© © N O O A W N =

31
32
33
34

Learning Dynamical Systems from Noisy Data with
Inverse-Explicit Integrators

Anonymous Author(s)
Affiliation
Address

email

Abstract

We introduce the mean inverse integrator (MII), a novel approach to increase the
accuracy when training neural networks to approximate vector fields of dynamical
systems from noisy data. This method can be used to average multiple trajectories
obtained by numerical integrators such as Runge—Kutta methods. We show that the
class of mono-implicit Runge—Kutta methods (MIRK) has particular advantages
when used in connection with MII. When training vector field approximations,
explicit expressions for the loss functions are obtained when inserting the training
data in the MIRK formulae, unlocking symmetric and high order integrators that
would otherwise be implicit for initial value problems. The combined approach
of applying MIRK within MII yields a significantly lower error compared to the
plain use of the numerical integrator without averaging the trajectories. This is
demonstrated with experiments using data from several (chaotic) Hamiltonian
systems. Additionally, we perform a sensitivity analysis of the loss functions under
normally distributed perturbations, supporting the favourable performance of MII.

1 Introduction

Recently, many deep learning methodologies have been introduced to increase the efficiency and
quality of scientific computations [1} 2, [3,4]. In physics-informed machine learning, deep neural
networks are purposely built so to enforce physical laws. As an example, Hamiltonian neural networks
(HNNSs) [S]] aim at learning the Hamiltonian function from temporal observations. The Hamiltonian
formalism was derived within classical mechanics for modelling a wide variety of physical systems.
The temporal evolution of such systems is fully determined when the Hamiltonian function is known,
and it is characterized by geometric properties such as the preservation of energy, the symplectic
structure and the time-reversal symmetry of the flow [6} 7.

Numerical integrators that compute solutions preserving such properties are studied in the field of
geometric numerical integration [7, [§8]. Thus, deep learning, classical mechanics and geometric
numerical integration are all relevant to the development of HNNs. In this work, we try to identify
the optimal strategy for using numerical integrators when constructing loss functions for HNNSs that
are trained on noisy and sparse data.

Generally, we aim at learning autonomous systems of first-order ordinary differential equations
(ODE)

Ly=), 0.7 R M

In the traditional setting, solving an initial value problem (IVP) means computing approximated
solutions y,, =~ y(t,) when the vector field f(y) and an initial value y(to) = yo are known. The
focus of our study is the corresponding inverse problem; assuming knowledge of multiple noisy
samples of the solution, Sy = {7, }_,, the aim is to approximate the vector field f with a neural

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

35
36

37
38

39
40
41
42
43
44
45
46

47
48
49

50
51
52

53
54
55

56
57
58
59
60
61

62

63
64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79
80
81
82
83

network model fy. We will assume that the observations originate from a (canonical) Hamiltonian
system, with a Hamiltonian H : R?? — R, where the vector field is given by

) = v, =0] eren @

This allows for learning the Hamiltonian function directly by setting fy(y) = JV Hy(y), as proposed
initially in [5].

Recently, many works highlight the benefit of using symplectic integrators when learning Hamiltonian
neural networks [9} 10} [11}[12]]. Here, we study what happens if, instead of using symplectic methods,
efficient and higher-order MIRK methods are applied for inverse problems. We develop different
approaches and apply them to learn highly oscillatory and chaotic dynamical systems from noisy data.
The methods are general, they are not limited to separable Hamiltonian systems, and could indeed be
used to learn any first-order ODE. However we focus our study on Hamiltonian systems, in order to
build on the latest research on HNNs. Specifically, we compare our methods to the use of symplectic
integrators to train Hamiltonian neural networks. Our contributions can be summarized as follows:

* We introduce the mean inverse integrator (MII), which efficiently averages trajectories of
MIRK methods in order to increase accuracy when learning vector fields from noisy data
(Definition [5.T).

* We present an analysis of the sensitivity of the loss function to perturbations giving insight
into when the MII method yields improvement over a standard one-step scheme (Theorem

B-2).
» We show that symplectic MIRK methods have at most order p = 2 (Theorem §.4)). Par-

ticularly, the second-order implicit midpoint method is the symplectic MIRK method with
minimal number of stages.

Finally, numerical experiments on several Hamiltonian systems benchmark MII against one-step
training and symplectic recurrent neural networks (SRNN) [10], which rely on the Stormer—Verlet
integrator. The structural difference between these three approached is presented in Figure[2] Ad-
ditionally, we demonstrate that substituting Stormer—Verlet with the classic Runge—Kutta method
(RK4) in the SRNN framework yields significant reduction in error and allows accurate learning of
non-separable Hamiltonian systems.

2 Related work

Hamiltonian neural networks was introduced in [5]]. The numerical integration of Hamiltonian ODEs
and the preservation of the symplectic structure of the ODE flow under numerical discretization
have been widely studied over several decades [8, [7]. The symplecticity property is key and could
inform the neural network architecture [13]] or guide the choice of numerical integrator, yielding a
theoretical guarantee that the learning target is actually a (modified) Hamiltonian vector field [14, 9],
building on the backward error analysis framework [8]]. Discrete gradients is an approach to numerical
integration that guarantees exact preservation of the (learned) Hamiltonian, and an algorithm for
training Hamiltonian neural networks using discrete gradient integrators is developed in [15] and
extended to higher order in [16]].

Since we for the inverse problem want to approximate the time-derivative of the solution, f, using
only ¥,, we need to use a numerical integrator when specifying the neural network loss function.
For learning dynamical systems from data, explicit methods such as RK4 are much used [} |17, [18].
However, explicit methods cannot in general preserve time-symmetry or symplecticity, and they often
have worse stability properties compared to implicit methods [19]. Assuming that the underlying
Hamiltonian is separable allows for explicit integration with the symplectic Stormer—Verlet method,
which is exploited in [[10, 20]. Symplecticity could be achieved without the limiting assumption
of separability by training using the implicit midpoint method [12]. As pointed out in [12], this
integrator could be turned into an explicit method in training by inserting sequential training data g,
and y,,+1. In fact, the MIRK class [21} 22] contains all Runge—Kutta (RK) methods (including the
midpoint method) that could be turned into explicit schemes when inserting the training data. This
is exploited in [23]], where high-order MIRK methods are used to train HNNs, achieving accurate

84
85

86
87
88
89
90
91
92
93
94

95

96
97
98

99
100
101
102
103

104
105
106

107
108

110
111
112

113
114
115
116

117

118
119
120
121

122
123

interpolation and extrapolation of a single trajectory with large step size, few samples and assuming
Zero noise.

The assumption of noise-free data limits the potential of learning from physical measurements
or applications on data sets from industry. This issue is addressed in [[10], presenting symplectic
recurrent neural networks (SRNN). Here, Stormer—Verlet is used to integrate multiple steps and is
combined with initial state optimization (ISO) before computing the loss. ISO is applied after training
fo a given number of epochs and aims at finding the optimal initial value gy, such that the distance
to the subsequent observed points 41, . . ., g is minimized when integrating over fy. While [[10] is
limited by only considering separable systems, [24]] aims at identifying the optimal combination of
third order polynomial basis functions to approximate a cubic non-separable Hamiltonian from noisy
data, using a Bayesian framework.

3 Background on numerical integration

Some necessary and fundamental concepts on numerical integration and the geometry of Hamiltonian
systems are presented below to inform the discussion on which integrators to use in inverse problems.
Further details could be found in Appendix [C|

Fundamental concepts: An important subclass of the general first-order ODEs (1) is the class of
Hamiltonian systems, as given by (2)). Often, the solution is partitioned into the coordinates y(t) =
[q(t), p(t)]T, with q(t), p(t) € RY. A separable Hamiltonian system is one where the Hamiltonian
could be written as the sum of two scalar functions, often representing the kinetic and potential
energy, that depend only on ¢ and p respectively, this means we have H(q,p) = H1(q) + Ha(p).

The h flow of an ODE is a map ¢y, ; : R"” — R™ sending an initial value y(to) to the solution
of the ODE at time to + h, given by ¢y, (y(to)) := y(to + h). A numerical integration method
@y, ¢ : R™ — R™ is a map approximating the exact flow of the ODE, so that

y(t1) = y1 = @n s (yo)

Here, y(t,,) represents the exact solution and we denote with y,, the approximation at time ¢,, =
to + nh. It should be noted that the flow map satisfies the following group property:

©hi,f © Pho,f (Y(t0)) = ony,r (Yt + h2)) = nytha,r (y(to)). 3)

In other words, a composition of two flows with step sizes hq, ho is equivalent to the flow map over f
with step size h1 + ho. This property is not shared by numerical integrators for general vector fields.
The order of a numerical integrator ®;, ; characterizes how the error after one step depends on the
step size h and is given by the integer p such that the following holds:

ly = y(to + Bl = [@n.s (y0) — Pns (y(to))ll = O(RPTY).

Mono-implicit Runge-Kutta methods: Given vectors b,v € R® and a strictly lower triangular
matrix D € R**%, a MIRK method is a Runge—Kutta method where A = D + vb” [25,26] and we
assume that [A];; = a;; is the stage-coefficient matrix. This implies that the MIRK method can be
written on the form

YUni1 =Yn +h Y biki,

i=1

s (€]
ki = f(yn +vi(ynt1 — yn) + hzdijka‘)-
j=1

Specific MIRK methods and further details on Runge—Kutta schemes is discussed in Appendix[C.2]

Symplectic methods: The flow map of a Hamiltonian system is symplectic, meaning that its Jacobian
T, = a%aphyf(y) satisfies TgJTg, = J, where J is the same matrix as in (Z). As explained in [8 Ch.
VI1.2], this is equivalent to the preservation of a projected area in the phase space of [¢, p]”. Similarly,
a numerical integrator is symplectic if its Jacobian Y¢ := %@m 7 (yn) satisfies TgJ Yo =J. Itis
possible to prove [8, Ch. VI.4] that a Runge—Kutta method is symplectic if and only if the coeffients

satisfy
bia¢j+bjaji—b¢bj :0, i,j:17...78. (5)

124 4 Numerical integration schemes for solving inverse problems

125 We will now consider different ways to use numerical integrators when training Hamiltonian neural
126 networks and present important properties of MIRK methods, a key component of the MII that is
127 presented in Chapter 5}

128 Inverse ODE problems in Hamiltonian form: We assume to have potentially noisy samples
129 Sy = {§}1_, of the solution of an ODE with vector field f. The inverse problem can be formulated
130 as the following optimization problem:

N-1
arg min Z Tnt1 — Pn gy (Tn) || (6)
4 n=0
131 where fy = JVHp is a neural network approximation with parameters 6 of a Hamil-

132 tonian vector field f, and @ ¢, is a one-step integration method with step length h.
133 In the setting of inverse ODE problems, the availabil-

134 ity of sequential points Sy could be exploited when g g 1o RK4

135 a numerical method is used to form interpolation '
136 conditions, for fy ~ f for each n in the optimiza-
137 tion problem (6). For example, ¢, and 41 could
138 be inserted in the implicit midpoint method, turning
139 a method that is implicit for IVPs into an explicit

140 method for inverse problems: .
Midpoint

2

141 We denote this as the inverse injection, which defines
142 an inverse explicit property for numerical integrators.

P, £ (gnagn-i-l) =Yn+ hf@(

epe . 1. Euler, MIRK3, MIRKS
Definition 4.1 (Inverse injection). Assume that et

Yn:Un+1 € Sn. Let the inverse injection for the Figure 1: Venn diagram of Runge-Kutta (RK)

integrator ® ¢ (yn, Yn+1) be given by the substitu- subclasses: explicit RK (ERK), symplectic

tion (Jn, Yn+1) = (Yn, Yn+1) such that RK (SympRK), mono-implicit RK (MIRK)
Int1 = P, (Un: Unt1)- and symmetric RK (SymRK).

143 Definition 4.2 (Inverse explicit). A numerical one-step method @ is called inverse explicit if it is

144 explicit under the inverse injection.

145 This procedure is utilized successfully by several authors when learning dynamical systems from
146 data, see e.g. [12}27]. However, this work is the first attempt at systematically exploring numerical
147 integrators under the inverse injection, by identifying the MIRK methods as the class consisting of
148 inverse explicit Runge—Kutta methods.

149 Proposition 4.3. MIRK-methods are inverse explicit.

150 Proof. Since the matrix D in (@) is strictly lower triangular, the stages are given by

kl = f(yn + Ui(ynJrl - yn))
ko = f(yn + vi(Yn+1 — Yn) + hda1 k1)

s—1

ks = f(Un +vi(Uns1 — vn) +h Y _ dsjkj)

j=1

151 meaning that if y,, and y, 41 are known, all stages, and thus the next step §,+1 = yn + h Zle bik;,
152 could be computed explicitly. O

153 Because of their explicit nature when applied to inverse ODE problems, MIRK methods are an
154 attractive alternative to explicit Runge—Kutta methods; in contrast to explicit RK methods, they
155 can be symplectic or symmetric, or both, without requiring the solution of systems of nonlinear

MIRK4, MIRK6

156
157
158

160
161
162
163

164
165
166
167
168
169
170

171

172
173
174
175

176
177

178
179

180
181
182
183
184
185
186
187
188
189
190
191
192

193

194
195

(a) ERK, one-step. (b) MIRK, one-step. (c) SRNN with ISO.

Figure 2: Differences of observation dependency, assuming /N = 2 for explicit and mono-implicit
one-step training, and explicit multi-step training with initial state optimization (green node).

equations, even when the Hamiltonian is non-separable. Figure [I]illustrates the relation between
various subclasses and the specific methods are described in Table[I]in Appendix [C| In addition,
for s-stage MIRK methods, it is possible to construct methods of order p = s + 1 [22]]. This is
in general higher order than what is possible to obtain with s-stage explicit Runge—Kutta methods.
Further computational gains could also be made by reusing evaluations of the vector field between
multiple steps, which using MIRK methods allow for, as explained in Appendix [} The dependency
structure on the data S of explicit RK (ERK) methods, MIRK methods and the SRNN method [10]
is illustrated in Figure

Maximal order of symplectic MIRK methods: From the preceding discussion, it is clear that
symplectic MIRK methods are of interest when learning Hamiltonian systems from data, since they
combine computational efficiency with the ability to preserve useful, geometric properties. Indeed,
symplectic integrators in the training of HNNs have been considered in [9} [10} [11} [12} [13]]. The
subclass of symplectic MIRK methods is represented by the middle, dark blue field in the Venn
diagram of Figure[T] The next result gives an order barrier for symplectic MIRK methods that was, to
the best of our knowledge, not known up to this point.

Theorem 4.4. The maximum order of a symplectic MIRK method is p = 2.

Proof. This is a shortened version of the full proof, which can be found in Appendix [} A MIRK
method is a Runge—Kutta method with coefficients a;; = d;; + v;b;. Requiring d;;,b; and v; to
satisfy the symplecticity conditions of (3] in addition to D being strictly lower triangular, yields the

following restrictions
bzd” + bibj(vj —+ v; — 1) = 0, if ¢ 75 j,
1

b;=0or v, ==, ifi=yj (®)

N

dij =0, ifi>j.
These restrictions result in an RK method that could be reduced to choosing a coefficient vector
b € R* and choosing stages on the form k; = f(yn + 5 325 b;k;) fori =1,...,s. Itis then trivial
to check that this method can only be of up to order p = 2. Note that for s = 1 and b; = 1 we get the
midpoint method. O

Numerical integrators outside the RK class: While this paper is mainly concerned with MIRK
methods, several other types of numerical integrators could be of interest for inverse problems.
Partitioned Runge—Kutta methods are an extension and not a subclass of RK methods, and can
be symplectic and symmetric, while also being explicit for separable Hamiltonian systems. The
Stormer—Verlet integrator of order p = 2 is one example. Higher order methods of this type are
derived in [28]] and used for learning Hamiltonian systems in [29, 30]]. Discrete gradient methods
[31}132] are inverse explicit and well suited to train Hamiltonian neural networks using a modified
automatic differentiation algorithm [[15]. This method could be extended to higher order methods as
shown in [16]). In contrast to symplectic methods, discrete gradient methods preserve the Hamiltonian
exactly up to machine precision. A third option is elementary differential Runge—Kutta methods 33,
where for instance [34]] show how to use backward error analysis to construct higher order methods
from modifications to the midpoint method. This topic is discussed further in Appendix [Hl where we
also present a novel, symmetric discrete gradient method of order p = 4.

5 Mean inverse integrator for handling noisy data

Noisy ODE sample: It is often the case that the samples Sy are not exact measurements of the
system, but perturbed by noise. In this paper, we model the noise as independent, normally distributed

196

197
198

199

200
201
202
203
204

205
206
207
208
209
210
211
212
213
214

215
216

217
218

219
220
221
222
223
224
225

226
227
228

229

231

perturbations

Gn = y(tn) + 6n, 6 ~N(0,0°1),)
where N (0, o2T) represents the multivariate normal distribution. With this assumption, a standard
result from statistics tells us that the variance of a sample-mean estimator with /N samples converges

to zero at the rate of % That is, assuming that we have /N samples gﬁf), o ,Q%N), then

1 N o2
Var[g,] = Var| =Y 4| = .
aI[yn} ar |:N j:1 yn :| N

Using the inverse injection with the midpoint method, the vector field is evaluated in the average of
Y, and ¥, 41, reducing the variance of the perturbation by a factor of two, compared to evaluating the
vector field in y,, as is done in all explicit RK methods. Furthermore, considering the whole data
trajectory Sy, multiple independent approximations to the same point y(¢,,) can enable an even more
accurate estimate. This is demonstrated in the analysis presented in Theorem[5.2]and in Figure[d]

Averaging multiple trajectories: In the inverse ODE problem, we assume that there exists an exact
vector field f whose flow interpolates the discrete trajectories Sy, and the flow of this vector field
satisfies the group property (3). The numerical flow ®;_ ; for a method of order p satisfies this
property only up to an error O(hP*1) over one step. In the presence of noisy data, compositions of
one-step methods can be used to obtain multiple different approximations to the same point y(¢,,),
by following the numerical flow from different nearby initial values §;, j # n, and thus reduce the
noise by averaging over these multiple approximations. Accumulation of the local truncation error is
expected when relying on points further away from ¢,,. However, for sufficiently small step sizes h
compared to the size of the noise o, one can expect increased accuracy when averaging over multiple
noisy samples.

As an example, assume that we know the points {go, 91, ¥2, U3 }- Then y(¢2) can be approximated by
computing the mean of the numerical flows ®,, ¢ starting from different initial values:

1 i i .
U2 = 3 (®ns(51) + g o Pr (o) + D2y, 1 (75))
(10)
1,
~ g(yo +§1 + §3 + h(Toq + 201 5 — Us3)),

where we by ®* mean the adjoint method of ®, as defined in [8, Ch. V], and we let ¥,, ,, ;1 be the
increment of an inverse-explicit numerical integrator, so that

(I)h,f(gnv gn—&-l) = gn + han,n—&-l-

For example, for the midpoint method, we have that ¥, ,.1 = f (Lg”“) When stepping in
negative time in (I0), we use the adjoint method in order to minimize the number of vector field
evaluations, also when non-symmetric methods are used (which implies that we always use e.g. ¥ o
and not U5 ;). Note that in order to derive the approximation in (I0), repeated use of the inverse
injection allows the known points ¥,, to form an explicit integration procedure, where composition
of integration steps are approximated by summation over increments W, ,, . 1. This approximation
procedure is presented in greater detail in Appendix

Mean inverse integrator: The mean approximation over the whole trajectory 3,,, forn =0,..., N,
could be computed simultaneously, reusing multiple vector field evaluations in an efficient manner.
This leads to what we call the mean inverse integrator. For example, when N = 3 we get

o 0 1 1 1% -3 =2 -1
7| |1t 0o 1 1||gm]| |1 -2 -1 \11071
y2*§1101g2+§12—1\1/1’2’
Ts 1 1 1 0]lgs 1 2 3 2,3

and the same structure is illustrated in Figure[3]

Definition 5.1 (Mean inverse integrator). For a sample Sy and an inverse-explicit integrator W, ,, 1,
the mean inverse integrator is given by

_ 1 ~
Y = N(UY—HLW\I/) (11)

232

233

234

235
236

237
238

240
241
242

243
244
245
246
247
248

249

251

252

254
255
256
257

259
260
261
262
263

264
265
266
267
268
269

where }N/ = [go, ce ,QN]T S R(N+1)Xm, U .= [\110’1, ey \I/N,LN]T € RNXm'
Finally, U € RVHDXN+1) and W e RVTDXN are given by
0 if =35 j—1—=—N if j>1
Ul;; == d Wl = .
i {1 else an Wl { J else

By substituting the known vector field f with a neural network fj and denoting the matrix containing
vector field evaluations by Wy such that Yy := %(UY + hWWy), we can formulate an analogue to

the inverse problem (6] by
argmin [|Y — Y| (12)
0
Analysis of sensitivity to noise: Consider the optimiza- 3h0y,
tion problems using integrators either as one-step methods ’ —2h¥1, "Wy 5
or MII by (6) resp. (I2). We want to investigate how @%Q@DK—\@
uncertainty in the data ¢,, introduces uncertainty in the op- —2hWy 2 WUy

timization problem. Assume, for the purpose of analysis,
that the underlying vector field f(y) is known. Let

795 .= 3, — @, (Gn—1,Tn)s
EMH = Un — [?]n

be the optimization target or the expression one aims to
minimize using a one-step method (OS) and the MII,
where Y is given by Definition For a matrix A
with eigenvalues A;(A), the spectral radius is given by
p(A) := max; |\;(A)|. An analytic expression that approximates p(7,°%) and p(T,M") by lineariza-
tion of f for a general MIRK method is provided below.

./“@‘/A@’\@

Figure 3: Illustration of the structure of
the mean inverse integrator for N = 3.

Theorem 5.2. Let Sy = {i,})_, be a set of noisy samples, equidistant in time with step size h,
with Gaussian perturbations as defined by () with variance o*. Assume that a MIRK integrator
Oy, r is used as a one-step method. Then the spectral radius is approximated by

p% = p<Var[7;?S}) ~o? |21 + hb" (1 — 20) (f'+ 7)) + K*Q% (13)
2
2 2
pMI = p(Var[’Y;lMIq) ~ N H(1 + N + hPpp + — Z P+ QM” (14)
2

J#n

where f':= f'(yn) and Py;, Q% and Q" (defined in 24) in Appendix@ are matrices independent
of the step size h.
The proof is found in Appendix @ Let := bT(1 —

Propagation of noise, Double pendulum
x1072

2v) denote the coefficients of the first order term in A

of Equation (]E) For any explicit RK method we have LOY 2 RK4 05 ‘
that v = 0 and since b1 = 1 (method of at least order 091 === iﬁﬁij i’; /,/'"

one) we find that agrg = 1. Considering the Butcher
tableau of MIRK4 in Figure O we find that cvirks = 0.
Thus, as h — 0 we would expect quadratic convergence
of MIRK4 and linear convergence of RK4 for p93 to 202
Considering MII (]ED one would expect linear convergence
for pM1 to o2 if N is large, as h — 0.

A numerical approximation of p5 and pM! could be real-

ized by a Monte-Carlo estimate. We compute the spectral
radius p,, of the empirical covariance matrix of 7,5 and
TMI by sampling 5-10% normally distributed perturbations
8, with 2 = 2.5 - 1073 to each point ¥, in a trajectory
of N + 1 points and step size h. We then compute the

Spectral radius p

o o o o o
IS)

o
&
L

S0
' L

0.10 0.22

0.34

0.48 0.60 0.80

Step size h

Figure 4: Average of p over 10 trajecto-
ries. Shaded area represent one standard
deviation.

270
271
272
273
274

275

276
277
278
279
280
281
282

284
285
286
287
288
289

291
292

293
294
295
296
297
298

299
300

301
302
303

305
306

307
308
309
310
311
312

314
315

trajectory average p = ﬁ ij:o Pn, fix the end time 7' = 2.4, repeat the approximations for
decreasing step sizes & and increasing IV and compute the average of p for 10 randomly sampled
trajectories Sy from the double pendulum system. The plot in Figure [corresponds well with what
one would expect from Theorem[5.2] and confirms that first MIRK (with v # 0) and secondly MII
reduces the sensitivity to noise in the optimization target.

6 Experiments

Methods and test problems: We train HNNs us-
ing different integrators and methods in the inverse Flow roll-out Double pendulum £ = 0.8, o — 0.05
problem (6). We use MIRK4 together with the MII 04
method and compare to the implicit midpoint method, 02
RK4 and MIRK4 applied as one-step methods, as -
well as ISO followed by Stormer—Verlet and RK4
integrated over multiple time-steps. The latter strat-

egy, illustrated in Figure |2} was suggested in [10], E S
where Stormer—Verlet is used. Separable networks
Hy(q,p) = Hyy (q) + Hy g (p) are trained on data Flow roll-out Double pendulum h = 0.1, o = 0.05
from the Fermi—Pasta—Ulam-Tsingou (FPUT) prob- o

lem and the Hénon—-Heiles system. For the double 02 /\ F
pendulum, which is non-separable, a fully connected = o /;/
network is used for all methods except Stormer— -2 /

Verlet, which requires separability in order to be ex- -0«
plicit. The Hamiltonians are described in Appendix w2 T Moz e
and all systems have solutions y(t) € R?.

0.0

0.2

n

— Midpoint ~ —— RK4 — MIRK4 = G
ISO Stormer —— 1SO RK4 MIIMIRK4 © G

After using the specified integrators in training, ap- o . i
proximated solutions are computed for each learned Figure 5: Roll-out in time obtained by inte-
vector field fj using the Scikit-learn implementation ~&rating over the learned vector fields when
of DOP853 [33]], which is also used to generate the training on data from the double pendulum
training data. The error is averaged over M/ = 10 Hamiltonian.

points and we find what we call the flow error by

_ test

Unt1 = (I)h7f9 (yn)

Training data: Training data is generated by sampling N2 = 300 random initial values y, requiring

that 0.3 < ||yo||2 < 0.6. The data Sn, n, = {55)}fj;’o]?;?:() is found by integrating the initial values

with DOP853 with a tolerance of 10~1° for the following step sizes and number of steps: (h, N1) =
(0.4,4),(0.2,8),(0.1,16). The points in the flow are perturbed by noise where o € {0,0.05}. Error
is measured in M = 10 random points in the flow, within the same domain as the initial values.
Furthermore, experiments are repeated with a new random seed for the generation of data and
initialization of neural network parameters five times in order to compute the standard deviation of
the flow error. The flow error is shown in Figure[6] Additional results are presented in Appendix [B]

Neural network architecture and optimization: For all test problems, the neural networks have 3
layers with a width of 200 neurons and tanh(-) as the activation function. The algorithms are imple-
mented using PyTorch [36] and the code for performing ISO is a modification of the implementation
by [10ﬂ Training is done using the quasi-Newton L-BFGS algorithm [37] for 20 epochs without
batching. This optimization algorithm is often used to train physics-informed neural networks [[L]]
and in this setting it proved to yield superior results in comparison to the often used Adam optimizer.
Further details are provided in Appendix

Results: As observed in Figure[6|and supported by the analytical result illustrated in Figure[d} the MII
approach facilitates more accurate training from from noisy data than one-step methods. However,
training with multiple integration steps in combination with ISO yields lower error when RK4 is used

'https://github.com/zhengdao- chen/SRNN (CC-BY-NC 4.0 License)

ttps://github.com/zhengdao-chen/SRNN

317
318
319
320
321
322
323

324

326
327
328
329

330

331
332
333
334
335
336

338
339
340
341

342
343
344
345

Flow error Time and accuracy

] FPUT. 0 = 0.05
10 | 1 1 ! !
L 1

10!
\ 1 } ' \ I
J b Blalwd wimiwe wldlw,

4%1072
Hénon-Heiles, o = 0.05

e(fo)

3% 1072

2
_2x0 |] [e
s | | |
T I |
102] I I I
61073 I |

Double pendulum, o = 0.05

4x1072] I
3x107? |] -
— —
©2x107? I] | I
1072 I

h=08 N, =3 h=04, N, =6 h=02 N 12 h=01 N =24 0 50 100 150 200 250 300 350
Training time

B Midpoint RK4 B MIRK4
1SO Stérmer 1SO RK4 MIT MIRK4

Figure 6: The flow error when learning vector fields using one-step methods directly (Midpoint, RK4
and MIRK4), ISO and multiple time-steps (ISO Stormer and ISO RK4) and MII (MII MIRK4). The
error bars display the standard deviation after rerunning 5 experiments on data with o = 0.05. The
right subplot shows the computational time used in training against the flow error.

for the Hénon—Heiles problem and similar performance as MII on the double pendulum. We notice
that the SRNN approach, i.e. ISO with Stérmer—Verlet, is improved when switching to RK4, which
means sacrificing symplecticity to achieve higher order. The results for FPUT stand out in Figure 6}
since both ISO methods have large errors here. The roll-out in time of the learned vector fields is
presented in Figure [§]in Appendix [B] where the same can be observed. As also could be seen here,
the FPUT Hamiltonian gives rise to highly oscillatory trajectories, and the errors observed in Figure
[6l might indicate that ISO is ill-suited for this kind of dynamical systems.

Two observations could be made regarding the one-step methods without averaging or ISO. First,
it is likely that the midpoint method has weaker performance for large step sizes due to its lower
order, compared to both RK4 and MIRK4, despite the fact that it is a symplectic method. The same is
clear from Figure[7]in Appendix [B] which display the flow error when training on data without noise.
Secondly, building on the sensitivity analysis, we observe that MIRK4 consistently attains higher
accuracy than RK4, as expected from the Monte-Carlo simulation found in Figure 4]

7 Conclusion

In this work we present the mean inverse integrator, which allows both chaotic and oscillatory
dynamical systems to be learned with high accuracy from noisy data. Within this method, integrators
of the MIRK class are a key component. To analyse how noise is propagated when training with
MII and MIRK, compared to much used explicit methods such as RK4, we developed a sensitivity
analysis that is verified both by a Monte-Carlo approximation and reflected in the error of the
learned vector fields. Finally, we build on the SRNN [[10] by replacing Stormer—Verlet with RK4,
and observer increased performance. When also considering the weak performance of the implicit
midpoint method, this tells us that order might be of greater importance than preserving the symplectic
structure when training HNNs. Both the MIRK methods, the mean inverse integrator and initial state
optimization form building blocks that could be combined to form novel approaches for solving
inverse problems and learning from noisy data.

Limitations: The experiments presented here assume that both the generalized coordinates g,, and
the generalized momenta p,, could be observed. In a setting where HNNs are to model real and not
simulated data, the observations might lack generalized momenta [38]] or follow Cartesian coordinates,
requiring the enforcement of constraints [[17, 39]. Combining approaches that are suitable for data
that is both noisy and follow less trivial coordinate systems is a subject for future research.

347

348
349
350

352
353

354
355

356
357
358

359
360

361
362

363
364

365
366
367

368
369

370
371

372
373

374
375

376
377
378

379
380

381
382
383

385
386

388

389
390

391
392

References

[1] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686-707, 2019.

[2] Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit
Supekar, Dominic Skinner, Ali Ramadhan, and Alan Edelman. Universal differential equations
for scientific machine learning. Aug 2020.

[3] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

[4] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differen-
tial equations. arXiv preprint arXiv:2010.08895, 2020.

[5] Sam Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. CoRR,
abs/1906.01563, 2019.

[6] Herbert Goldstein, Charles Poole, and John Safko. Classical Mechanics. Addison Wesley, 3
edition, 2001.

[7] Benedict Leimkuhler and Sebastian Reich. Simulating Hamiltonian Dynamics. Cambridge
Monographs on Applied and Computational Mathematics. Cambridge University Press, 2005.

[8] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric Numerical Integration:
Structure-Preserving Algorithms for Ordinary Differential Equations; 2nd ed. Springer, Dor-
drecht, 2006.

[9] Christian Offen and Sina Ober-Blobaum. Symplectic integration of learned Hamiltonian systems.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 32(1):013122, 2022.

[10] Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, and Léon Bottou. Symplectic recurrent neural
networks. In International Conference on Learning Representations, 2020.

[11] Aiqging Zhu, Pengzhan Jin, and Yifa Tang. Deep Hamiltonian networks based on symplectic
integrators. arXiv preprint arXiv:2004.13830, 2020.

[12] Marco David and Florian Méhats. Symplectic learning for Hamiltonian neural networks. arXiv
preprint arXiv:2106.11753, 2021.

[13] Pengzhan Jin, Zhen Zhang, Aiqing Zhu, Yifa Tang, and George Em Karniadakis. SympNets:
Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems. Neural
Networks, 132:166-179, 2020.

[14] Aiqing Zhu, Pengzhan Jin, Beibei Zhu, and Yifa Tang. Inverse modified differential equations
for discovery of dynamics. arXiv preprint arXiv:2009.01058, 2020.

[15] Takashi Matsubara, Ai Ishikawa, and Takaharu Yaguchi. Deep energy-based modeling of
discrete-time physics. Advances in Neural Information Processing Systems, 33:13100-13111,
2020.

[16] Sglve Eidnes. Order theory for discrete gradient methods. BIT, 62(4):1207-1255, 2022.

[17] Elena Celledoni, Andrea Leone, Davide Murari, and Brynjulf Owren. Learning Hamiltonians
of constrained mechanical systems. J. Comput. Appl. Math., 417:Paper No. 114608, 12, 2023.

[18] Alvaro Sanchez-Gonzalez, Victor Bapst, Kyle Cranmer, and Peter Battaglia. Hamiltonian Graph
Networks with ODE Integrators.

[19] Gerhard Wanner and Ernst Hairer. Solving ordinary differential equations II, volume 375.
Springer Berlin Heidelberg, 1996.

[20] Senwei Liang, Zhongzhan Huang, and Hong Zhang. Stiffness-aware neural network for learning
Hamiltonian systems. 2022.

10

393
394

395
396

397
398

399
400
401

402
403

404
405

406
407

409
410

411
412

413
414

415
416
417

418
419
420

421
422

423
424

438

[21] Jeff R Cash. A class of implicit Runge—Kutta methods for the numerical integration of stiff
ordinary differential equations. Journal of the ACM (JACM), 22(4):504-511, 1975.

[22] K Burrage, FH Chipman, and Paul H Muir. Order results for mono-implicit Runge—Kutta
methods. SIAM journal on numerical analysis, 31(3):876-891, 1994.

[23] Hakon Noren. Learning Hamiltonian systems with mono-implicit Runge—Kutta methods. arXiv
preprint, arXiv:2303.03769, 2023.

[24] Harsh Sharma, Nicholas Galioto, Alex A Gorodetsky, and Boris Kramer. Bayesian identification
of nonseparable Hamiltonian systems using stochastic dynamic models. In 2022 IEEE 61st
Conference on Decision and Control (CDC), pages 6742—-6749. IEEE, 2022.

[25] W. M. G. van Bokhoven. Efficient higher order implicit one-step methods for integration of
stiff differential equations. BIT, 20(1):34-43, 1980.

[26] J. R. Cash and A. Singhal. Mono-implicit Runge—Kutta formulae for the numerical integration
of stiff differential systems. IMA J. Numer. Anal., 2(2):211-227, 1982.

[27] Sglve Eidnes, Alexander J Stasik, Camilla Sterud, Eivind Bghn, and Signe Riemer-Sgrensen.
Pseudo-Hamiltonian neural networks with state-dependent external forces. arXiv preprint,
arXiv:2206.02660, 2022.

[28] Haruo Yoshida. Construction of higher order symplectic integrators. Physics letters A, 150(5-
7):262-268, 1990.

[29] Shaan A Desai, Marios Mattheakis, and Stephen J Roberts. Variational integrator graph networks
for learning energy-conserving dynamical systems. Physical Review E, 104(3):035310, 2021.

[30] Daniel DiPietro, Shiying Xiong, and Bo Zhu. Sparse symplectically integrated neural networks.
Advances in Neural Information Processing Systems, 33:6074-6085, 2020.

[31] GRW Quispel and Grant S Turner. Discrete gradient methods for solving ODEs numerically
while preserving a first integral. Journal of Physics A: Mathematical and General, 29(13):1.341,
1996.

[32] Robert I McLachlan, G Reinout W Quispel, and Nicolas Robidoux. Geometric integration
using discrete gradients. Philosophical Transactions of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences, 357(1754):1021-1045, 1999.

[33] Ander Murua. Métodos simplécticos desarrollables en P-series. PhD thesis, PhD thesis.
Valladolid: Universidad de Valladolid, 1995.

[34] Philippe Chartier, Ernst Hairer, and Gilles Vilmart. Numerical integrators based on modified
differential equations. Mathematics of Computation, 76(260):1941-1953, October 2007.

[35] J.R. Dormand and P.J. Prince. A family of embedded Runge—Kutta formulae. Journal of
Computational and Applied Mathematics, 6(1):19-26, 1980.

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32:8026-8037, 2019.

[37] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

[38] Yuhan Chen, Takashi Matsubara, and Takaharu Yaguchi. Neural symplectic form: learn-
ing hamiltonian equations on general coordinate systems. Advances in Neural Information
Processing Systems, 34:16659—-16670, 2021.

[39] Marc Finzi, Ke Alexander Wang, and Andrew Gordon Wilson. Simplifying Hamiltonian and
Lagrangian neural networks via explicit constraints. arXiv preprint arXiv:2010.13581, 2020.

[40] Enrico Fermi, P Pasta, Stanislaw Ulam, and Mary Tsingou. Studies of the nonlinear problems.
Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 1955.

11

439
440
441

442
443

444
445

446
447

448
449

450
451
452

454
455
456
457

458
459

460
461

462
463

464

465
466
467
468

470

471
472

473
474
475

[41] E. Hairer, S. P. Ngrsett, and G. Wanner. Solving ordinary differential equations. I, volume 8 of
Springer Series in Computational Mathematics. Springer-Verlag, Berlin, second edition, 1993.
Nonstiff problems.

[42] P. H. Muir. Optimal discrete and continuous mono-implicit Runge-Kutta schemes for BVODEs.
Adv. Comput. Math., 10(2):135-167, 1999.

[43] J. R. Cash and D. R. Moore. A high order method for the numerical solution of two-point
boundary value problems. BIT, 20(1):44-52, 1980.

[44] Philippe Chartier. Symmetric Methods. In Bjorn Engquist, editor, Encyclopedia of Applied and
Computational Mathematics, pages 1439—1448. Springer, Berlin, Heidelberg, 2015.

[45] J.R. Cash and A. Singhal. High order methods for the numerical solution of two-point boundary
value problems. BIT, 22(2):184-199, 1982.

[46] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.
van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, Ilhan Polat, Yu Feng, Eric W.
Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, Antonio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261-272, 2020.

[47] Philippe Chartier, Ernst Hairer, and Gilles Vilmart. Numerical integrators based on modified
differential equations. Math. Comp., 76(260):1941-1953, 2007.

[48] Ge Zhong and Jerrold E. Marsden. Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson
integrators. Phys. Lett. A, 133(3):134-139, 1988.

[49] Takashi Matsubara and Takaharu Yaguchi. FINDE: Neural differential equations for finding
and preserving invariant quantities. arXiv preprint, arXiv:2210.00272, 2022.

A Test problems

Fermi-Pasta—Ulam-Tsingou: This dynamical system is a model for a chain of 2m + 1 alternating
stiff and soft springs connecting 2m mass points. The chain is fixed in both ends [8| 40]. With the
coordinate transformation suggested in [8, Ch. 1.5.I] we have coordinates [¢, p]T € R*"™ where
g, = 1,...,m represents a scaled displacement of the i-th stiff spring and ¢;y,,,2 = 1,...,m
represents a scaled expansion of the ¢-th spring. g; represents their velocities. Letting w be the angular
frequency of the stiff spring, in general the Hamiltonian is given by

1 m w2 m
H(q,p) =) Z (pz2 +pz2+m) + 9 Zqz'2+m
=1 =1

1 m—1 A
+ 4< Z (@i+1 = Givms1 = G = divm)” + (@1 = Gnr1)" + (g + Q2m)4)
i=1

We consider the most trivial case of m = 1 and letting w = 2, yielding the quartic, separable
Hamiltonian by

1
(p? +p3) + 245 + i ((q1 —g)' + (o + q2)4).

NN

H(thQaplapQ) =

Double pendulum: Let ¢; and p; denote the angle and angular momentum of pendulum ¢ = 1, 2. The
double pendulum system has a Hamiltonian that is not separable, where y = [q1, g2, p1,p2]” € R*
and the Hamiltonian is given by

1.2 2
5P1 + P53 — p1p2 cos(q1 — q2)
H(q1aq27p17p2) =2) —2(305((11) —COS((]2)~
1+ sin“(q1 — ¢2)

12

476
477
478
479

481
482
483

Hénon—-Heiles: This model was introduced for describing stellar motion inside the gravitational
potential of a galaxy, as described in [8]]. This Hamiltonian is separable. However, it is a canonical
example of a chaotic system and its properties are discussed more in detail in [6]. The Hamiltonian is
given by

1 1 1
H(q1,q2,p1,p2) = Q(p% +p3) + 5(‘1? +43)+aiqe — §QS~

B Additional numerical results

Here we present additional numerical experiments. In Figure[7] the flow error when learning from
data without noise, could be found. The roll-out in time of the learned Hamiltonian for the FPUT and
Hénon—Heiles problem is presented in Figure|[§]

Flow error Time and accuracy

10°3 FPUT, 0 = 0.0 | | [| |

Hénon-Heiles, o = 0.0

Double pendulum, o = 0.0

S0

h=08 N =3

h=04, N, =6 h=02N =12 h=01, Ny =24 0 50 100 150 200 250

Training time

B RK4
1SO RK4

B Midpoint

m MIRK4
1SO Stérmer

MIT MIRK4

Figure 7: The flow error when learning vector fields using one-step methods directly (Midpoint, RK4
and MIRK4), ISO and multiple time-steps (ISO Stormer and ISO RK4) and MII (MII MIRK4). The
error bars display the standard deviation after rerunning 5 experiments on data with o = 0. The right
subplot shows the computational time used in training against the flow error.

Flow roll-out FPUT h = 0.8, ¢ = 0.05 Flow roll-out FPUT & = 0.1, ¢ = 0.05

! 00 L m
0 v = il e 2 —0.5
s-1 S-10
-2 -15
-3 -20

0.0 2.5 5.0 75 10.0 125 15.0 17.5 20.C 0.0 2.5 5.0 7.5 10.0 12.5 15.0 175 20.0
t t

Flow roll-out Hénon-Heiles h = 0.8, 0 = 0.05

—0.2 0.2

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.C
t t

—— MIRK4 ——-
MII MIRK4 e

—— Midpoint — RK4 Ground truth

—— ISO Stormer —— SO RK4 Given data

Figure 8: Roll-out in time obtained by integrating over the learned vector fields when training on data
from the Fermi—Pasta—Ulam—Tsingou and Hénon—Heiles Hamiltonian.

13

484

486
487

488
489
490
491
492

493
494

495

496
497
498

500
501

C More on numerical integration

C.1 Runge-Kutta methods

A general Runge—Kutta method for an autonomus system with s stages is a one-step numerical
integrator given by

Yntl = Yn + hz bik;,

Jj=1

s (16)
ki:f(yn+hzaijkj), i=1,...,s.
=1

A concrete method is determined by specifying the coefficient matrix A € R***® and the vector
b € R?, and there are conditions for symplecticity and order associated with these [41]. The
conditions for order p = 1 require that the coefficient ¢ € R® is determined by ¢; = Z‘;Zl a;j. A
method could be compactly represented by a Butcher tableau which structures the coefficients the
following way

c| A
bT

The two symplectic and symmetric Gauss-Legendre methods (found e.g. in [8]) with order p = 4,6
and denoted as GL4 and GL6 in Table|[T]are presented in below:

1_ Vi85 5 2_ V15 5 _ VI5
1_ V3 1 1_ V3 2 10 36 9 15 36 30
2 6 4 4 6 1 g+@ 2 5 /15
;+£ lJr@ 1 2 36 24 9 36 24
26 |17 6 1 1, V5| 2, VI8 5 VI8 5
‘ 1 1 2 10 9 15 36 30 36
2 2 5 4 5
18 9 18

Table 1: Properties of RK methods. Symm. is short for symmetric and sympl. for symplectic, and inv.
for inverse.

Integration method | Name in figures Order (p) Stages (s) Symm. Sympl. Inv. explicit Explicit
g g g y ymp p p

Explicit Euler E. Euler 1 1 no no yes yes
Implicit Euler 1. Euler 1 1 no no yes no
Runge—Kutta 4 RK4 4 4 no no yes yes
Implicit midpoint Midpoint 2 1 yes yes yes no
MIRK3 MIRK3 3 2 no no yes no
MIRK4 MIRK4 4 3 yes no yes no
MIRKS MIRKS 5 4 no no yes no
MIRK6 MIRK6 6 5 yes no yes no
Gauss Legendre 4 | GL4 4 2 yes yes no no
Gauss Legendre 6 | GL6 6 4 yes yes no no

C.2 Mono-Implicit Runge-Kutta methods

The MIRK methods are specified by a coefficient vector b € R®, v € R? in addition to the strictly
lower triangular matrix D € R*** and could be represented by the an extended Butcher tableau in
the following manner

clv| D
bT
In [22]] it is proved that the maximum order of an s-stage MIRK method is p = s 4 1 and several

methods with stages s < 5 are presented. Below, we specify the MIRK methods used in the numerical
experiments in addition to presenting their extended Butcher tableau in Figure 9]

14

502
503

505
506

508
509

510

511
512

513

514

515
516

517

518

519

520
521

522
523

524

0 0 0 0 0 0
ololo o o
111] 0 o0 l1le o0 o 1 1 0 0 0 0
1 5 2 3 3 9
3l -5 0 111 _1 g 3| 0 8 8 0 0
3 1 2 2 8 8 9 40257 16929 _ 5643 693 0
‘ ‘ 4 4 ‘ ‘ 1 1 2 20 80000 160000 32000 40000
6 6 3 ‘ ‘ 23 5 __2 4000
162 22 189 6237
0 0 0 0 0 0 0
1 1 0 0 0 0 0
1 V21 | 1 721 1 V21 1 V21
1 21 1 V21 1 21 1 21
>+Nr |27 9% |12 9s ~1a 95 U 0 0
1 1 _ 5 5 KAV TR (NPT
2 2 128 128 128 128
1 1 49 49 16
20 20 180 180 45

Figure 9: Extended Butcher tableau of MIRK methods with stage and order (s,p) =
(2,3),(3,4),(4,5),(5,6).

* Midpoint: The symmetric and symplectic MIRK method where (s, p) = (1, 2) is equivalent
to the midpoint method.

* MIRKS3: The method (s,p) = (2, 3) found by choosing ¢; = 1 in [22].

* MIRK4: The method (s,p) = (3,4) with z3; = % in [42] and is first presented in in
[25,143]].

* MIRKS: The method (s,p) = (4,5) presented in [22]] choosing ¢ = 0 and ¢c3 = 3. It
should be noted that as long as c3 > 1 the method is A-stable, however the particular choice
of cg = % is arbitrary.

* MIRKG6: The method (s, p) = (5, 6) presented in [42]], which is the s = 5 stage scheme in

[22] choosing c3 = % — %. According to [42]], this method is an improvement over earlier

schemes on the same form which used c3 = i.

C.3 Symmetric methods:

The exact flow of an ODE satisfies the following property known as (time) symmetry:

y(to) = ¢p, s (y(to + 1)) = o_n s (y(to + h)),

where the superscript “—1" denotes the inverse map. This is a desirable property also for the numerical
approximation. A numerical integration method ®y, ; is called symmetric if

O p =07, 4 (17)
Symmetric numerical methods have the following properties [44]:
1. A symmetric integrator preserves the (time) symmetry of the exact flow.

2. The order p of a symmetric method is necessarily even.

3. Solutions of Hamiltonian systems satisfy the following reflection symmetry: if (q(t),p(t))
solves the Hamiltonian ODE, then (g(—t), —p(—t)) is also a solution, with y(t) =

[q(t), p(t)]T. Numerical solutions (g,,, p,,) obtained from a symmetric Runge—Kutta method
satisfy the same reflection symmetry [7].

A Runge—Kutta method is symmetric if and only if

PA+ AP — 1bT =0, (18)
b= Pb, (19)

15

525
526

527
528

529

530
531

532
533

534
535
536

537

538
539

540

541

542

543

544

545

546

547

548
549

550

552

where 1 := [1,...,1]" € R® and [p];j = &; s+1—; [44]. That is, P is the reflection of the identity
matrix over the first axis. Inserting the definition of a MIRK method from (@), we get
PD+ DP + (Pv+v—1)b" =0
b= Pb.

Symmetric MIRK methods of order p = 2,4, 6 are presented in [45 42] and specific examples are
found in Figure[9]

D Details on the inverse injection in MII

Assume we are deriving the MII following the example in Equation (I0) using the implicit midpoint

method, where

Yn + Ynt1
Yn+1 = Yn + hf(%) = Yn + h\IJn7n+1-

We thus find that the second term in (T0), the composition of two steps starting in g could be

approximated by

G2 = ®p,r 0 Py (Yo

=40+ h¥o 1+ h¥.

where the approximation ~ is obtained by the substitution g2 — g2 and g1 — @}, s (o). The same
procedure (repeatedly using the inverse injection) is generalized over longer trajectories and used to
arrive at the MII method in Definition

E Details on neural network training

The experiments were performed on a Apple M1 Pro chip with double precision. The PyTorch
L-BFGS [36] algorithm is run with the following parameters:

* History size: 120.

* Gradient tolerance: 1077,

* Termination tolerance on parameter changes: 10~7.

* Line search: Strong Wolfe.
Both MII and ISO works better when fy has been pre-trained to be a reasonable approximation of
the underlying vector field f. Thus, for both MII and ISO training is run 10 epochs on the one-step
method before training additional 10 epochs with MII (MII MIRK4) and ISO (ISO Stérmer and
ISO RK4). The ISO procedure (searching for the optimal initial value gg) utilizes the L-BFGS

optimization alogrithm from the SciPy library [46] with gradient tolerance of 106 and the maximum
number of iterations limited to 10.

F Proof of Theorem 4.4

Proof. As stated in Equation (3)) Runge—Kutta method as given by Equation is symplectic if and
only if
biaq;j + bjaji — b7bj =0.

16

553

554

555

556
557

558

559

560
561
562
563

564
565

Inserting the particular form for the MIRK coefficients, a;; = d;; + v;b;, we get
bi(vibj + dij) + bj(?)jbi + dJl) — bibj =0

bidij + bjdji + bzbj (’Uj “+ v; — 1) =0. (20)
As D is strictly lower triangular eiter dj; = 0 or d;; = 0, which for Equation (20) implies that
bidij +bibj(vj+vi_ 1) =0 ifi £ j
b2 (2v; —1) =0 ifi=7j

Requiring d;;, b; and v; to satisfy the symplecticity condition yields the following restriction

{bidi]‘ + bibj(vj +v; — 1) =0 if i # j,

bi=0 or v; =3 if i = j.

21

Without loss of generality, we assume that the m first entries of b € R® are zero. Enforcing the
conditions of Equation 1) on v € R®* we getfor 1 < m <'s

b=10,...,0,bpmy1,-..,bs]",
1 1.p
v = [’Ul’“.7vm’§’..-’§]
In total, this gives the following constraints for v, b, D:

bi=0 | b;#0

b; =0 dijER dijER
v;,v; ER | v;,v; €R

bi;«éO dij:O dq;jZO

_ 1
Vi, Vg eR Vi, V5 = 3

Which for the Runge-Kutta method A = D + vb” gives a (RK) Butcher tableau of the form

0 0 . 0 Ulbm+1 e ’Ulbs
do1 0 e 0
ds1 ds2 0
de N dm,m,1 0 Umbm+1 ce ’Umbs
0 0] Sbmgr ... Ebs
0 0] by ... Lbs
0 0] bmyr ... b
Since the lower left submatrix is the zero matrix, this leaves the stages k,+1, . . ., ks unconnected
to the first m stages. In addition, as b; = 0 for ¢ = 1,...,m, these stages are not included in the
computation of the final integration step. The method is thus reducible to the lower right submatrix
of A and b, 41, .. .,bs. The reduced method is thus in general given by the following stage-values

h s
J

It is trivial to check that if)} b; = 1 the method satisfies order conditions up to order p = 2, which

could be found in [8]] to be
1
b, =1, d bia;; = —.

17

se6 However, the method fails to satisfy the first of the two conditions required for order p = 3, since

1 1
Zba”am_ be o= %3
i,5,k 1,5,k
s67 Hence, the maximum order of a symplectic MIRK method is p = 2. O

see As a remark, it should be noted that the s = 1 stage, symplectic MIRK method found by setting
s69 by =1,v1 = % and d1; = 0 is simply the midpoint method v,, 11 = ¥, +hky with ki = f(L;”"“)

s G Proof of Theorem

st Proof. Let 8;(Yn, Yn+1) := Yn +0i(Yn+1 — Yn) and g, be noisy data (9). Observe that we can obtain
s72 the following approximation to the MIRK stages @) by

ki = f(gn + U'é(g7z+1 - gn) + thwk‘]>
J=1

= 1 (55 t) + 50, 6012) + 00
= f(8i(UnsYnt1)) + fl('(ynvyn+1)) i(0n, On41) + O(|[5(6n, §n+1)H2) +O(h)
= f(Yn) + ' (Yn)5i(0n; Ont1) + O(|[5(0n, 5n+1)||2) + O(h). (22)

573 Where in the final equality we expand y,,+1 = ¥, + hf(yn) + O(h?) to find

f(si(yna ynJrl)) = f(yn + 'Ui(yn+1 - yn))
F(Yn + hvif(yn) + O(h2))
f(yn) +O(h).

574 And similarly for f'(s;(yn, Yn+1)). In total, this means that the next MIRK-step could be approxi-
575 mated by

Uni1 =Jn+h Y biki

i=1

—yn+h§jb((W) + f'(yn)s i<5n76n+1)>+0(h||s<5n,5n+1)2|)+<9<h2). (23)

s76 First note, that if x is a multivariate normally distributed random variable z ~ A(0, %) then for a
577 matrix G € R™*™ the variance of the linear transformation is given by Var[Gz] := Cov[Gz, Gz] =
s GXGT. Now, using the approximation in Equation (23), we find the variance of the optimization

18

s7o target T,.2%) = Gnt1 — Pn,f(Jn, Ynt1) by

Var {ynﬂ — U — th k; } ~Var [6n+1 O — th ((yYn)si(0n, 5n+1)>}

- - w[(z - hbva’<;n;>an+1 - (I +hT(1 - v)f’(yn))5n]
=2 <I - hbva’(yn)) <I - hbTUf/(yn)>T

(1wt (1=) (14 w7 - U)f’(lm))T
o {21 BT (1= 20)(F (o) + £ ()7

a2 ((b%? et v>>2> f’(y@f’(yn)ﬂ
:=QOs
= o [21 (L= 20) (' () + S () + hQQOS} .

ss0 Here, 1 :=[1,...,1]T € R*. This is the variance estimate we wanted to find for MIRK methods
581 used as one-step integration schemes. Similarly, considering a point computed by the mean inverse
integrator y,,, we find, using the stage approximation by Equation (22)) that

1 N h N—-1 s
yn = NZ@J + N Z w"»jzblkl
j=0 j=0 =1
j;én
N Zyj N Z Wn,j Zbl< yi) + [(yj)sl(5j75j+1)>
J#n

Where we note that w,, ; := [W],;, from Deﬁnltlonnof the MIL Let 3, := [Y],,. Computing the
ss4 variance of the optimization target T7M" = ¢,, — 7,, we find, by introducing P,; to simplify notation,

585 that

583

N-1

N
O 1 h
Var [yn — yn} ~Var [6n N E d; — N ;:0 wn i f(y;) (bT(]l —v)d; + bTU5j+1>]

=0
J#n
1 N
_Var[NjZO (I+hf’(yj)(u?njb (1 —v) 4 Wy j—1b v))(5]]
ho,oo
+ Var| (I Nf(yn) wn,nb (l_v)"i'wnn 1" On
=Pon

Var[;f ZN: (I + thj>5J} + Var{([- ;\L[P,m> 54

_0? -\ h— h— \"
> (1 + thJ> (1 + th]) + o? (I - NP7m> (1 - NP,m> .

S,
‘H\

N2
]_
Jj#n

19

586
587
588

589
590
591

592

593

594

595

596
597
598
599
600

602
603
604
605

606
607
608
609

611
612

In the second line, 1, ; is introduced which is elements of a matrix W = [0|w; |ws| . .. wy|0] €

RNXN+1or in other words the matrix you obtain by padding W right and left with a column of
zeros. Expanding the terms and introducing matrices P,,; and QM we finally find
_ 02' _ _r h S o R o
; =P, ij =P . j=
nn j#n =g
=QMI
o r
_g Ml
=5 _(1 + N)I + hPyy, + — ZPW 4 h Q }

J#n
Since for a symmetric matrix A we have that the spectral radii p (largest absolute value of eigenvalues)
could be found by p(A) = ||Al|2, we find for both variance approximations (covariance matrix is
always symmetric) that

p(Varlin -3) ~ %

p<Var[gn+l - q)h«,f(gnv gn+1)]> ~ 02

(14 N) + hPop + — Z Poj+ L O
J?ﬁn ’
21 + hb" (1 = 20) (f"(yn)+ 1/ (yn) ") + H°Q®

2

Finally, we note that:

Q%S = ((o)+ (67 (1 >>2)f'<yn>f'<yn>T
?n_; (wn,j - U) + wn J— 1b U)
B (24)
Pnj P nj
QMU .— ﬁwﬁfj.
j=0
O

H Higher-order inverse-explicit invariant-preserving symmetric
non-partitioned integrators

We define invariant-preserving integrators as methods that preserve the Hamiltonian or other invariants
of the exact solution, either exactly up to machine precision or within a bound, like symplectic
methods. Although we argue in this paper that symplecticity is a less important property when
learning Hamiltonian systems from data than for integration of a known system, we do not mean to
suggest that invariant-preserving integrators may not be beneficial to some extent and have important
qualities in the inverse problem also. However, we urge anyone who seeks to use invariant-preserving
methods to also consider the order of the method and whether it is a symmetric inverse-explicit
method. Although the maximum order of a symplectic inverse-explicit Runge—Kutta method is two,
there exist higher-order inverse-explicit invariant-preserving integrators that are not Runge—Kutta
methods.

Note that partitioned Runge—Kutta (PRK) methods is an extension that does not belong to the class of
Runge—Kutta methods. This is important to clarify, since there exist PRK methods that are symmetric
and explicit for separable systems. This marks a distinction from non-partitioned RK methods:
these cannot be symmetric and explicit in general [8]. Several papers suggest using symplectic PRK
methods for learning Hamiltonian systems [[10, [30} 29], but these methods, although symmetric, only
depend on one point to approximate the right hand side of each integration step, and thus do not
average out any noise.

20

613

614
615
616
617

618
619
620
621
622
623
624

625

626
627
628
629
630

631
632

633
634

635
636

638
639
640
641

642

643
644
645

646

647
648

H.1 Symplectic elementary differential Runge-Kutta methods

Chartier et al. showed in [47]] that an integrator can be applied to a modified vector field in such a way
that it yields a higher order approximation of the original vector field while inheriting the geometric
properties of the given integrator. As an example, they present the fourth-order modified implicit
midpoint method

n — In — h — — — 1 — — —
P — 1(5) + 5 (— DF@DIDI@) + 5D F @)@ F(D), (25)
where § = (Y, + Yn+1)/2. This is an example of an elementary differential Runge—Kutta (EDRK)
method [33]], which relies on the calculation of (multi-order) derivatives of the vector field f, denoted
here as DP f for order p. Automatic differentiation can be utilized also to get higher-order derivatives,
and we note that f, D f and D? f each only have to be evaluated once for each training step, since
they are only evaluated at the one point 4. A sixth-order modification of the implicit midpoint method
is also presented in [47]], but that requires the calculation of up to fourth-order derivatives and might
be considered prohibitively expensive.

H.2 Discrete gradient methods

Discrete gradient methods are a class of integrators that can preserve an invariant, e.g. the Hamiltonian,
exactly [32]]. This is in contrast to symplectic methods, which only preserve a perturbation of the
invariant exactly and the exact invariant within some bound. We remark that no method can be both
symplectic and exactly invariant-preserving in general [48]]. Discrete gradient methods are defined
strictly for invariant-preserving ODEs, which can be written on the form

y=S(y)VH (y), (26)

for some skew-symmetric matrix S(y) [32]. Then a discrete gradient is a function VH : R¥xR¢ — R
satisfying o
VH(u,v)" (u —v) = H(u) — H(v),

a discrete analogue to the invariant-preserving property H(y) = VH(y)"y = 0 of (26). A corre-
sponding discrete gradient method is then given by

LI — S (g Y1 W)V H (G Y1), @)
for some approximation S(y,,,¥yn11,h) of S(y) such that S(y,y,0) = S(y), where h is the step
size in time. A discrete gradient can at most be a second-order approximation of the gradient, but
appropriate choices of S can yield inverse-explicit integrators of arbitrarily high order [16]. Matsubara
et al. have developed a discrete version of the automatic differentiation algorithm that makes it possible
to efficiently calculate a discrete gradient of neural network functions, and demonstrated its use in
training of HNNs [[15] and for detecting invariants [49]. A fourth-order discrete gradient method is
suggested for training HNNs in [16], given a constant .S in (26). This is the scheme with

8 1
S(yn,) = S+ GhSQ(yn, 22)S — ﬁhQ SD?H(z1)SD?*H(z1)S,
with z; = ¥, + %hf(yn), 29 = Yn + %hf(zl) and Q(u,v) := %(ngH(u,v)T — DoV H (u,v)),
where DoV H denotes the derivative of V H with respect to the second argument, and D>H := DVH

is the Hessian of H. This is not symmetric, so we propose here instead the fourth-order symmetric
invariant-preserving scheme obtained by

h 1 2 2 1
S(yna Yn+1, h) =S5+ §S(Q(yna gyn + gyn+1) - Q(yn+17 gyn + gyn+1))s

- %(hﬁ SD?H (5)SD?H (7)S.

H.3 Numerical comparison of fourth-order integrators

We test four different fourth-order integrators on solving an initial value problem of the double
pendulum described in Appendix [A] We compute an approximation of the error of the solution at each

21

649
650
651
652
653

654
655
656

658

659

660

661
662
663
664
665
666
667

668
669
670
671
672

time by comparing to a solution obtained using RK4 with 10 times as many time steps. As seen in the
left plot of Figure[I0} the symmetric methods are clearly superior to the explicit RK4 method, when
using the same step size. For integration, the advantage of RK4 is that it is more computationally
efficient than the implicit methods, which facilitates taking smaller step sizes. However, as pointed
out in Section[d RK4 does not have this advantage over MIRK methods for the inverse problem.

Furthermore, although the higher-order MIRK methods we suggest to use in this paper are not
symplectic and thus lack general energy preservation guarantees, we see from Figure [I0] that they
may still preserve the energy within a bound for specific problems. In fact, for the double pendulum
problem considered here, the non-symplectic MIRK4 method preserves the energy slightly better
than the symplectic MIMP4 scheme up to time 7' = 500. The invariant-preserving discrete gradient
method preserves the Hamiltonian to machine precision.

Energy error

107[] " K//’f
o) /YY\/\/‘

—— RK4
MIRK4

—— DGM4

—— MIMP4

15}

Lo-error

|H(t) — H(to)|

— RK4
MIRK4
—— DGM4

1074 MIMP4 15
—) y 10-15 4 d_l"_’_.’—n—_—d_’_'_——__
: : : : : : L n

0 100 200 300 400 500 0 100 200 300 400 500
f t

Figure 10: Global error (left) and energy error (right) of the solution of the double pendulum problem
obtained using four different integrators. The initial condition is yo = [0.1,0.3, —0.4,0.2]7, and the

step size for all integrators is h = %

I Computational cost

The fourth-order MIRK method from Table E| (MIRK4) is between twice and thrice as expensive as
the implicit midpoint method, depending on the training strategy. That is, if no batching is performed
and f is evaluated at all points in the training set at each iteration of the optimization, then the number
of function evaluations for a trajectory with n points is n — 1 for the implicit midpoint method and
2n — 1 for MIRK4. However, if batching is done and function evaluations cannot generally be reused
for successive points, the total number of function evaluations at each epoch may increase to 3n — 3
for MIRK4.

In general, the cost of an s-stage MIRK method depends on both the training strategy and whether
the end points y and ¢ are two of the stages. If batching is not done and y and § are two of the stages,
then computational cost at each epoch is O (m(n + (s — 2)(n — 1))), where m is the number of
trajectories of n points in each. The maximum cost with batching is the same as the cost if y and §
are not two of the stages: O (ms(n — 1))). This cost is equivalent to that of an explicit s-stage RK
method.

22

	Introduction
	Related work
	Background on numerical integration
	Numerical integration schemes for solving inverse problems
	Mean inverse integrator for handling noisy data
	Experiments
	Conclusion
	Test problems
	Additional numerical results
	More on numerical integration
	Runge–Kutta methods
	Mono-Implicit Runge–Kutta methods
	Symmetric methods:

	Details on the inverse injection in MII
	Details on neural network training
	Proof of Theorem 4.4
	Proof of Theorem 5.2
	Higher-order inverse-explicit invariant-preserving symmetric non-partitioned integrators
	Symplectic elementary differential Runge–Kutta methods
	Discrete gradient methods
	Numerical comparison of fourth-order integrators

	Computational cost

