is within the range of
1 cm, The average performance of PeS drops by about 10%, but it can still achieve 81.4% of average success
rate, which is much higher than all the baselines that don’t require trajectory replay and all the ablation
methods that require trajectory replay without deviation. When the trajectory deviation goes up to the
range of 3cm, PeS can achieve an average success rate of 31.6%, which is on par with the best performing
baselines RT1 (29.5%) and Cannistraci et al. 2024 (linear) (34.6%). When the trajectory deviation goes up
to a very large range of 5cm, the average success rate of PeS drops to 13.6%.

In summary, although PeS currently requires trajectory replays for anchor selection, it doesn’t require very
precise replay and can perform well within 1 cm of replay error range.

27

