
Under review as a conference paper at ICLR 2024

A OFF-POLICY SAMPLING SETUP

In this Appendix, we discuss the technical and mathematical challenges around our setup that resulted
in our off-policy learning setup. In each layer l of the GFlowNet, we aim to sample exactly k out of
n nodes. An initially natural setup would be to use the distribution over k-subsets of N (Kl) (Ahmed
et al., 2023). Continuing the notation in Equation 5:

p0(sl+1|sl) =
I[|V l+1| = k]PF (sl+1|sl)P

s0l+1
I[|V l+10| = k]PF (s0l+1|sl)

(9)

where PF (sl+1|sl) is as defined in Equation 5. p0 assigns 0 probability to states sl+1 that do not add
exactly k new nodes (that is, when |V l+k| 6= k). However, this requires renormalizing the distribution,
which is the function of the denominator term on the right hand side. Note that this sum is over an
exponential number of elements, namely 2n, and naive computation is clearly intractable. SIMPLE
(Ahmed et al., 2023) provides an optimized dynamic programming algorithm for computing this
normalization constant. However, it scales polynomially in n and k, and computing the normalizer is
intractable already in mid-sized graphs like Reddit.

Therefore, we decided to circumvent having to compute p0(sl+1|sl) by taking the factorized distri-
bution PF as the forward distribution and sampling using the Gumbel-Top-k trick (Equation 8) to
ensure we always add exactly k nodes. However, we are now in an off-policy setting: The samples
using Equation 8 are distributed by p0, not by PF , and so we sample from a different distribution than
the one we use to compute the loss. Previous work (Malkin et al., 2022b) showed that the Trajectory
Balance loss is amenable to off-policy training without importance sampling and weighting without
introducing high variance. This is important since importance weighting would require us to weight
by PF (sl+1|sl)/p0(sl+1|sl), reintroducing the need to compute p0.

The off-policy benefits of Trajectory Balance provide a strong argument over more common Reinforce-
ment Learning setups. Off-policy training in Reinforcement Learning usually requires importance
weighting to be stable, which is not tractable in our setting.

B EXPERIMENTAL DETAILS

Our experiments were carried out in a single-node cluster setup. We conducted our experiments on a
machine with an Nvidia RTX A6000 GPU (48GB GPU memory) and each machine had 48 CPUs.

B.1 HYPERPARAMETER TUNING

We tune the hyperparameters of GRAPES using a random search strategy with the goal of maximizing
the accuracy of the validation dataset. We used Weights and Biases for hyperparameter tuning 4.
The best-performing hyperparameters for every dataset can be found in our repository https:
//anonymous.4open.science/r/GRAPES. The following are the hyperparameters that we tuned:
the learning rate of the GFlowNet, the learning rate of the classification GCN, and the scaling
parameter ↵. We used the log uniform distribution to sample the aforementioned hyperparameters
with the values from the following ranges respectively, [1e� 6, 1e� 2], [1e� 6, 1e� 2], and [1e2,
1e6]. We kept the other hyperparameters such as the batch size and hidden dimension of the GCN.
We used the Adam optimizer (Kingma & Ba, 2014) for GCNC and GCNF . The number of epochs
was selected between 50, 100, and 150 depending on the performance on the validation set.

B.2 BASELINES

For a fair comparison, we adjusted the implementations of the baselines so that the only difference is
the sampling methods and the rest of the training conditions are kept the same. In the following, we
explain the details of the modifications to each of the baselines.

For LADIES we used the official implementation, which also contains an implementation of FastGCN.
We changed the nonlinear activation function from ELU to ReLU, and we removed any linear layers
after the two layers of the GCN, set dropout to zero, and disabled early stopping. We also noticed

4https://wandb.ai

13

https://anonymous.4open.science/r/GRAPES
https://anonymous.4open.science/r/GRAPES
https://wandb.ai

Under review as a conference paper at ICLR 2024

Table 3: Statistics of the datasets used in our experiments. The label rate indicates the percentage of
nodes used for training.

Dataset Task Nodes Edges Features Classes Label Rate (%)

Cora multi-class 2,708 5,278 1,433 7 44.61
CiteSeer multi-class 3,327 4,552 3,703 6 54.91
PubMed multi-class 19,717 44,324 500 3 92.39
Reddit multi-class 232,965 11,606,919 602 41 65.86
Flickr multi-class 89,250 449,878 500 7 50.00
Yelp multi-label 716,847 6,977,409 300 100 75.00
ogbn-arxiv multi-class 169,343 1,157,799 128 40 53.70
ogbn-products multi-class 2,449,029 61,859,076 100 47 8.03

that the original LADIES implementation divided the target nodes into mini-batches, not from the
entire graphs as we do, but into random fragments. This means that LADIES and FastGCN do not
see all of the target nodes in the training data. We kept this setting unchanged, because otherwise it
significantly slowed down the training of these two methods.

For GraphSAINT we noticed that the GNN consists of two layers of higher order aggregator, which is
a combination of GraphSage-mean (Hamilton et al., 2017) and MixHop (Abu-El-Haija et al., 2019),
and a linear classification layer in the end. Moreover, the original implementation of GraphSAINT
is only applicable to inductive learning on the graphs, where the train graph only contains the train
nodes and is entirely different from the validation and test graphs where only the nodes from the
validation set and test are available respectively. We argue that in transductive learning unlike
inductive learning, the motivation to scale to larger graphs is higher since the validation and test
nodes are also available during training, and therefore, the processed graph is larger. Finally we
used Pytorch Geometric’s function for GraphSAINT node sampling to keep all the configurations the
same as GRAPES. Therefore, we use the same GCN and data loader (transductive) as ours and use
GraphSAINT to sample a subgraph of nodes for training. We use the node sampler setting since it is
the only setting that allows specifying different sampling budgets, and therefore, can be compared
to layer-wise methods with the same sampling budget. We also removed the early stopping and use
the same number of epochs as GRAPES. Please refer to our repository for more details about the
implementation of GraphSAINT.

For GAS, we used the original implementation. However, we changed the configuration of the GCN
to have a two-layer GCN with 256 hidden units. We turned off dropout, batch normalisation and
residual connections in the GCN. We also removed early stopping for the training.

For AS-GCN we removed the attention mechanism used in the GCN classifier. Their method also
uses attention in the sampler, which is separate from the classifier, so we keep it.

C DATASET STATISTICS

We present the statistics of the datasets used in our experiments in Table 3. The splits that we used
for Cora, Citeseer, and Pubmed correspond to the “full” splits, in which the label rate is higher than
in the “public” splits.

D METHODOLOGY FOR HYPOTHESIS TESTING

In section 5.2 we present the classification performance of a GCN classifier, after training it with the
sampling baselines and GRAPES. We then perform statistical tests aimed at answering two questions.

Are the differences between ranks statistically significant? Our null hypothesis is that the ranks
of all methods have the same distribution. We present the ranks in Table 4, together with the resulting
average rank. We apply a Friedman test (Friedman, 1937) to compare the ranks of each method,
obtaining a p-value of 0.0005. We thus reject the null hypothesis and conclude that the observed
difference in rank across methods is statistically significant.

14

Under review as a conference paper at ICLR 2024

Is the difference in ranks between specific pairs of methods statistically significant? In this
case, we are interested in multiple null hypotheses involving pairs of methods. For example, do the

ranks obtained from GRAPES and FastGCN come from the same distribution? As we are interested in
similar hypotheses involving different methods, this requires comparing multiple pairs and adjusting
the p-value to account for multiple comparisons (Demšar, 2006). We carry out a post-hoc Nemenyi’s
test using the scikit-posthocs library (Terpilowski, 2019) and obtain the p-values shown in
Table 5. The results show that the difference in rank between GRAPES is significant with respect to
FastGCN and LADIES with p < 0.05.

E PEARSON’S CHI-SQUARED (�2) TEST AS A ROBUSTNESS MEASURE

Figure 3 shows the effect of changing sample size on the node classification performance. In an ideal
case, it would be desirable to have a constant accuracy as the number of the sample size changes.
To quantify the robustness of the different sampling methods, we compute the goodness-of-fit of
observed accuracy values to a horizontal line of best fit (i.e. a constant accuracy value). To this end,
we use Pearson’s chi-squared test (Pearson, 1900). Let’s assume we have a set of observed accuracies,
denoted as Oi, and a horizontal line of best fit which represents the expected accuracy, Ei. The
chi-square statistic, �2, is computed using the formula:

�2 =
nX

i=1

(Oi � Ei)2

Ei
, (10)

where n is the number of observed values. A high �2 value would indicate that the observed
accuracies significantly deviate from the expected accuracy, while a low value would suggest that they
are close. The expected accuracy Ei is the average accuracy across all observations for a particular
combination of method and dataset. We did not include GAS (Fey et al., 2021) as the approach does
not sample any nodes.

Table 6 shows the �2 values for the different sampling methods we study. GRAPES has the lowest
average �2 across all the different datasets, which implies that is very robust to changes in the
sampling sizes compared to the baseline sampling methods.

Rank Significance Test. Our null hypothesis is that the ranks of all methods have the same
distribution. We also performed a Friedman test to compare the ranks of each method, obtaining
p-value of 0.000627. Therefore, we reject null hypothesis, and conclude that the ranks presented in
Table 6 are statistically significant.

F ENTROPY AS NODE PREFERENCE MEASURE

Figures 5 and 6 show the mean and standard deviation of entropy in base two of all the datasets. We
calculate the mean entropy for as the following:

E =
1

n

nX

i=1

pi · log2(pi) + (1 � pi) · log2(1 � pi) (11)

Table 4: Ranks according to the F1 scores obtained by each sampling method on the node classification
task. Asterisks (*) indicate that the difference in average rank to GRAPES is statistically significant
at p < 0.05.

Method Cora Citeseer Pubmed Reddit Flickr Yelp ogbn-arxiv ogbn-products Average

FastGCN 4 5 5 5 5 4 5 4 4.625*
LADIES 5 4 4 3 4 5 4 2 3.875*
GraphSAINT 3 3 3 4 1 2 3 3 2.750
AS-GCN 2 1 2 2 2 3 1 5 2.250
GRAPES (ours) 1 2 1 1 3 1 2 1 1.500

15

Under review as a conference paper at ICLR 2024

Table 5: p values obtained with the Nemenyi post-hoc test for comparing the ranks for all pairs of
methods.

Method FastGCN LADIES GraphSAINT AS-GCN GRAPES

FastGCN 1.0000 0.8669 0.1233 0.0223 0.0010
LADIES 0.8669 1.0000 0.5977 0.2396 0.0223
GraphSAINT 0.1233 0.5977 1.0000 0.9000 0.5080
AS-GCN 0.0223 0.2396 0.9000 1.0000 0.8669
GRAPES (ours) 0.0010 0.0223 0.5080 0.8669 1.0000

Table 6: Chi-square values. Each experiment was repeated five times. The �2 were computed with
the mean accuracies. The best values are in bold, and the second best are underlined. OOM indicates
an out-of-memory error. Asterisks (*) indicate that the difference in average rank to GRAPES is
statistically significant at p < 0.05.

Method Cora Citeseer Pubmed Reddit Flickr

FastGCN 14.4540 17.3168 14.7477 38.3733 4.9597
LADIES 0.7089 4.0147 18.6169 0.1393 0.3329
GraphSAINT 0.0016 0.0130 0.0013 0.1304 0.1004
AS-GCN 0.0602 0.0137 0.0033 0.2550 0.6420
GRAPES 0.0047 0.0616 0.0018 0.0209 0.0911

Yelp ogbn-arxiv ogbn-products Average �2
Average Rank

FastGCN 0.3335 3.6756 23.4954 14.6695 4.6250*
LADIES 0.9420 0.7474 0.1607 3.2079 3.7500*
GraphSAINT 0.0232 0.3967 0.2358 0.1128 2.0000
AS-GCN 9.2825 0.0599 OOM 1.4738 3.0000
GRAPES 0.0084 0.0085 0.0002 0.0246 1.6250

where n is the number of neighbors of the nodes sampled in the previous layer and pi is the probability
of inclusion for each node, which is the output of the GFlowNet. As the figures show, for the small
datasets (Cora, Citeseer, Pubmed, Flickr) the mean entropy is: 1) very close to 1, indicating that
GRAPES prefers every nodes with the probability close to 0.5, or 2) close to 0 but also with a low
standard deviation, meaning that it equally prefers the majority of the nodes with the probability 1
or 0. On the contrary, for the large datasets (Reddit, Yelp, ogbn-arxiv, ogbn-products) by the end of
training, the average entropy is lower than 1, with a standard deviation around 0.3 indicating that
GRAPES learns different preferences over different nodes, some with a probability close to 1, and
some close to 0.

G GPU MEMORY USAGE COMPARISON BETWEEN GRAPES AND GAS

We compared different variants of GRAPES, with different sample sizes (32, 256), with GAS (Fey
et al., 2021), which is a non-sampling method. Figure 2 shows the GPU memory allocation (MB),
in a logarithmic scale, and the F1-scores for GRAPES-32, GRAPES-256 and GAS. The three
graph methods exhibit distinct performance characteristics across various datasets. We used the
max memory allocated function in PyTorch to measure the GPU memory allocation.5 Since this
function measures the maximum memory allocation since the beginning of the program, where the
memory measurement is done does not matter.

5https://pytorch.org/docs/stable/generated/torch.cuda.max_memory_allocated.html

16

https://pytorch.org/docs/stable/generated/torch.cuda.max_memory_allocated.html

Under review as a conference paper at ICLR 2024

0 5 10 15 20 25 30 35 40 45 50
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
E

nt
ro

py

Cora

1-hop node sampling

2-hop node sampling

0 5 10 15 20 25 30 35 40 45 50
Epoch

0.05

0.10

0.15

E
nt

ro
py

St
an

da
rd

D
ev

ia
ti

on

Cora

1-hop node sampling

2-hop node sampling

0 10 20 30 40 50 60 70 80 90 100
Epoch

0.875

0.900

0.925

0.950

0.975

1.000

M
ea

n
E

nt
ro

py

Citeseer

1-hop node sampling

2-hop node sampling

0 10 20 30 40 50 60 70 80 90 100
Epoch

0.00

0.01

0.02

0.03

0.04

0.05

E
nt

ro
py

St
an

da
rd

D
ev

ia
ti

on

Citeseer

1-hop node sampling

2-hop node sampling

0 10 20 30 40 50 60 70 80 90 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
E

nt
ro

py

Pubmed

1-hop node sampling

2-hop node sampling

0 10 20 30 40 50 60 70 80 90 100
Epoch

0.00

0.02

0.04

0.06

0.08

0.10

E
nt

ro
py

St
an

da
rd

D
ev

ia
ti

on

Pubmed

1-hop node sampling

2-hop node sampling

0 5 10 15 20 25 30 35 40 45 50
Epoch

0.0

0.1

0.2

0.3

0.4

M
ea

n
E

nt
ro

py

Reddit

1-hop node sampling

2-hop node sampling

0 5 10 15 20 25 30 35 40 45 50
Epoch

0.15

0.20

0.25

E
nt

ro
py

St
an

da
rd

D
ev

ia
ti

on

Reddit

1-hop node sampling

2-hop node sampling

Figure 5: Combined entropy plots for Citeseer, Cora, Flickr and ogbn-arxiv, showcasing the mean
entropy and entropy standard deviation across epochs. The plots compare 1-hop node sampling
against 2-hop node sampling.

17

Under review as a conference paper at ICLR 2024

0 10 20 30 40 50 60 70 80 90 100
Epoch

0.00

0.01

0.02

0.03

0.04

M
ea

n
E

nt
ro

py

Flickr

1-hop node sampling

2-hop node sampling

0 10 20 30 40 50 60 70 80 90 100
Epoch

0.00

0.01

0.02

0.03

0.04

E
nt

ro
py

St
an

da
rd

D
ev

ia
ti

on

Flickr

1-hop node sampling

2-hop node sampling

0 10 20 30 40 50 60 70 80 90 100
Epoch

0.2

0.4

0.6

0.8

M
ea

n
E

nt
ro

py

Yelp

1-hop node sampling

2-hop node sampling

0 10 20 30 40 50 60 70 80 90 100
Epoch

0.10

0.15

0.20

0.25

0.30
E

nt
ro

py
St

an
da

rd
D

ev
ia

ti
on

Yelp

1-hop node sampling

2-hop node sampling

0 15 30 45 60 75 90 105 120 135 150
Epoch

0.4

0.6

0.8

1.0

M
ea

n
E

nt
ro

py

ogbn-arxiv

1-hop node sampling

2-hop node sampling

0 15 30 45 60 75 90 105 120 135 150
Epoch

0.1

0.2

0.3

0.4

E
nt

ro
py

St
an

da
rd

D
ev

ia
ti

on

ogbn-arxiv

1-hop node sampling

2-hop node sampling

0 10 20 30 40 50 60 70 80 90 100
Epoch

0.4

0.6

0.8

M
ea

n
E

nt
ro

py

ogbn-products

1-hop node sampling

2-hop node sampling

0 10 20 30 40 50 60 70 80 90 100
Epoch

0.20

0.22

0.24

E
nt

ro
py

St
an

da
rd

D
ev

ia
ti

on

ogbn-products

1-hop node sampling

2-hop node sampling

Figure 6: Combined entropy plots for ogbn-products, Pubmed, Reddit and Yelp, showcasing the
mean entropy and entropy standard deviation across epochs. The plots compare 1-hop node sampling
against 2-hop node sampling.

18

	Introduction
	Related Work
	Scalable Graph Learning
	Generative Flow Networks

	Background
	GNN Training and Sampling
	GFlowNet and Trajectory Balance Loss

	GFlowNet Graph Neighbor Sampling (GRAPES)
	GFlowNet Design: States, Actions, and Reward
	Reward scaling
	Sampling and Off-Policy Training
	GRAPES Algorithm

	Experiments
	Experimental Setup
	Baselines Evaluation Protocol
	Results

	Discussion and Conclusion
	Off-Policy Sampling Setup
	Experimental Details
	Hyperparameter Tuning
	Baselines

	Dataset statistics
	Methodology for hypothesis testing
	Pearson's Chi-squared (2) test as a Robustness Measure
	Entropy as Node preference measure
	GPU Memory usage comparison between GRAPES and GAS

