464

465
466
467
468
469
470

471
472

473
474
475

476
477
478
479

480

481
482
483

484

485

486
487

489
490

A Test problems

Fermi-Pasta—Ulam-Tsingou: This dynamical system is a model for a chain of 2m + 1 alternating
stiff and soft springs connecting 2m mass points. The chain is fixed in both ends [} 40]. With the
coordinate transformation suggested in [8, Ch. 1.5.I] we have coordinates [g,p]T € R*™ where
g, = 1,...,m represents a scaled displacement of the i-th stiff spring and ¢; ., = 1,...,m
represents a scaled expansion of the ¢-th spring. g; represents their velocities. Letting w be the angular
frequency of the stiff spring, in general the Hamiltonian is given by

2 m

1 m
Hap) = 53 02+) + 53
i=1

i=1

e

m—1

4

+ < Z (Gi+1 = Givms1 = G = Givm)” + (@1 = Gnr1)* + (gm + Q2m)4>
i=1

We consider the most trivial case of m = 1 and letting w = 2, yielding the quartic, separable

Hamiltonian by

1
H(q1,q2,p1,p2) == (p} +p3) + 265 + — (((h - Q2)4 + (¢ + QQ)4)~

4

[N

Double pendulum: Let ¢; and p; denote the angle and angular momentum of pendulum ¢ = 1, 2. The
double pendulum system has a Hamiltonian that is not separable, where y = [q1, g2, p1,p2]? € R?
and the Hamiltonian is given by

1p? + p3 — pipa cos(q1 — ¢2)
1+ sin®(q1 — o)

H(q1,q2,p1,p2) = —2cos(q1) — cos(qz).

Hénon—-Heiles: This model was introduced for describing stellar motion inside the gravitational
potential of a galaxy, as described in [8]]. This Hamiltonian is separable. However, it is a canonical
example of a chaotic system and its properties are discussed more in detail in [6]. The Hamiltonian is
given by

1

1 1
H(q1,q2,p1.p2) = (07 +93) + (6 + @) + G2 — 545
2 2 3

B Additional numerical results

Here we present additional numerical experiments. In Figure[7, the flow error when learning from
data without noise, could be found. The roll-out in time of the learned Hamiltonian for the FPUT and
Hénon-Heiles problem is presented in Figure[8]

C More on numerical integration

C.1 Runge-Kutta methods

A general Runge—Kutta method for an autonomus system with s stages is a one-step numerical
integrator given by

s
Yn+1 = Yn + hz bikia

Jj=1

s (16)
ki:f(yn“rhzaijk'j), 1=1,...,s.
=1

A concrete method is determined by specifying the coefficient matrix A € R%** and the vector
b € R?, and there are conditions for symplecticity and order associated with these [41]. The
conditions for order p = 1 require that the coefficient ¢ € R® is determined by ¢; = Z‘;:l a;j. A

13

491
492

493
494

495

496
497

Flow error Time and accuracy

10°3 FPUT, o = 0.0 i | | | |

107

e(fo)

10-*

10°%

Hénon-Heiles, o = 0.0

10-*

e(fa)

Double pendulum, o = 0.0

e(fo)

107*

TET

h=08 N, =3 h=04, N, =6 h=02 N =12 h=01, N, =24 0 50 100 150 200 250

Training time
B Midpoint . RK4 EEE MIRK4
I1SO Stormer 1SO RK4 MIT MIRK4

Figure 7: The flow error when learning vector fields using one-step methods directly (Midpoint, RK4
and MIRK4), ISO and multiple time-steps (ISO Stormer and ISO RK4) and MII (MII MIRK4). The
error bars display the standard deviation after rerunning 5 experiments on data with 0 = 0. The right
subplot shows the computational time used in training against the flow error.

Flow roll-out FPUT h = 0.8, ¢ = 0.05 Flow roll-out FPUT & = 0.1, ¢ = 0.05

1 0.0 / N
0 —0.5
s-1 S-10
2 -15
-3 2.0

0.0 2.5 5.0 75 10.0 125 15.0 175 20. 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t t
Flow roll-out Hénon-Heiles h = 0.8, o = 0.05 Flow roll-out Hénon-Heiles h = 0.1, o = 0.05

0.2

0.0

hn

—0.2

0.0 2.5 5.0 75 10.0 125 15.0 175 20.(0.0 2.5 5.0 75 100 125 15.0 175 20.(
t t
—— Midpoint — RK4 —— MIRK4 === Ground truth
—— ISO Stormer —— ISO RK4 MII MIRK4 ® Given data

Figure 8: Roll-out in time obtained by integrating over the learned vector fields when training on data
from the Fermi—Pasta—Ulam-Tsingou and Hénon—Heiles Hamiltonian.

method could be compactly represented by a Butcher tableau which structures the coefficients the
following way

c| A
bT

The two symplectic and symmetric Gauss-Legendre methods (found e.g. in [8]) with order p = 4,6
and denoted as GL4 and GL6 in Table T are presented in below:

C.2 Mono-Implicit Runge-Kutta methods

The MIRK methods are specified by a coefficient vector b € R?, v € R? in addition to the strictly
lower triangular matrix D € R**¢ and could be represented by the an extended Butcher tableau in

14

498

499
500
501

502
503

504

505
506

508
509

510

511
512

513

514

515
516

517

518

1_ V15 5 2 _ V15 5 _ 415
1 V3 1 1 V3 2 10 36 9 15 36 30
26 4 4 6 1 54 V5 2 5 _ V15
;+@ l—l-ﬁ 1 2 36 24 9 36 24
2 6 4 6 4 l+@ 2+@ i_|_\/E 5
1 1 2 10 9 15 36 30 36
2 2 5 4 5
18 9 18

Table 1: Properties of RK methods. Symm. is short for symmetric and sympl. for symplectic, and inv.

for inverse.

Integration method \ Name in figures Order (p) Stages(s) Symm. Sympl. Inv. explicit Explicit
Explicit Euler E. Euler 1 1 no no yes yes
Implicit Euler 1. Euler 1 1 no no yes no
Runge—Kutta 4 RK4 4 4 no no yes yes
Implicit midpoint Midpoint 2 1 yes yes yes no
MIRK3 MIRK3 3 2 no no yes no
MIRK4 MIRK4 4 3 yes no yes no
MIRKS MIRKS 5 4 no no yes no
MIRK6 MIRK6 6 5 yes no yes no
Gauss Legendre 4 | GL4 4 2 yes yes no no
Gauss Legendre 6 | GL6 6 4 yes yes no no
the following manner
c|lv| D
bT

In [22] it is proved that the maximum order of an s-stage MIRK method is p = s + 1 and several
methods with stages s < 5 are presented. Below, we specify the MIRK methods used in the numerical
experiments in addition to presenting their extended Butcher tableau in Figure [0}

Midpoint: The symmetric and symplectic MIRK method where (s, p) = (1, 2) is equivalent
to the midpoint method.

MIRK3: The method (s, p) = (2, 3) found by choosing ¢; = 1 in [22].

MIRK4: The method (s,p) = (3,4) with 31 = & in [42] and is first presented in in
[251143]].

MIRKS: The method (s, p) = (4,5) presented in [22] choosing ¢ = 0 and ¢35 = 3. It
should be noted that as long as c3 > 1 the method is A-stable, however the particular choice
of c3 = % is arbitrary.

MIRKG6: The method (s, p) = (5, 6) presented in [42]], which is the s = 5 stage scheme in
[22] choosing c3 = % — %. According to [42], this method is an improvement over earlier

schemes on the same form which used c3 = %.

C.3 Symmetric methods:

The exact flow of an ODE satisfies the following property known as (time) symmetry:

y(to) = @5, s (y(to + 1)) = o_n s (y(to + h)),

where the superscript “—1" denotes the inverse map. This is a desirable property also for the numerical
approximation. A numerical integration method @, ; is called symmetric if

A (17)

Symmetric numerical methods have the following properties [44]:

1. A symmetric integrator preserves the (time) symmetry of the exact flow.

15

519

520

521

522
523

524

525
526

527
528

529

530
531

0 0 0 0 0 0
ololo o o
111] 0 o0 l1le o o 1 1 0 0 0 0
1 5 2 3 3 9
3l -5 0 111 _1 g 3| 0 8 8 0 0
3 1 2 2 8 8 9 40257 16929 _ 5643 693 0
‘ ‘ 4 4 ‘ ‘ 1 1 2 20 80000 160000 32000 40000
6 6 3 ‘ ‘ 23 5 __2 4000
162 22 189 6237
0 0 0 0 0 0 0
1 1 0 0 0 0 0
1 V21 | 1 721 1 V21 1 V21
1 21 1 V21 1 21 1 21
>+Nr |27 9% |12 9s ~1a 95 U 0 0
1 1 _ 5 5 KAV TR (NPT
2 2 128 128 128 128
1 1 49 49 16
20 20 180 180 45

Figure 9: Extended Butcher tableau of MIRK methods with stage and order (s,p) =
(2,3),(3,4),(4,5),(5,6).

2. The order p of a symmetric method is necessarily even.
3. Solutions of Hamiltonian systems satisfy the following reflection symmetry: if (q(t),p(t))

solves the Hamiltonian ODE, then (g(—t), —p(—t)) is also a solution, with y(t) =

[q(t), p(t)]T. Numerical solutions (g,,, p,,) obtained from a symmetric Runge—Kutta method
satisfy the same reflection symmetry [7].

A Runge—Kutta method is symmetric if and only if

PA+ AP —1bT =0, (18)
b= Pb, (19)

where 1 := [1,...,1]T € R® and [p];; = &; s4+1—; [44]. That s, P is the reflection of the identity
matrix over the first axis. Inserting the definition of a MIRK method from (), we get

PD+ DP + (Pv+v—1)b" =0
b= Pb.

Symmetric MIRK methods of order p = 2,4, 6 are presented in [45| 42] and specific examples are
found in Figure[9]

D Details on the inverse injection in MII

Assume we are deriving the MII following the example in Equation (10) using the implicit midpoint
method, where

Yn + yn+1

2) = Yn + hq}n,n+l-

Ynt1 = Yn + hf(

16

532 We thus find that the second term in (10, the composition of two steps starting in gy could be

533

534
535

537

538
539

540

541

542

543

544
545

547
548
549

550

551
552

553

554

555

approximated by

G2 = ®p,r 0 Py (Yo

=90 +h¥Uo1+h¥y,.

where the approximation ~ is obtained by the substitution g2 — g2 and g1 — @}, s (o). The same
procedure (repeatedly using the inverse injection) is generalized over longer trajectories and used to
arrive at the MII method in Definition 5.1

E Details on neural network training

The experiments were performed on a Apple M1 Pro chip with double precision. The PyTorch
L-BFGS [36] algorithm is run with the following parameters:

* History size: 120.

* Gradient tolerance: 1077,

« Termination tolerance on parameter changes: 107,

* Line search: Strong Wolfe.
Both MII and ISO works better when fy has been pre-trained to be a reasonable approximation of
the underlying vector field f. Thus, for both MII and ISO training is run 10 epochs on the one-step
method before training additional 10 epochs with MII (MII MIRK4) and ISO (ISO Stérmer and
ISO RK4). The ISO procedure (searching for the optimal initial value o) utilizes the L-BFGS

optimization alogrithm from the SciPy library [46] with gradient tolerance of 10~ and the maximum
number of iterations limited to 10.

F Proof of Theorem 4.4

Proof. As stated in Equation (5) Runge—Kutta method as given by Equation is symplectic if and
only if

biaij + bjaji — bzbj =0.
Inserting the particular form for the MIRK coefficients, a;; = d;; + v;b;, we get

bi(vibj + d”) + bj(vjbi + dji) — bibj =0

bidij + deﬂ + blb] (Uj +v; — 1) =0. (20)
As D is strictly lower triangular eiter d;; = 0 or d;; = 0, which for Equation implies that
bidij + bibj(vj +v; — 1) =0 ifi#£j
b2 (2v; —1) =0 ifi=j

Requiring d;;, b; and v; to satisfy the symplecticity condition yields the following restriction

{bldlj + bibj(vj +v; —].) =0 if 4 7é 7,

bi=0 or v; =3 if i = j.

iJ

2n

17

556 Without loss of generality, we assume that the m first entries of b € R® are zero. Enforcing the
557 conditions of Equation (2I) on v € R®* we getfor 1 <m < s

b=10,...,0,bpmy1,...,bs]",
1 1
U:[Ul,...7vm,§,...,§}T

s58 In total, this gives the following constraints for v, b, D:

bj=0 | b;#0

b; =0 dijGR dijER
v, v; ER | v,v; €R

bi#0| dij=0 | dij=0

_ 1
v, v; ER | vj,v5 =5

559 Which for the Runge—Kutta method A = D + vb” gives a (RK) Butcher tableau of the form

0 0 ‘e 0 'Ulbm+1 . Ulbs
d21 0 . 0
d31 da2 0
dm,l e dm,m—l 0 Umb7n+1 P
0o ... 0| $bm+1 ... 3bs
0 0| $bpy1 ... 3bs
0 . . 0| bmt1 ... bs
se0 Since the lower left submatrix is the zero matrix, this leaves the stages k11, . . . , ks unconnected
s61 to the first m stages. In addition, as b; = 0 for ¢ = 1,...,m, these stages are not included in the
s62 computation of the final integration step. The method is thus reducible to the lower right submatrix
s63 of Aand b, 41,...,bs. The reduced method is thus in general given by the following stage-values

h S
ki = f(yn + 3 E bjkj).
J

s64 It is trivial to check that if Zf b; = 1 the method satisfies order conditions up to order p = 2, which
s65 could be found in [8]] to be

1
Zbi =1, and Zbiaij =5
(3]
se6 However, the method fails to satisfy the first of the two conditions required for order p = 3, since

Z biaijaik = i Z blb]bk = i 75 %

(N i,5,k

s67 Hence, the maximum order of a symplectic MIRK method is p = 2. O

se8 As a remark, it should be noted that the s = 1 stage, symplectic MIRK method found by setting
69 b =1, = % and dq1; = 0 is simply the midpoint method y,,+1 = y, +hk; with ky = f(L;’"“)

18

s0. G Proof of Theorem

571 Proof. Let $;(Yn, Yn+1) := Yn +0i(Yn+1 — yYn) and §,, be noisy data (9). Observe that we can obtain
s72 the following approximation to the MIRK stages (4)) by

ki = f(gn + Ui(gn+1 - Zjn) + thij]>
j=1
= f(si(ynayn+1) + si(5n75n+1) + O(h)>

= [(5i(Uns Yn+1)) + [/ (5i(Yn, Yn+1)) 8i(0ns Sn1) + O(||5(6n5 61)[?) + O(R)
f(yn) + f (yn)31(5n7 5n+1) + O(H (6m 6n+1)”2) + O(h) (22)

573 Where in the final equality we expand y,,+1 = yn + hf(yn) + O(h?) to find

f(si(yna ynJrl)) = f(yn + @i(yn+1 - yn))
= f(yn + hvif(yn) + O(h?))
= f(yn) + O(h).

574 And similarly for f'(s;(yn, Yn+1))- In total, this means that the next MIRK-step could be approxi-
575 mated by

Yntl = Yn + hzbiki
i=1

yn+hzb()+ 105 6i2)) + OBs(Ba.8,00) + OUR). 23

576 First note, that if = is a multivariate normally distributed random variable x ~ A/(0, X) then for a
577 matrix G € R™*" the variance of the linear transformation is given by Var[Gz| := Cov|Gz, Gx] =
s GXGT. Now, us1ng the approximation in Equation (23, we find the variance of the optimization
579 target 7;L+1 = Un+1 — P, ¢ (Un, Unt1) by

Var i1 = i - th b =var s . - th (Fmsitondnen))
~var|(1- hbva’(yn>) s = (14007101 0))5
— o1 mus) (1 - hbva%yn))T
o (1 RbT(1— v)f’(yn)) (I BT (L~ v)f’(yn))T
— [zf + BT (1= 20) (f'(gn) + 1" () ")

e ((bTv)? (- v>>2) f’(yn>f’<yn>ﬂ
:=QOS

— 2 {21 + BT (1 = 20) (' (yn) + ' (yn)") + hQQOS} .

ss0 Here, 1 :=[1,...,1]7 € R®. This is the variance estimate we wanted to find for MIRK methods
581 used as one-step integration schemes. Similarly, considering a point computed by the mean inverse

19

ss2 integrator ,,, we find, using the stage approximation by Equation ({22) that

1 N N-1 s
?n N Zy] + N Z Wn,, 5 Zblkl

7=0 7=0 =1
J#n

1 N h N-1

~ 2 g 2 v (1) 00000

_j;O 7=0
JjF#n

583 Where we note that wy, ; := [W],;, from Deﬁmtlonﬂof the MIL Let 3,, := [Y],,. Computing the

ss4 variance of the optimization target T7M" = ¢,, — 7, we find, by introducing P,,; to simplify notation,
585 that

N N-1

. 1 h
Var {yn - yn} ~Var [5n % > 8- i > waif () (bT(]l —)d; + bTU5j+1>]

Jj=0 Jj=0

2 N - NT h N
=7 > (I + hpnj> <I + hPm) + o2 (I - NP""> (I - NP”"> .
Jn
sss In the second line, 1, ; is introduced which is elements of a matrix W = [0[w:|wa] ... |wx|0] €

sz RV*N+1 or in other words the matrix you obtain by padding W right and left with a column of
sss zeros. Expanding the terms and introducing matrices P,,; and Q™! we finally find

o[= 5T, h hQS——T
Nl =P N Jj=0 “’_’ N j=0
—4nn j;én ::Pn]‘
=QMII
o’
= [T+ NI+ hPy + Z P + QMH}
Jsﬁn

s8 Since for a symmetric matrix A we have that the spectral radii p (largest absolute value of eigenvalues)
s0 could be found by p(A) = || A||2, we find for both variance approximations (covariance matrix is

s91 always symmetric) that
o2
Var|g, — ¥
p< ar[y yn]> N

p(Var[z}n+1 — (I)h7.f(gn7gn+1)]> ~ o?

(1+ N)T 4 hPpy + ~ Z Py + QMH
J?ﬁn

21 + k" (1 — 20) (£ (yn)+ £ (yn)") + K2Q%S

2

s92 Finally, we note that:

20

593

594

595

596
597
598
599
600
601
602
603
604
605

606
607
608
609
610
611
612

613

614

616
617

618
619
620
621
622

624

625

627
628

Q%r—<wm2+wﬁn—mf)ﬁ@mf@mT

Pnj = f/(y]) ’LZ)n_’ij(]]_ — ’U) + ’LZ)n,j_le’U>

— 7 (24)
Ppj:=Pnj+ P,
S =T
QMH _ Pn]Pn]
7=0
O

H Higher-order inverse-explicit invariant-preserving symmetric
non-partitioned integrators

We define invariant-preserving integrators as methods that preserve the Hamiltonian or other invariants
of the exact solution, either exactly up to machine precision or within a bound, like symplectic
methods. Although we argue in this paper that symplecticity is a less important property when
learning Hamiltonian systems from data than for integration of a known system, we do not mean to
suggest that invariant-preserving integrators may not be beneficial to some extent and have important
qualities in the inverse problem also. However, we urge anyone who seeks to use invariant-preserving
methods to also consider the order of the method and whether it is a symmetric inverse-explicit
method. Although the maximum order of a symplectic inverse-explicit Runge—Kutta method is two,
there exist higher-order inverse-explicit invariant-preserving integrators that are not Runge—Kutta
methods.

Note that partitioned Runge—Kutta (PRK) methods is an extension that does not belong to the class of
Runge—Kutta methods. This is important to clarify, since there exist PRK methods that are symmetric
and explicit for separable systems. This marks a distinction from non-partitioned RK methods:
these cannot be symmetric and explicit in general [8]. Several papers suggest using symplectic PRK
methods for learning Hamiltonian systems [[10} 30} 29], but these methods, although symmetric, only
depend on one point to approximate the right hand side of each integration step, and thus do not
average out any noise.

H.1 Symplectic elementary differential Runge-Kutta methods

Chartier et al. showed in [47]] that an integrator can be applied to a modified vector field in such a way
that it yields a higher order approximation of the original vector field while inheriting the geometric
properties of the given integrator. As an example, they present the fourth-order modified implicit
midpoint method

— h 1
P — f(§) + 13 (~ DF@DI@I @) + 5D @) 0)F(@), 25)
where § = (Y5, + Yn+1)/2. This is an example of an elementary differential Runge—Kutta (EDRK)
method [33]], which relies on the calculation of (multi-order) derivatives of the vector field f, denoted
here as DP f for order p. Automatic differentiation can be utilized also to get higher-order derivatives,
and we note that f, D f and D?f each only have to be evaluated once for each training step, since
they are only evaluated at the one point 3. A sixth-order modification of the implicit midpoint method
is also presented in [47], but that requires the calculation of up to fourth-order derivatives and might
be considered prohibitively expensive.

H.2 Discrete gradient methods
Discrete gradient methods are a class of integrators that can preserve an invariant, e.g. the Hamiltonian,

exactly [32]]. This is in contrast to symplectic methods, which only preserve a perturbation of the
invariant exactly and the exact invariant within some bound. We remark that no method can be both

21

629
630

631
632

633

635
636
637
638
639
640
641

642

644
645

647
648

650
651
652
653

654
655
656
657
658
659

660

661
662
663
664
665
666
667

symplectic and exactly invariant-preserving in general [48]]. Discrete gradient methods are defined
strictly for invariant-preserving ODEs, which can be written on the form

y = S(y)VH(y), (26)

for some skew-symmetric matrix S(y) [32]. Then a discrete gradient is a function VH : RxR¢ — R
satisfying o
VH(u,v)" (u—v) = H(u) — H(v),

a discrete analogue to the invariant-preserving property H(y) = VH(y)Ty = 0 of (26). A corre-
sponding discrete gradient method is then given by

w = S(Yns Yn+1, W)VH (Yn, Ynt1), (27)
for some approximation S(y,,,Yn+1,h) of S(y) such that S(y,y,0) = S(y), where h is the step
size in time. A discrete gradient can at most be a second-order approximation of the gradient, but
appropriate choices of S can yield inverse-explicit integrators of arbitrarily high order [16]. Matsubara
et al. have developed a discrete version of the automatic differentiation algorithm that makes it possible
to efficiently calculate a discrete gradient of neural network functions, and demonstrated its use in
training of HNNs [[15] and for detecting invariants [49]]. A fourth-order discrete gradient method is
suggested for training HNNs in [16], given a constant .S in (26)). This is the scheme (27) with

1
Slym) = § + ShSQUyn, 22)8 — 15h* SD*H(2)SD H(=1)S,

with 21 = Y, + 21 f(yn)s 22 = Yn + 3hf(21) and Q(u,v) := 2(D2VH (u,v)T — DoV H (u,v)),
where DoV H denotes the derivative of V H with respect to the second argument, and D?H := DV H
is the Hessian of H. This is not symmetric, so we propose here instead the fourth-order symmetric
invariant-preserving scheme obtained by

1

h 1 2 2
S(yn7yn+lv h) =5+ §S(Q<ym gyn + gyn+1) - Q(yn+l> gyn + gyn—‘rl))s

- %(h)Q SD?H (y)SD*H(3)S.

H.3 Numerical comparison of fourth-order integrators

We test four different fourth-order integrators on solving an initial value problem of the double
pendulum described in Appendix[A. We compute an approximation of the error of the solution at each
time by comparing to a solution obtained using RK4 with 10 times as many time steps. As seen in the
left plot of Figure[10} the symmetric methods are clearly superior to the explicit RK4 method, when
using the same step size. For integration, the advantage of RK4 is that it is more computationally
efficient than the implicit methods, which facilitates taking smaller step sizes. However, as pointed
out in Section[d RK4 does not have this advantage over MIRK methods for the inverse problem.

Furthermore, although the higher-order MIRK methods we suggest to use in this paper are not
symplectic and thus lack general energy preservation guarantees, we see from Figure[T0 that they
may still preserve the energy within a bound for specific problems. In fact, for the double pendulum
problem considered here, the non-symplectic MIRK4 method preserves the energy slightly better
than the symplectic MIMP4 scheme up to time 7' = 500. The invariant-preserving discrete gradient
method preserves the Hamiltonian to machine precision.

I Computational cost

The fourth-order MIRK method from Table [9] (MIRK4) is between twice and thrice as expensive as
the implicit midpoint method, depending on the training strategy. That is, if no batching is performed
and f is evaluated at all points in the training set at each iteration of the optimization, then the number
of function evaluations for a trajectory with n points is n — 1 for the implicit midpoint method and
2n — 1 for MIRK4. However, if batching is done and function evaluations cannot generally be reused
for successive points, the total number of function evaluations at each epoch may increase to 3n — 3
for MIRKA4.

22

668
669
670
671
672
673

Energy error

10711
1074)
10734
= 107
510724 £ , —— RK4
g = 10 —— MIRK4
¥ I
» —— DGM4
& — 1079
~ 108 % —— MIMP4
—— RK4 =101
—— MIRK4 Lo-1
Lot —— DGM4
—— MIMP4 10715 d_‘_._,_.,_,.___.——a—'———'
T T [

T T T T T T
0 100 200 300 400 500 0 100 260 360 460 560
t t

Figure 10: Global error (leff) and energy error (right) of the solution of the double pendulum problem
obtained using four different integrators. The initial condition is yo = [0.1,0.3, —0.4,0.2]7, and the

step size for all integrators is h = %

In general, the cost of an s-stage MIRK method depends on both the training strategy and whether
the end points y and ¢ are two of the stages. If batching is not done and y and ¢ are two of the stages,
then computational cost at each epoch is O (m(n + (s — 2)(n — 1))), where m is the number of
trajectories of n points in each. The maximum cost with batching is the same as the cost if y and ¢
are not two of the stages: O (ms(n — 1))). This cost is equivalent to that of an explicit s-stage RK
method.

23

	Introduction
	Related work
	Background on numerical integration
	Numerical integration schemes for solving inverse problems
	Mean inverse integrator for handling noisy data
	Experiments
	Conclusion
	Test problems
	Additional numerical results
	More on numerical integration
	Runge–Kutta methods
	Mono-Implicit Runge–Kutta methods
	Symmetric methods:

	Details on the inverse injection in MII
	Details on neural network training
	Proof of Theorem 4.4
	Proof of Theorem 5.2
	Higher-order inverse-explicit invariant-preserving symmetric non-partitioned integrators
	Symplectic elementary differential Runge–Kutta methods
	Discrete gradient methods
	Numerical comparison of fourth-order integrators

	Computational cost

