
A Test problems464

Fermi–Pasta–Ulam–Tsingou: This dynamical system is a model for a chain of 2m+ 1 alternating465

stiff and soft springs connecting 2m mass points. The chain is fixed in both ends [8, 40]. With the466

coordinate transformation suggested in [8, Ch. I.5.I] we have coordinates [q, p]T 2 R4m where467

qi, i = 1, . . . ,m represents a scaled displacement of the i-th stiff spring and qi+m, i = 1, . . . ,m468

represents a scaled expansion of the i-th spring. qi represents their velocities. Letting ! be the angular469

frequency of the stiff spring, in general the Hamiltonian is given by470

H(q, p) =
1

2

mX

i=1

�
p
2
i + p

2
i+m

�
+

!
2

2

mX

i=1

q
2
i+m

+
1

4

✓m�1X

i=1

�
qi+1 � qi+m+1 � qi � qi+m

�4
+ (q1 � qm+1)

4 + (qm + q2m)4
◆

We consider the most trivial case of m = 1 and letting ! = 2, yielding the quartic, separable471

Hamiltonian by472

H(q1, q2, p1, p2) =
1

2

�
p
2
1 + p

2
2

�
+ 2q22 +

1

4

✓�
q1 � q2

�4
+
�
q1 + q2

�4
◆
.

Double pendulum: Let qi and pi denote the angle and angular momentum of pendulum i = 1, 2. The473

double pendulum system has a Hamiltonian that is not separable, where y = [q1, q2, p1, p2]T 2 R4474

and the Hamiltonian is given by475

H(q1, q2, p1, p2) =
1
2p

2
1 + p

2
2 � p1p2 cos(q1 � q2)

1 + sin2(q1 � q2)
� 2 cos(q1) � cos(q2).

Hénon–Heiles: This model was introduced for describing stellar motion inside the gravitational476

potential of a galaxy, as described in [8]. This Hamiltonian is separable. However, it is a canonical477

example of a chaotic system and its properties are discussed more in detail in [6]. The Hamiltonian is478

given by479

H(q1, q2, p1, p2) =
1

2
(p21 + p

2
2) +

1

2
(q21 + q

2
2) + q

2
1q2 �

1

3
q
3
2 .

B Additional numerical results480

Here we present additional numerical experiments. In Figure 7, the flow error when learning from481

data without noise, could be found. The roll-out in time of the learned Hamiltonian for the FPUT and482

Hénon–Heiles problem is presented in Figure 8.483

C More on numerical integration484

C.1 Runge–Kutta methods485

A general Runge–Kutta method for an autonomus system with s stages is a one-step numerical486

integrator given by487

yn+1 = yn + h

sX

j=1

biki,

ki = f
�
yn + h

sX

j=1

aijkj

�
, i = 1, . . . , s.

(16)

A concrete method is determined by specifying the coefficient matrix A 2 Rs⇥s and the vector488

b 2 Rs, and there are conditions for symplecticity and order associated with these [41]. The489

conditions for order p = 1 require that the coefficient c 2 Rs is determined by ci =
Ps

j=1 aij . A490
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Figure 7: The flow error when learning vector fields using one-step methods directly (Midpoint, RK4
and MIRK4), ISO and multiple time-steps (ISO Störmer and ISO RK4) and MII (MII MIRK4). The
error bars display the standard deviation after rerunning 5 experiments on data with � = 0. The right
subplot shows the computational time used in training against the flow error.
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Figure 8: Roll-out in time obtained by integrating over the learned vector fields when training on data
from the Fermi–Pasta–Ulam–Tsingou and Hénon–Heiles Hamiltonian.

method could be compactly represented by a Butcher tableau which structures the coefficients the491

following way492

c A

b
T

The two symplectic and symmetric Gauss-Legendre methods (found e.g. in [8]) with order p = 4, 6493

and denoted as GL4 and GL6 in Table 1 are presented in below:494

C.2 Mono-Implicit Runge–Kutta methods495

The MIRK methods are specified by a coefficient vector b 2 Rs, v 2 Rs in addition to the strictly496

lower triangular matrix D 2 Rs⇥s and could be represented by the an extended Butcher tableau in497
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Table 1: Properties of RK methods. Symm. is short for symmetric and sympl. for symplectic, and inv.
for inverse.

Integration method Name in figures Order (p) Stages (s) Symm. Sympl. Inv. explicit Explicit

Explicit Euler E. Euler 1 1 no no yes yes
Implicit Euler I. Euler 1 1 no no yes no
Runge–Kutta 4 RK4 4 4 no no yes yes
Implicit midpoint Midpoint 2 1 yes yes yes no
MIRK3 MIRK3 3 2 no no yes no
MIRK4 MIRK4 4 3 yes no yes no
MIRK5 MIRK5 5 4 no no yes no
MIRK6 MIRK6 6 5 yes no yes no
Gauss Legendre 4 GL4 4 2 yes yes no no
Gauss Legendre 6 GL6 6 4 yes yes no no

the following manner498

c v D

b
T

In [22] it is proved that the maximum order of an s-stage MIRK method is p = s + 1 and several499

methods with stages s  5 are presented. Below, we specify the MIRK methods used in the numerical500

experiments in addition to presenting their extended Butcher tableau in Figure 9.501

• Midpoint: The symmetric and symplectic MIRK method where (s, p) = (1, 2) is equivalent502

to the midpoint method.503

• MIRK3: The method (s, p) = (2, 3) found by choosing c1 = 1 in [22].504

• MIRK4: The method (s, p) = (3, 4) with x31 = 1
8 in [42] and is first presented in in505

[25, 43].506

• MIRK5: The method (s, p) = (4, 5) presented in [22] choosing c2 = 0 and c3 = 3
2 . It507

should be noted that as long as c3 > 1 the method is A-stable, however the particular choice508

of c3 = 3
2 is arbitrary.509

• MIRK6: The method (s, p) = (5, 6) presented in [42], which is the s = 5 stage scheme in510

[22] choosing c3 = 1
2 �

p
21
14 . According to [42], this method is an improvement over earlier511

schemes on the same form which used c3 = 1
4 .512

C.3 Symmetric methods:513

The exact flow of an ODE satisfies the following property known as (time) symmetry:514

y(t0) = '
�1
h,f (y(t0 + h)) = '�h,f (y(t0 + h)),

where the superscript “�1" denotes the inverse map. This is a desirable property also for the numerical515

approximation. A numerical integration method �h,f is called symmetric if516

�h,f = ��1
�h,f . (17)

Symmetric numerical methods have the following properties [44]:517

1. A symmetric integrator preserves the (time) symmetry of the exact flow.518
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Figure 9: Extended Butcher tableau of MIRK methods with stage and order (s, p) =
(2, 3), (3, 4), (4, 5), (5, 6).

2. The order p of a symmetric method is necessarily even.519

3. Solutions of Hamiltonian systems satisfy the following reflection symmetry: if
�
q(t), p(t)

�
520

solves the Hamiltonian ODE, then
�
q(�t),�p(�t)

�
is also a solution, with y(t) =521

[q(t), p(t)]T . Numerical solutions (qn, pn) obtained from a symmetric Runge–Kutta method522

satisfy the same reflection symmetry [7].523

A Runge–Kutta method is symmetric if and only if524

PA+AP � b
T = 0, (18)
b = Pb, (19)

where := [1, . . . , 1]T 2 Rs and [p]ij = �i,s+1�j [44]. That is, P is the reflection of the identity525

matrix over the first axis. Inserting the definition of a MIRK method from (4), we get526

PD +DP + (Pv + v � )bT = 0

b = Pb.

Symmetric MIRK methods of order p = 2, 4, 6 are presented in [45, 42] and specific examples are527

found in Figure 9.528

D Details on the inverse injection in MII529

Assume we are deriving the MII following the example in Equation (10) using the implicit midpoint530

method, where531

yn+1 = yn + hf
�yn + yn+1

2

�
= yn + h n,n+1.
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We thus find that the second term in (10), the composition of two steps starting in ỹ0 could be532

approximated by533

ŷ2 = �h,f � �h,f (ỹ0)

= �h,f (ỹ0) + hf

✓
�h,f (ỹ0) + ŷ2

2

◆

⇡ �h,f (ỹ0) + hf

✓
ỹ1 + ỹ2

2

◆

= ỹ0 + hf

✓
ỹ0 + �h,f (ỹ0)

2

◆
+ h 1,2

⇡ ỹ0 + hf

✓
ỹ0 + ỹ1

2

◆
+ h 1,2

= ỹ0 + h 0,1 + h 1,2.

where the approximation ⇡ is obtained by the substitution ỹ2 ! ŷ2 and ỹ1 ! �h,f (ỹ0). The same534

procedure (repeatedly using the inverse injection) is generalized over longer trajectories and used to535

arrive at the MII method in Definition 5.1.536

E Details on neural network training537

The experiments were performed on a Apple M1 Pro chip with double precision. The PyTorch538

L-BFGS [36] algorithm is run with the following parameters:539

• History size: 120.540

• Gradient tolerance: 10�9.541

• Termination tolerance on parameter changes: 10�9.542

• Line search: Strong Wolfe.543

Both MII and ISO works better when f✓ has been pre-trained to be a reasonable approximation of544

the underlying vector field f . Thus, for both MII and ISO training is run 10 epochs on the one-step545

method before training additional 10 epochs with MII (MII MIRK4) and ISO (ISO Störmer and546

ISO RK4). The ISO procedure (searching for the optimal initial value ŷ0) utilizes the L-BFGS547

optimization alogrithm from the SciPy library [46] with gradient tolerance of 10�6 and the maximum548

number of iterations limited to 10.549

F Proof of Theorem 4.4550

Proof. As stated in Equation (5) Runge–Kutta method as given by Equation (16) is symplectic if and551

only if552

biaij + bjaji � bibj = 0.

Inserting the particular form for the MIRK coefficients, aij = dij + vibj , we get553

bi(vibj + dij) + bj(vjbi + dji) � bibj = 0

bidij + bjdji + bibj(vj + vi � 1) = 0. (20)

As D is strictly lower triangular eiter dji = 0 or dij = 0, which for Equation (20) implies that554

⇢
bidij + bibj(vj + vi � 1) = 0 if i 6= j

b
2
i (2vi � 1) = 0 if i = j

Requiring dij , bi and vi to satisfy the symplecticity condition yields the following restriction555

⇢
bidij + bibj(vj + vi � 1) = 0 if i 6= j,

bi = 0 or vi =
1
2 if i = j.

(21)
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Without loss of generality, we assume that the m first entries of b 2 Rs are zero. Enforcing the556

conditions of Equation (21) on v 2 Rs we get for 1  m  s557

b = [0, . . . , 0, bm+1, . . . , bs]
T
,

v = [v1, . . . , vm,
1

2
, . . . ,

1

2
]T .

In total, this gives the following constraints for v, b,D:558

bj = 0 bj 6= 0

bi = 0 dij 2 R dij 2 R
vi, vj 2 R vi, vj 2 R

bi 6= 0 dij = 0 dij = 0
vi, vj 2 R vi, vj =

1
2

Which for the Runge–Kutta method A = D + vb
T gives a (RK) Butcher tableau of the form559

0 0 . . . 0 v1bm+1 . . . v1bs

d21 0 . . . 0

d31 d32 0
...

...
...

. . .
dm,1 . . . dm,m�1 0 vmbm+1 . . . vmbs

0 . . . . . . 0 1
2bm+1 . . .

1
2bs

...
...

...
...

0 . . . . . . 0 1
2bm+1 . . .

1
2bs

0 . . . . . . 0 bm+1 . . . bs

Since the lower left submatrix is the zero matrix, this leaves the stages km+1, . . . , ks unconnected560

to the first m stages. In addition, as bi = 0 for i = 1, . . . ,m, these stages are not included in the561

computation of the final integration step. The method is thus reducible to the lower right submatrix562

of A and bm+1, . . . , bs. The reduced method is thus in general given by the following stage-values563

ki = f
�
yn +

h

2

sX

j

bjkj

�
.

It is trivial to check that if
Ps

i bi = 1 the method satisfies order conditions up to order p = 2, which564

could be found in [8] to be565

X

i

bi = 1, and
X

i,j

biaij =
1

2
.

However, the method fails to satisfy the first of the two conditions required for order p = 3, since566

X

i,j,k

biaijaik =
1

4

X

i,j,k

bibjbk =
1

4
6=

1

3
.

Hence, the maximum order of a symplectic MIRK method is p = 2.567

As a remark, it should be noted that the s = 1 stage, symplectic MIRK method found by setting568

b1 = 1, v1 = 1
2 and d11 = 0 is simply the midpoint method yn+1 = yn+hk1 with k1 = f(yn+yn+1

2 ).569
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G Proof of Theorem 5.2570

Proof. Let si(yn, yn+1) := yn+vi(yn+1 �yn) and ỹn be noisy data (9). Observe that we can obtain571

the following approximation to the MIRK stages (4) by572

ki = f

✓
ỹn + vi(ỹn+1 � ỹn) + h

sX

j=1

dijkj

◆

= f

✓
si(yn, yn+1) + si(�n, �n+1) + O(h)

◆

= f(si(yn, yn+1)) + f
0�
si(yn, yn+1)

�
si(�n, �n+1) + O(ks(�n, �n+1)k

2) + O(h)

= f(yn) + f
0(yn)si(�n, �n+1) + O(ks(�n, �n+1)k

2) + O(h). (22)

Where in the final equality we expand yn+1 = yn + hf(yn) + O(h2) to find573

f(si(yn, yn+1)) = f(yn + vi(yn+1 � yn))

= f(yn + hvif(yn) + O(h2))

= f(yn) + O(h).

And similarly for f 0(si(yn, yn+1)). In total, this means that the next MIRK-step could be approxi-574

mated by575

yn+1 = ỹn + h

sX

i=1

biki

= ỹn + h

sX

i=1

bi

✓
f(yn) + f

0(yn)si(�n, �n+1)

◆
+ O(hks(�n, �n+1)

2
k) + O(h2). (23)

First note, that if x is a multivariate normally distributed random variable x ⇠ N (0,⌃) then for a576

matrix G 2 Rn⇥n the variance of the linear transformation is given by Var[Gx] := Cov[Gx,Gx] =577

G⌃GT . Now, using the approximation in Equation (23), we find the variance of the optimization578

target T
OS
n+1 = ỹn+1 � �h,f (ỹn, ỹn+1) by579

Var

ỹn+1 � ỹn � h

sX

i=1

biki

�
⇡Var


�n+1 � �n � h

sX

i=1

bi

✓
f
0(yn)si(�n, �n+1)

◆�

= Var
✓

I � hb
T
vf

0(yn)

◆
�n+1 �

✓
I + hb

T ( � v)f 0(yn)

◆
�n

�

= �
2

✓
I � hb

T
vf

0(yn)

◆✓
I � hb

T
vf

0(yn)

◆T

+ �
2

✓
I + hb

T ( � v)f 0(yn)

◆✓
I + hb

T ( � v)f 0(yn)

◆T

= �
2


2I + hb

T ( � 2v)
�
f
0(yn)+f

0(yn)
T
�

+ h
2

✓
(bT v)2 + (bT ( � v))2

◆
f
0(yn)f

0(yn)
T

| {z }
:=QOS

�

= �
2


2I + hb

T ( � 2v)
�
f
0(yn)+f

0(yn)
T
�
+ h

2
Q

OS
�
.

Here, := [1, . . . , 1]T 2 Rs. This is the variance estimate we wanted to find for MIRK methods580

used as one-step integration schemes. Similarly, considering a point computed by the mean inverse581
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integrator yn, we find, using the stage approximation by Equation (22) that582

yn =
1

N

NX

j=0
j 6=n

ỹj +
h

N

N�1X

j=0

wn,j

sX

l=1

blkl

⇡
1

N

NX

j=0
j 6=n

ỹj +
h

N

N�1X

j=0

wn,j

sX

l=1

bl

✓
f(yj) + f

0(yj)sl(�j , �j+1)

◆

Where we note that wn,j := [W ]nj , from Definition 5.1 of the MII. Let yn := [Y ]n. Computing the583

variance of the optimization target T
MII
i = ỹn � yn we find, by introducing Pnj to simplify notation,584

that585

Var

ỹn � yn

�
⇡Var


�n �

1

N

NX

j=0
j 6=n

�j �
h

N

N�1X

j=0

wn,jf
0(yj)

✓
b
T ( � v)�j + b

T
v�j+1

◆�

=Var

1

N

NX

j=0
j 6=n

✓
I + h f

0(yj)

✓
w̃n,jb

T ( � v) + w̃n,j�1b
T
v

◆

| {z }
:=Pnj

◆
�j

�

+ Var
✓

I �
h

N
f
0(yn)

✓
w̃n,nb

T ( � v) + w̃n,n�1b
T
v

◆

| {z }
=Pnn

◆
�n

�

=Var

1

N

NX

j=0
j 6=n

✓
I + hPnj

◆
�j

�
+ Var

✓
I �

h

N
Pnn

◆
�n

�

=
�
2

N2

NX

j=0
j 6=n

✓
I + hPnj

◆✓
I + hPnj

◆T

+ �
2

✓
I �

h

N
Pnn

◆✓
I �

h

N
Pnn

◆T

.

In the second line, w̃n,j is introduced which is elements of a matrix W̃ = [0|w1|w2| . . . |wN |0] 2586

RN⇥N+1, or in other words the matrix you obtain by padding W right and left with a column of587

zeros. Expanding the terms and introducing matrices Pnj and Q
MII we finally find588

Var

ỹn � yn

�
⇡
�
2

N


(1 +N)I + h (Pnn + P

T
nn)| {z }

=Pnn

+
h

N

sX

j=0
j 6=n

(Pnj + P
T
nj)| {z }

:=Pnj

+
h
2

N

sX

j=0

PnjP
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:=QMII

�
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�
2

N


(1 +N)I + hPnn +

h

N

sX

j=0
j 6=n

Pnj +
h
2

N
Q

MII
�
.

Since for a symmetric matrix A we have that the spectral radii ⇢ (largest absolute value of eigenvalues)589

could be found by ⇢(A) = kAk2, we find for both variance approximations (covariance matrix is590

always symmetric) that591

⇢

✓
Var

⇥
ỹn � yn

⇤◆
⇡

�
2

N

����(1 +N)I + hPnn +
h

N

sX

j=0
j 6=n

Pnj +
h
2

N
Q

MII
����
2

⇢

✓
Var

⇥
ỹn+1 � �h,f (ỹn, ỹn+1)

⇤◆
⇡ �

2

����2I + hb
T ( � 2v)

�
f
0(yn)+f

0(yn)
T
�
+ h

2
Q

OS
����
2

.

Finally, we note that:592
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Q
OS :=

✓
(bT v)2 + (bT ( � v))2

◆
f
0(yn)f

0(yn)
T

Pnj := f
0(yj)

✓
w̃n,jb

T ( � v) + w̃n,j�1b
T
v

◆

Pnj := Pnj + P
T
nj

Q
MII :=

sX

j=0

PnjP
T
nj .

(24)

593

H Higher-order inverse-explicit invariant-preserving symmetric594

non-partitioned integrators595

We define invariant-preserving integrators as methods that preserve the Hamiltonian or other invariants596

of the exact solution, either exactly up to machine precision or within a bound, like symplectic597

methods. Although we argue in this paper that symplecticity is a less important property when598

learning Hamiltonian systems from data than for integration of a known system, we do not mean to599

suggest that invariant-preserving integrators may not be beneficial to some extent and have important600

qualities in the inverse problem also. However, we urge anyone who seeks to use invariant-preserving601

methods to also consider the order of the method and whether it is a symmetric inverse-explicit602

method. Although the maximum order of a symplectic inverse-explicit Runge–Kutta method is two,603

there exist higher-order inverse-explicit invariant-preserving integrators that are not Runge–Kutta604

methods.605

Note that partitioned Runge–Kutta (PRK) methods is an extension that does not belong to the class of606

Runge–Kutta methods. This is important to clarify, since there exist PRK methods that are symmetric607

and explicit for separable systems. This marks a distinction from non-partitioned RK methods:608

these cannot be symmetric and explicit in general [8]. Several papers suggest using symplectic PRK609

methods for learning Hamiltonian systems [10, 30, 29], but these methods, although symmetric, only610

depend on one point to approximate the right hand side of each integration step, and thus do not611

average out any noise.612

H.1 Symplectic elementary differential Runge–Kutta methods613

Chartier et al. showed in [47] that an integrator can be applied to a modified vector field in such a way614

that it yields a higher order approximation of the original vector field while inheriting the geometric615

properties of the given integrator. As an example, they present the fourth-order modified implicit616

midpoint method617

yn+1 � yn

h
= f(ȳ) +

h

12

�
� Df(ȳ)Df(ȳ)f(ȳ) +

1

2
D

2
f(ȳ)f(ȳ)f(ȳ)

�
, (25)

where ȳ = (yn + yn+1)/2. This is an example of an elementary differential Runge–Kutta (EDRK)618

method [33], which relies on the calculation of (multi-order) derivatives of the vector field f , denoted619

here as Dp
f for order p. Automatic differentiation can be utilized also to get higher-order derivatives,620

and we note that f , Df and D
2
f each only have to be evaluated once for each training step, since621

they are only evaluated at the one point ȳ. A sixth-order modification of the implicit midpoint method622

is also presented in [47], but that requires the calculation of up to fourth-order derivatives and might623

be considered prohibitively expensive.624

H.2 Discrete gradient methods625

Discrete gradient methods are a class of integrators that can preserve an invariant, e.g. the Hamiltonian,626

exactly [32]. This is in contrast to symplectic methods, which only preserve a perturbation of the627

invariant exactly and the exact invariant within some bound. We remark that no method can be both628
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symplectic and exactly invariant-preserving in general [48]. Discrete gradient methods are defined629

strictly for invariant-preserving ODEs, which can be written on the form630

ẏ = S(y)rH(y), (26)

for some skew-symmetric matrix S(y) [32]. Then a discrete gradient is a function rH : Rd
⇥Rd

! R631

satisfying632

rH(u, v)T (u � v) = H(u) � H(v),

a discrete analogue to the invariant-preserving property Ḣ(y) = rH(y)T ẏ = 0 of (26). A corre-633

sponding discrete gradient method is then given by634

yn+1 � yn

h
= S(yn, yn+1, h)rH(yn, yn+1), (27)

for some approximation S(yn, yn+1, h) of S(y) such that S(y, y, 0) = S(y), where h is the step635

size in time. A discrete gradient can at most be a second-order approximation of the gradient, but636

appropriate choices of S can yield inverse-explicit integrators of arbitrarily high order [16]. Matsubara637

et al. have developed a discrete version of the automatic differentiation algorithm that makes it possible638

to efficiently calculate a discrete gradient of neural network functions, and demonstrated its use in639

training of HNNs [15] and for detecting invariants [49]. A fourth-order discrete gradient method is640

suggested for training HNNs in [16], given a constant S in (26). This is the scheme (27) with641

S(yn, ·, h) = S +
8

9
hSQ(yn, z2)S �

1

12
h
2
SD

2
H(z1)SD

2
H(z1)S,

with z1 = yn + 1
2hf(yn), z2 = yn + 3

4hf(z1) and Q(u, v) := 1
2 (D2rH(u, v)T � D2rH(u, v)),642

where D2rH denotes the derivative of rH with respect to the second argument, and D
2
H := DrH643

is the Hessian of H . This is not symmetric, so we propose here instead the fourth-order symmetric644

invariant-preserving scheme obtained by645

S(yn, yn+1, h) =S +
h

2
S
�
Q(yn,

1

3
yn +

2

3
yn+1) � Q(yn+1,

2

3
yn +

1

3
yn+1)

�
S

�
1

12
(h)2 SD2

H(ȳ)SD2
H(ȳ)S.

H.3 Numerical comparison of fourth-order integrators646

We test four different fourth-order integrators on solving an initial value problem of the double647

pendulum described in Appendix A. We compute an approximation of the error of the solution at each648

time by comparing to a solution obtained using RK4 with 10 times as many time steps. As seen in the649

left plot of Figure 10, the symmetric methods are clearly superior to the explicit RK4 method, when650

using the same step size. For integration, the advantage of RK4 is that it is more computationally651

efficient than the implicit methods, which facilitates taking smaller step sizes. However, as pointed652

out in Section 4, RK4 does not have this advantage over MIRK methods for the inverse problem.653

Furthermore, although the higher-order MIRK methods we suggest to use in this paper are not654

symplectic and thus lack general energy preservation guarantees, we see from Figure 10 that they655

may still preserve the energy within a bound for specific problems. In fact, for the double pendulum656

problem considered here, the non-symplectic MIRK4 method preserves the energy slightly better657

than the symplectic MIMP4 scheme up to time T = 500. The invariant-preserving discrete gradient658

method preserves the Hamiltonian to machine precision.659

I Computational cost660

The fourth-order MIRK method from Table 9 (MIRK4) is between twice and thrice as expensive as661

the implicit midpoint method, depending on the training strategy. That is, if no batching is performed662

and f is evaluated at all points in the training set at each iteration of the optimization, then the number663

of function evaluations for a trajectory with n points is n � 1 for the implicit midpoint method and664

2n� 1 for MIRK4. However, if batching is done and function evaluations cannot generally be reused665

for successive points, the total number of function evaluations at each epoch may increase to 3n � 3666

for MIRK4.667
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Figure 10: Global error (left) and energy error (right) of the solution of the double pendulum problem
obtained using four different integrators. The initial condition is y0 = [0.1, 0.3,�0.4, 0.2]T , and the
step size for all integrators is h = 1

2 .

In general, the cost of an s-stage MIRK method depends on both the training strategy and whether668

the end points y and ŷ are two of the stages. If batching is not done and y and ŷ are two of the stages,669

then computational cost at each epoch is O (m(n+ (s � 2)(n � 1))), where m is the number of670

trajectories of n points in each. The maximum cost with batching is the same as the cost if y and ŷ671

are not two of the stages: O (ms(n � 1))). This cost is equivalent to that of an explicit s-stage RK672

method.673
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