
DyGMAE: A Multi-Scale Dynamic Graph Masked Autoencoder for Link
Prediction

Abstract

Dynamic link prediction (DLP) is a crucial task
in graph learning, aiming to predict future links
between nodes at subsequent time in dynamic
graphs. Recently, Graph masked autoencoders
(GMAEs) have showed promising performance
in self-supervised learning. However, their applica-
tion to DLP is under-explored. Existing GMAEs
struggle to capture temporal dependencies, and
their random masking causes crucial informa-
tion loss for DLP. Moreover, most existing DLP
methods rely on learning a single distribution,
which fails to capture the complex features and
mixed distributions in real dynamic graph data
and often struggles to simultaneously capture fine-
grained and global information. To address these
issues, we propose DyGMAE, a novel dynamic
GMAE method specifically designed for DLP.
DyGMAE introduces a Multi-Scale Masking Strat-
egy (MSMS), which generates multiple graph
views by masking parts of the edges. Addition-
ally, a multi-scale representation alignment module
with a contrastive learning objective is employed
to align representations which are encoded by un-
masked edges across these views. Through this
design, different masked views can provide diverse
information to alleviate the drawbacks of random
masking, and contrastive learning can align dif-
ferent distributions to mitigate the issue of single-
distribution learning. Experiments on benchmark
datasets show DyGMAE achieves the superior per-
formance in DLP.

1 INTRODUCTION

Dynamic graphs exhibit a remarkable capacity to model real-
world interaction changes. This distinct feature enables their

extensive application in diverse dynamic systems, such as
social networks Min et al. [2021], disease transmission net-
works Zhu et al. [2022], and transportation systems Li et al.
[2023a]. In dynamic graph learning, dynamic link prediction
(DLP) is one fundamental task, which aims to forecast the
appearance or disappearance of links over time. DLP plays
a crucial role in diverse applications including traffic fore-
casting and disease control Qin and Yeung [2023]. Given
the complexity of dynamic graphs, which involves intri-
cate structural patterns and temporal dependencies, finding
effective methods for DLP remains a significant challenge.

During the pursuit of addressing this challenge, self-
supervised learning (SSL) has emerged as a promising
approach due to its ability to leverage large amounts of
unlabeled data Gao et al. [2023], Zhang et al. [2023]. In
particular, graph masked autoencoders (GMAEs) Hou et al.
[2022], Liu et al. [2024a,b], a generative SSL framework,
have recently excelled in graph-related tasks. However, their
potential in DLP has not been fully explored. Specifically,
GMAE extends masked autoencoder, a SSL framework in
computer vision He et al. [2022] and nature language pro-
cessing Devlin [2018] without labeled data, to graphs. Com-
pared with other SSL frameworks, GMAEs have achieved
success in static graph link prediction task by masking and
reconstructing edges Li et al. [2023b], which has been found
to remarkably boost the prediction accuracy. Based on the
above considerations, we reasonably speculate that GMAE
might be adaptable to dynamic graphs to enhance the per-
formance of DLP. However, despite their success in static
graphs, current GMAE methods face several limitations
when applied to dynamic graphs. First, random edge mask-
ing is easily to cause critical information loss, resulting in
the suboptimal link prediction performance. Second, they
struggle to model time-evolving structures vital for DLP,
because they are designed for static graphs.

In existing DLP methods, a common problem is the single
distribution issue. Both global and local information in dy-
namic graphs are important for DLP: global information
shows overall structures and long-term dependencies, while
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local information provides node-specific short-term dynam-
ics, jointly enabling a comprehensive graph understanding.
However, many methods rely on a single distribution. This
makes them often focus mainly on local information and
overlook global information. Consequently, they fail to cap-
ture the complex distributions in real dynamic graphs. For
instance, some methods, such as Yang et al. [2022], Haji-
ramezanali et al. [2019], Yang et al. [2021], focus solely
on local structural information using graph neural networks
(GNNs), neglecting the broader context. These methods
often struggle to simultaneously capture fine-grained de-
tails and global patterns, limiting their ability to represent
the full complexity of dynamic graphs. Although DGCN
(Gao et al. [2023]) tries to capture global information by
maximizing mutual information between local and global
representations, its heavy reliance on local information for
aggregation restricts its performance.

Intuitively, GMAE generates different structural views by
using a masking strategy and attempts to reconstruct the
masked parts, which allows the method to explore various
structures and evolving patterns. As a result, considering
the limitations of GMAE in DLP and the problem of rely-
ing on a single distribution, we propose DyGMAE, a novel
dynamic graph masked autoencoder method specifically de-
signed for DLP. In DyGMAE, we introduce a Multi-Scale
Masking Strategy (MSMS) to tackle the issue of information
loss caused by the random masking in GMAE and single
distribution problem. MSMS generates diverse masked and
unmasked views by applying different edge masking tech-
niques and edge masking ratios, and attempts to reconstruct
the masked edges from the unmasked portions. Applying
the MSMS enables DyGMAE to more effectively explore
different aspects of the structural patterns and temporal
dependencies in multi-reconstruction phases, significantly
enhancing its ability to capture both global and fine-grained
information and thus improving DLP performance. Further-
more, we incorporate a multi-scale representation alignment
module in MSMS with a contrastive learning objective that
aligns different views, ensures consistency across them, and
preserves rich fine-grained information. Finally, the refined
embeddings are processed by a GRU based temporal mod-
eling module, which captures temporal dependencies in
dynamic graphs, and are subsequently used for DLP. As
a result, DyGMAE effectively captures both the structural
evolution and temporal dependencies of dynamic graphs,
addressing key challenges in DLP. We summarize our main
contributions as follows:

• We propose DyGMAE, a novel dynamic graph masked
autoencoder tailored for DLP. It extends the GMAE
framework to effectively capture both structural pat-
terns and temporal dependencies in dynamic graphs.

• DyGMAE incorporates a MSMS to mitigate informa-
tion loss caused by random masking, and overcome
the single-dimensional representation problem. Addi-

tionally, multi-scale representation alignment module
is introduced to capture finer-grained features. To our
knowledge, this is the first attempt to combine GMAEs
with contrastive learning for DLP.

• Our experimental results show that DyGMAE achieves
superior performance in both dynamic link prediction
and dynamic new link prediction tasks across sev-
eral real-world dynamic graph datasets, outperforming
state-of-the-art methods.

2 PRELIMINARIES

2.1 NOTATIONS AND PROBLEM FORMULATION

Without loss of generality, we model dynamic graphs
as consisting of a series of snapshots, denoted as G =
{G1, G2, . . . , GT }, where T represents the total number
of snapshots. Each snapshot Gt = (Vt, Et), for 1 ≤ t ≤ T ,
consists of a node set Vt and an edge set Et. The adjacency
matrix at time step t is denoted by At ∈ {0, 1}|Vt|×|Vt|.

DLP aims to forecast the future link states in a dynamic
graph by utilizing the historical snapshots A1,A2, . . . ,AT .
Its objective is to predict the link states in the next snapshot:
ÂT+1. In contrast, Dynamic new link prediction (DNLP) fo-
cuses on identifying previously unseen links that emerge in
dynamic graphs. Compared with DLP, DNLP is more chal-
lenging as it demands stronger generalization capabilities to
effectively tackle this task.

2.2 GRAPH MASKED AUTOENCODER

We take a static graph as an example to illustrate the GMAE
framework. It has three core components: a masking module
fM(·), an encoder fE(·), and a decoder fD(·). Given graph
G, the masking module creates a masked graph Gm and an
unmasked graph Gu by masking nodes, features, or edges.
The unmasked graph Gu goes through the encoder fE(·)
to generate latent representations Z containing the graph’s
key information. The decoder fD(·) then reconstructs an
approximation Ĝ of the original graph from Z.

3 METHODOLOGY

The overall framework of the proposed DyGMAE is shown
in Figure 1, detailed as follows: (A) Overall architecture of
DyGMAE: Dynamic graph snapshots {G1, G2, . . . , GT }
are processed by MSMS to generate multiple unmasked
views. Aggregated representations from these views are fed
into the gate recurrent unit (GRU) for temporal modeling,
yielding final node representations ZT for dynamic link pre-
diction. (B) Multi-Scale Masking Strategy (MSMS): This
module generates unmasked Gu

t graphs, which are passed
through an encoder and projector for node representations.
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Figure 1: The overall architecture of DyGMAE.

The contrastive loss LC
t aligns representations of different

unmasked views, while edge and adjacency reconstruction
losses LE

t and LA
t refine embeddings. Graph representations

are used for Multi-Scale Representation Fusion (MSRF)
across views, then sent to the GRU for further temporal
modeling. In the subsequent sections, we explain each DyG-
MAE module in detail, emphasizing how the GMAE frame-
work adapts to dynamic graphs and how MSMS boosts DLP
performance.

3.1 EDGE MASKING STRATEGY

Many related GMAE methods Hou et al. [2022] mask node
features and attempt to reconstruct them. However, our task
is DLP, and thus we need to bridge the gap between feature
reconstruction and link prediction. To this end, we employ
two edge-masking strategies as part of our MSMS: random
edge masking and path-wise random masking.

Random Edge Masking. Random edge masking is per-
formed by randomly masking a subset of edges in the graph.
The edges to be masked, denoted as Em, are sampled using
a Bernoulli distribution as follows:

Em ∼ Bernoulli(p), (1)

Eu = E − Em, (2)

where p denotes the probability of masking an edge, and
Eu represents the set of remaining edges.

Path-Wise Random Masking. Following the inspiration
from Li et al. [2023b], we adopt the path-wise random
masking strategy. Different from random edge masking,
it masks edges via random walks from root nodes. This
disrupts local connections, forcing path reconstruction to
capture complex structural dependencies and higher-order
node relationships. Formally, the masked edges are sampled
as:

Em ∼ RandomWalk(R,nwalk, lwalk), (3)

where R is a set of randomly selected root nodes, nwalk
denotes the number of random walks per root node, and
lwalk is the length of each random walk.

For dynamic graphs, we define the unmasked snapshot
at time step t as Gu

t = (Vt, E
u
t ), with Eu

t ⊆ Et being
the remaining unmasked edges. The masked snapshot is
Gm

t = (Vt, E
m
t ), where Em

t = Et − Eu
t . This approach

adds stochasticity and compels the method to leverage the
partially unmasked graph Gu

t and historical information,
facilitating the capture of more crucial information.

3.2 MULTI-SCALE MASKING STRATEGY (MSMS)

Multi-Scale Masking. To address the challenges in DLP
with GMAE, including critical information loss caused by
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random masking strategies and the limitations of single-
scale approaches in modeling complex data, we propose
the MSMS which generates multiple masked and unmasked
views for each snapshot by applying different edge mask-
ing strategies and varying the masking probabilities p as
we introduced in Section 3.1. Specifically, given a dynamic
graph snapshot Gt = (Vt, Et), the multi-scale masking
creates K unmasked versions of the snapshot through the
set of masking strategies {f1

M, f2
M, . . . , fK

M }, denoted as
{Gu1

t , Gu2
t , . . . , GuK

t }. Each unmasked view captures dis-
tinct structural perspectives and different evolving dynam-
ics. Edges are masked according to predefined probabili-
ties {p1, p2, . . . , pK} , with each pi controlling the extent
of masking in the corresponding view. For example, one
view may focus on a higher masking ratio to encourage
the method to infer global structures, while another view
may apply a lower masking ratio to preserve fine-grained
information.

By introducing multiple unmasked views, the multi-masking
strategy enriches the diversity of training data and allows
the method to extract richer structural patterns and tem-
poral dependencies from various unmasked views in the
edge reconstruction phase. Consequently, this strategy lays
the foundation for learning robust and multi-scale repre-
sentations, which are further refined through encoding and
alignment in subsequent stages. This capability is crucial for
DLP, as it enables the model to capture both local and global
information in the graph over time, thereby improving its
ability to predict future links accurately.

Unmasked Graph Encoder. The dynamic graph snapshot
is processed through the multi-scale masking, which gen-
erates multiple unmasked views of the graph. And then
one such view, Gu

t = (Vt, E
u
t ), is fed into the encoder to

compute the latent node representations. The encoder is im-
plemented using a stack of L GNN layers, which operate on
the unmasked part of the graph. The latent representation at
the (l + 1)-th layer is computed as:

Ht,l+1 = σ1

(
D̃

− 1
2

t Ãu
t D̃

− 1
2

t Ht,lWl

)
, (4)

where Ht,l+1 ∈ RN×dout represents the node embeddings
at layer l + 1 for the t-th snapshot. In this equation, N
denotes the number of nodes in the graph, and dout is the
dimensionality of the output embeddings. Ãu

t = Au
t +

I ∈ RN×N represents the unmasked adjacency matrix of
the t-th snapshot with self-loops added, where Au

t is the
adjacency matrix of the unmasked graph Gu

t , generated by
one of the multi-scale masking views. The diagonal degree
matrix corresponding to Ãu

t is denoted as D̃t ∈ RN×N .
Ht,l ∈ RN×din represents the input node embeddings at
layer l, where din is the dimensionality of the input features.
Finally, Wl ∈ Rdin×dout is the learnable weight matrix of
the l-th GNN layer, and σ1(·) is an activation function such
as ReLU.

Projector. To refine and enhance the latent representations
produced by the encoder for link prediction, we introduce a
multi-layer perceptron (MLP) as a projector following the
encoder. The transformation is defined as:

Ht = MLP(Ht,L), (5)

where Ht ∈ RN×dproj represents the refined node embed-
dings after projection, and Ht,L ∈ RN×dout denotes the
latent representations output from the last GNN layer of the
encoder. The MLP is used to project the embeddings into a
new space, where dproj is the dimensionality of the projected
embeddings.

Representation Refinement via Reconstruction. In or-
der to ensure that the representations generated by each
unmasked view contain more informative and critical struc-
tural features for reconstructing the masked edges and get
the better DLP performance, we feed each representation
into the decoder to enhance its reconstruction ability and
mitigate the issues of noise and redundancy. Specifically,
we employ two types of loss functions to guide the training
process.

The first loss function, edge reconstruction loss LE
t , is de-

signed to leverage the unmasked edges to reconstruct the
masked edges, the method maximizes the probability of
the masked link nodes in the original graph while minimiz-
ing the probability of unlinked nodes, thereby promoting
the reconstruction of the graph structure and enhancing the
method’s reconstruction ability. The loss is formulated using
a binary cross-entropy function, as follows:

L+
t =

1

|E+
t |

∑
(i,j)∈E+

t

log pf (ht,i,ht,j), (6)

L−
t =

1

|E−
t |

∑
(i′,j′)∈E−

t

log(1− pf (ht,i′ ,ht,j′)), (7)

LE
t = −

(
L+
t + L−

t

)
, (8)

where the set of positive edges E+
t corresponds to the edges

present in the masked graph at time t, while E−
t is the set

of negative edges, with the number of negative edges equal
to the number of positive edges. pf (ht,i,ht,j) computes
the probability that there is an edge between nodes i and
j, based on their embeddings ht,i and ht,j at time t. By
minimizing LE

t , the method learns to reconstruct the masked
edges, resulting in better DLP performance.

The second loss function, adjacency matrix reconstruction
loss LA

t , is designed to recover the original graph connec-
tions from the latent representations derived from the un-
masked parts of the graph. The reconstruction error for the
graph structure at time t is defined as:

LA
t = ∥At − Ãt,pre∥2F , (9)
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where Ãt,pre represents the predicted adjacency matrix at
time t and is decoded by Ht through two MLP layers. And
At is the ground-truth adjacency matrix. Since the elements
of At are predominantly zeros due to the graph’s sparsity,
we adopt the following loss to improve the method’s recon-
struction ability Richard et al. [2012]:

LA
t = ∥At+1 − Ãt+1∥2F + γ∥Ãt+1∥1 + δ∥Ãt+1∥∗, (10)

where the term ∥Ãt+1∥1 imposes sparsity on the predicted
matrix, while ∥Ãt+1∥∗ is the nuclear norm that encourages
a low-rank structure. The weights γ and δ control the impor-
tance of the sparsity and low-rank constraints, respectively.

By optimizing both loss functions, DyGMAE improves its
ability to reconstruct the masked edges and capture the all
nodes connectivity across several unmasked views, thereby
enhancing its performance in DLP.

Multi-Scale Representation Alignment. After obtain-
ing representations from multiple unmasked graph views,
{H1

t ,H
2
t , . . . ,H

K
t }, we apply contrastive learning to align

these latent representations, preserving fine-grained infor-
mation. This contrastive alignment enhances the consistency
and robustness of the learned features across different views.
By optimizing the contrastive loss across pairs of unmasked
views, the method learns more discriminative and generaliz-
able representations, which improves DLP performance.

We adopt the following contrastive loss on two views to
enforce alignment between representations of the same node
across different unmasked views at time t:

LC
t = − 1

N

N∑
i=1

log
exp

(
sim(h1

i ,h
2
i )/τ

)∑N
j=1 exp

(
sim(h1

i ,h
2
j )/τ

) , (11)

where h1
i and h2

i represent the latent representations of
node i in two different unmasked views, sim(·, ·) denotes a
similarity function (e.g., cosine similarity), and τ is a tem-
perature parameter that controls the distribution’s sharpness.

Multi-Scale Representation Fusion. Although individual
representations {H1

t ,H
2
t , . . . ,H

K
t } generated from differ-

ent unmasked views capture distinct structural and evolving
features, they fail to fully represent the comprehensive char-
acteristics of the graph. To address this, we introduce a
Multi-Scale Representation Fusion (MSRF) to aggregate
the latent representations derived from multiple unmasked
views, combining information across different perspectives.
This fusion process enhances the method’s ability to learn
multi-level features, including both global and fine-grained
structural patterns and temporal dependencies. The fused
representation of the t-th snapshot is computed as:

Ht = Aggregate(H1
t ,H

2
t , . . . ,H

K
t ), (12)

where Aggregate(·) denotes the aggregation function, which
can be implemented through a variety of approaches. These
include calculating the mean, performing summation, using
the max operation, and applying attention mechanisms.

3.3 TEMPORAL DEPENDENCY MODELING
WITH GRU

Capturing temporal dependencies is crucial for DLP, as the
relationships between nodes evolve over time. In dynamic
graphs, the probability of a node forming a link with an-
other node at the current snapshot depends not only on the
current graph structure but also on the temporal evolution
of node interactions, which is influenced by previous snap-
shots. To capture these evolving dependencies, we employ
a GRU Cho et al. [2014], a model well-suited for sequential
data processing, enabling the effective capture of temporal
dependencies in the graph. Specifically, the current latent
representation Ht, generated by the encoder, and the final
representation Zt−1 from the previous time step are com-
bined as inputs to compute the final representation Zt at time
t. For the initial step (t = 0), Z0 is initialized randomly. The
GRU updates are defined as follows:

Qt = σ2(WqHt +UqZt−1), (13)
Rt = σ2(WrHt +UrZt−1), (14)

Ẑt = ϕ(WhHt +Uh(Rt ⊙ Zt−1)), (15)

Zt = (1−Qt)⊙ Zt−1 +Qt ⊙ Ẑt, (16)

where Qt and Rt denote the update gate and reset gate,
respectively, and Ẑt is the candidate state. Here, σ2(·) rep-
resents the sigmoid activation function, ϕ(·) denotes the hy-
perbolic tangent function (tanh), and ⊙ is the element-wise
product. The parameters Wq,Wr,Wh and Uq,Ur,Uh

are learnable weight matrices.

3.4 DECODER FOR DLP

After obtaining the representations Zt for each time step,
these representations are used to predict the existence of
edges in the dynamic graph at next time step t + 1 for
the DLP task. We utilize dot-product as the decoder. The
decoder operation is defined as follows:

Ât+1 = fDec(Zt), (17)

where Ât+1 is the predicted adjacency matrix for time step
t+ 1, and a higher value in Ât+1 indicates a higher proba-
bility of an edge between nodes.

3.5 FINAL OBJECTIVE

DyGMAE integrates three key components for its overall
objective: edge reconstruction loss, adjacency matrix recon-
struction loss and contrastive loss. The overall loss function
for a single snapshot t is defined as:

Lt = LE
t + LA

t + LC
t . (18)

Extending this to the entire dynamic graph, the total loss
is aggregated across all snapshots t ∈ {1, 2, . . . , T} and all
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masked views k ∈ {1, 2, . . . ,K}, and is expressed as:

L =

T∑
t=1

(
K∑

k=1

(
LEk
t + LAk

t

)
+ λLC

t

)
, (19)

where LEk
t represents the edge reconstruction loss and LAk

t

is the adjacency matrix reconstruction loss at the k-th view
of snapshot t. The weighting coefficient λ controls the rela-
tive importance of the contrastive loss.

By integrating these components across all snapshots and
views, our method effectively captures multi-scale structural
patterns and temporal dependencies. The full algorithm of
DyGMAE is presented in the Appendix B.

4 EXPERIMENTS

In this section, we conduct the experiments on five real-
world dynamic graph datasets to verify the effectiveness of
DyGMAE. We conduct experiments on multi-scale repre-
sentation fusion type analysis as well as multi-step dynamic
link prediction, which are presented in Appendix E and
Appendix F, respectively.

4.1 EXPERIMENTAL SETTINGS

Datasets. We conduct experiments on five dynamic graph
datasets, including Enron, DBLP, Facebook Hajiramezanali
et al. [2019], Email Gao et al. [2023], and AS733 Yang
et al. [2021]. Detailed information about these datasets is
provided in Appendix C.

Baselines. The baselines include static autoencoder methods
such as GAE and VGAE Kipf and Welling [2016], as well as
dynamic autoencoder methods like DynAE, DynRNN, Dy-
nAERNN Goyal et al. [2020], and VGRNN Hajiramezanali
et al. [2019]. Additionally, we compare with advanced meth-
ods like EvolveGCN Pareja et al. [2020], DGCN Gao et al.
[2023], DySAT Sankar et al. [2020], HTGN Yang et al.
[2021], and HGWaveNet Bai et al. [2023]. More details
about baselines is provided in Appendix D.

Evaluation Tasks and Metrics. To evaluate the effective-
ness of our method, we conduct experiments on two distinct
link prediction tasks: dynamic link prediction and dynamic
new link prediction. The evaluation measures the methods’
ability to distinguish true from false edges by calculating
Average Precision (AP) and Area Under the Receiver Oper-
ating Characteristic Curve (AUC) scores. In this setup, all
known edges in the test snapshots are treated as positive
samples (true links), while an equal number of non-existent
edges are sampled as negative samples (false links).

4.2 IMPLEMENTATION DETAILS

We conduct all experiments following the same settings as
in Hajiramezanali et al. [2019]. The training process uses
the snapshots from the training set, while the performance of
all methods is evaluated on the test snapshots for DLP and
DNLP. During training, snapshots are masked, while the test
snapshots use the original unmasked graph data. For a fair
comparison, each experiment is run five times with different
random seeds to minimize the impact of randomness, and
the results are reported as averages with standard deviations.
DyGMAE is implemented in Python 3.9, PyTorch 1.11, and
it is executed on Intel Core i5-12490F CPUs and NVIDIA
RTX 3070 GPUs.

4.3 EXPERIMENTAL RESULTS

The dynamic link prediction and dynamic new link predic-
tion results are summarized in Table 1 and Table 2, with
average values and standard deviations reported for the test
sets. Certain results are based on findings from previously
published papers.

Dynamic Link Prediction. Results of DLP are showing in
Table 1. As we can see, DyGMAE consistently outperforms
state-of-the-art methods in DLP, achieving higher AUC and
AP scores across various real-world dynamic graph datasets.
Specially, in Facebook dataset, DyGMAE gets 3.88% and
4.41% improvement on AUC and AP compared with the
second-best method VGRNN. Although HTGN and HT-
WaveNet achieve good performance in the hyperbolic space,
they can only capture a single distribution, which limits
their performance. Compared to DGCN, which can captures
global information, we achieve significant improvements
across all five datasets. The strong performance of DyG-
MAE indicates its superiority in capturing both multi-scale
structural patterns and temporal dependencies. Compared
with other autoencoders, including the static autoencoders
like GAE and VGAE, as well as the dynamic autoencoders
such as DynAE, DynRNN, DynAERNN, and VGRNN, our
approach yields remarkable improvements. This outcome
not only validates the feasibility of the GMAE framework
in dynamic link prediction tasks but also confirms the ratio-
nality of our initial inspiration.

Dynamic New Link Prediction As shown in Table 2, DyG-
MAE consistently outperforms other methods in dynamic
graph new link prediction task which need all methods get
more inductive capability. DyGMAE is designed to effec-
tively handle the temporal characteristics of dynamic graphs.
It can capture the sequential changes in the graph structure
over time, which is crucial for predicting new links emerging
as the graph evolves. Especially, on the Facebook dataset,
DyGMAE achieves a significant improvement of 3.25% in
AUC and 4.51% in AP compared to the second-best method
DySAT. This notable gap indicates that DyGMAE has a
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Table 1: AUC and AP scores of dynamic link prediction in real-world dynamic graphs. Best results are in bold, and the
suboptimal results are underlined.

Dataset Enron DBLP Facebook Email AS733
Metric AUC AP AUC AP AUC AP AUC AP AUC AP
GAE 92.55±0.76 93.64±0.51 84.71±0.73 87.78±0.42 89.47±0.65 88.93±0.80 81.34±0.18 89.37±0.12 93.81±1.12 93.56±1.04

VGAE 92.46±0.49 93.64±0.30 85.51±0.44 88.45±0.17 88.91±0.22 88.16±0.29 82.58±0.36 89.95±0.19 95.98±0.82 96.11±1.24
DynAE 74.22±0.74 76.00±0.77 63.14±1.30 64.02±1.08 56.06±0.29 56.04±0.37 83.04±1.55 83.61±1.37 75.57±1.38 74.31±1.22

DynRNN 86.41±1.36 85.61±1.46 75.70±1.09 78.95±1.55 73.18±0.60 75.88±0.42 86.80±1.62 86.13±1.35 87.43±1.02 88.98±0.86
DynAERNN 87.43±1.19 89.37±1.17 76.06±1.08 81.84±0.89 76.02±0.88 78.55±0.73 88.37±1.19 89.64±1.27 88.82±0.63 89.11±0.64

VGRNN 93.18±0.48 93.95±0.33 85.32±0.66 88.35±0.63 90.29±0.24 90.14±0.36 93.89±1.58 95.31±1.05 96.65±0.48 96.35±0.53
EvolveGCN 91.37±0.54 92.84±0.41 83.65±0.29 87.23±0.29 85.71±0.51 86.47±0.78 80.86±2.23 86.89±1.90 93.64±0.47 94.23±0.51

DGCN 83.36±0.62 80.31±0.83 75.06±1.14 73.56±1.08 71.77±1.15 71.92±2.21 93.77±0.69 92.47±0.76 92.55±0.38 92.04±0.29
DySAT 94.23±0.44 95.05±0.36 86.28±0.49 89.01±0.32 89.76±0.19 89.29±0.21 86.69±0.28 92.22±0.16 96.77±0.37 97.14±0.41
HTGN 95.25±0.17 95.63±0.28 89.35±0.34 91.86±0.28 87.26±0.56 87.49±0.29 94.86±0.27 95.84±0.45 98.96±0.05 98.75±0.06

HGWaveNet 95.36±0.23 94.85±0.36 89.88±0.17 92.58±0.25 88.72±0.33 87.55±0.52 92.66±0.37 93.96±0.31 99.12±0.06 99.15±0.11
DyGMAE 96.89±0.15 96.91±0.15 90.77±0.34 92.65±0.22 94.17±0.10 94.55±0.09 95.82±0.33 96.75±0.15 99.53±0.06 99.64±0.04

Table 2: AUC and AP scores of dynamic new link prediction in real-world dynamic graphs. Best results are in bold, and the
suboptimal results are underlined.

Dataset Enron DBLP Facebook Email AS733
Metric AUC AP AUC AP AUC AP AUC AP AUC AP
GAE 87.57±1.07 87.99±0.86 78.11±1.26 82.15±0.97 88.55±0.53 87.58±0.77 75.73±0.32 85.68±0.26 88.74±1.72 89.16±1.25

VGAE 87.30±0.82 87.66±0.73 78.81±1.05 82.98±0.50 88.64±0.18 87.59±0.24 77.35±0.57 86.50±0.32 89.36±1.64 89.93±1.67
DynAE 66.10±0.71 66.50±1.12 58.14±1.16 58.82±1.06 54.62±0.22 54.62±0.22 80.54±1.41 79.86±1.25 69.46±1.62 69.83±1.64

DynRNN 83.20±1.01 80.96±1.37 71.71±0.73 75.34±0.67 73.32±0.60 75.52±0.50 81.13±1.17 81.41±1.49 76.87±1.52 78.35±0.26
DynAERNN 83.77±1.65 85.16±1.04 71.99±1.04 77.68±0.66 76.35±0.50 78.70±0.44 84.33±1.55 86.54±1.60 77.64±1.27 77.73±1.32

VGRNN 87.77±1.02 87.98±1.59 75.25±0.92 79.28±0.68 87.61±0.35 86.77±0.49 92.77±1.23 94.04±0.80 82.14±2.35 89.37±2.93
EvolveGCN 84.79±0.68 85.82±0.53 73.68±0.62 78.04±0.54 82.21±0.83 82.12±0.63 74.50±3.10 81.99±2.15 77.45±0.91 83.66±0.86

DGCN 81.25±1.68 77.92±1.12 74.15±1.55 75.31±1.41 72.36±0.68 70.30±1.23 90.33±0.84 90.23±0.71 88.71±1.07 88.48±0.92
DySAT 89.70±0.58 89.52±0.78 79.23±0.84 82.83±0.67 88.84±0.17 87.67±0.14 82.30±0.54 89.26±0.29 85.51±0.77 88.72±0.81
HTGN 91.61±0.49 90.78±0.77 82.84±0.75 84.84±0.89 83.22±0.58 82.61±0.88 92.89±0.42 94.02±0.49 96.62±0.26 95.69±0.24

HGWaveNet 92.57±0.25 91.85±0.32 83.22±0.23 85.84±0.32 85.83±0.59 83.79±0.75 90.67±0.32 92.57±0.28 96.85±0.19 95.77±0.22
DyGMAE 93.35±0.28 92.53±0.13 83.85±0.82 86.21±0.78 92.09±0.15 92.18±0.10 93.98±0.51 95.16±0.17 94.43±0.15 96.55±0.05

stronger ability to capture the potential patterns and changes
in the social graph structure within this dataset. Moreover,
when looking at other datasets, DyGMAE also demonstrates
superior generalization. This outstanding performance is
attributed to the simultaneous capture of global and local in-
formation, which enhances the ability to model changes and
enables excellent generalization across diverse scenarios.

4.4 ABLATION STUDY

To better understand the contributions of different mod-
ules to the performance improvements of DyGMAE, we
conduct an ablation study by removing key components.
Specifically, we analyze two variants: w/o MSMS: This
variant removes the MSMS and replaces it with a single
masking strategy. w/o RA: In this variant, we eliminate the
multi-scale representation alignment module, leaving only
multi-scale masking without representation alignment in
MSMS. We conduct experiments on three datasets: Face-
book, Email, and AS733, with the results shown in Figure 2.
Overall, DyGMAE achieves the best performance when all
components are included, while removing either the MSMS
module or the contrastive alignment leads to significant
performance drops across all metrics.

For the MSMS removal impact, in Facebook, removing

MSMS results in a decrease of 0.48% in AUC, 1.41% in AP,
0.54% in New_AUC, and 1.52% in New_AP. Specifically,
for Email with long snapshots where DyGAME struggles to
capture dynamic dependencies, MSMS helps alleviate this
issue. However, removing MSMS leads to drops of 4.18%
in AUC, 3.25% in AP, 5.4% in New_AUC, and 4.23% in
New_AP. In AS733 for DNLP, significant improvement is
due to MSMS, which brings increases of 3.38% in AUC,
2.76% in AP, 9.91% in New_AUC, and 8.34% in New_AP.
Given the long datasets and test snapshots, MSMS is key for
capturing long-term dependencies and ensuring good gen-
eralization. The ablation results further confirm the validity
of our motivation that GMAE benefits DLP and our design
related to MSMS.

Furthermore, removing the multi-scale representation align-
ment module (w/o RA) also degrades performance. In the
Facebook, Email, AS733, and datasets, the drops in AUC
are 0.07%, 2.30%, and 1.95% respectively; in AP, 0.31%,
1.81%, and 1.77%; in New_AUC, 0.16%, 2.50%, and 1.16%;
and in New_AP, 0.49%, 1.79%, and 2.32%. Interestingly,
the performance of the w/o RA variant is better than the
w/o MSMS variant in all three datasets, but still shows a
clear gap when compared to the full DyGMAE. This demon-
strates the effectiveness of the representation alignment in
extracting more meaningful and fine-grained representa-
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Figure 2: Ablation study results in Facebook, Email, and AS733 datasets. AUC and AP refer to dynamic link prediction,
while New_AUC and New_AP correspond to dynamic new link prediction.
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Figure 3: Parameter study results in Facebook, Email, and AS733 datasets. AUC and AP refer to dynamic link prediction,
while New_AUC and New_AP correspond to dynamic new link prediction.

tions. Additionally, in all three datasets, DyGMAE exhibits
smaller variance compared to the other two variants, validat-
ing its robustness.

Overall, these findings underline the crucial role of both
multi-scale masking and contrastive learning in enhancing
the discriminative power and generalization ability of the
learned representations.

4.5 HYPER-PARAMETER SENSITIVITY
ANALYSIS

We conduct experiments on various datasets to analyze the
sensitivity of the hyperparameter λ, which controls the con-
tribution of the contrastive loss objective for aligning the
representations across different masked views. The results,
shown in Figure 3, indicate that the sensitivity of λ varies
across different datasets for both DLP and DNLP tasks.

When λ is too small, DyGMAE fails to align the representa-
tions effectively, causing the loss of critical structural pat-
terns and dynamic dependencies, which results in a perfor-
mance decline in both tasks. As λ increases, the alignment
between representations becomes more pronounced, leading
to improved consistency in representations across different
views. However, when λ exceeds a certain threshold, the
method starts to over-align the representations, leading to
the loss of important details and consequently decreasing
performance. We observe that the best performance for both

tasks is achieved under different values of lambda. Regard-
ing the changes in lambda, there are different performance
variation curves. Performance degrades when λ is either too
small or too large, highlighting the sensitivity of the method
to this hyperparameter.

5 CONCLUSION

In this study, we propose DyGMAE, a novel dynamic graph
masked autoencoder, specifically designed for dynamic link
prediction. DyGMAE extends the GMAE framework to dy-
namic graphs and fully utilizes the superiority of GMAE in
link prediction. To reduce context loss from random mask-
ing strategy and the single distribution problem in DLP,
we propose a Multi-Scale Masking Strategy for learning
multi-scale structural and dynamic features, effectively mit-
igating the information loss caused by random masking and
capturing the complex distributions in dynamic graphs. A
contrastive learning objective further aligns representations
across masked views, capturing fine-grained context and
enhancing representation quality. Extensive experiments on
several real world datasets demonstrate the superior per-
formance of DyGMAE. The ablation studies further val-
idate the effectiveness of our proposed design. However,
our method requires careful tuning of hyperparameters. Our
future work plans to focus on adapting DyGMAE for other
dynamic graph tasks and extending the GMAE framework
to continuous-time dynamic graphs.
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DyGMAE: A Multi-Scale Dynamic Graph Masked Autoencoder for Link
Prediction

(Supplementary Material)

A RELATED WORK

A.1 DYNAMIC LINK PREDICTION

The field of dynamic link prediction has seen significant progress and attention recently and many related methods have
been proposed to address this challenge. For example, EvolveGCN Pareja et al. [2020] uses RNNs to update GCN weight
parameters dynamically at each time step, modeling temporal changes in graph sequences. Building on this, ComGCN
Pham et al. [2021] captures both node-level and community-level structural and evolutionary dynamics to improve the DLP
performance. HTGN Yang et al. [2021] and HGWaveNet Bai et al. [2023] extend GCNs to hyperbolic space, better capturing
the structural and temporal dependencies. SSL offers a powerful approach to leverage the abundant unlabeled data available
in dynamic graphs. Among SSL-based methods for dynamic graph learning, contrastive approaches dominate. DDGCL
Tian et al. [2021] is the first self-supervised framework for dynamic graphs, extending contrastive learning by contrasting
temporal views of the same node identity. Similarly, DySubC Chen et al. [2023] uses temporal subgraph contrastive learning
to capture both structural and dynamic features while maximizing mutual information. Other SSL generative methods,
such as VGRNN Hajiramezanali et al. [2019], combine variational autoencoders with RNNs to model time-evolving node
representations, using probabilistic inference to capture temporal dependencies and model uncertainty. And Goyal et al.
[2020] proposed three autoencoder methods to deal with DLP.

A.2 GRAPH MASKED AUTOENCODERS

Graph masked autoencoders have attracted significant attention in graph learning for their ability to leverage self-supervised
signals through masking and reconstruction, enabling models to learn meaningful representations without requiring labeled
data. GraphMAE Hou et al. [2022], the first GMAE-based method, focuses on masking and reconstructing node features,
achieving notable performance improvements in node classification task. Building upon GraphMAE, to enhance the
robustness, GraphMAE2 Hou et al. [2023] introduces the multi-view random re-mask decoding and latent representation
prediction strategies. MaskGAE Li et al. [2023b] extends this by corrupting edges and paths, reconstructing edge and degree
information to capture structural features. StructMAE Liu et al. [2024a] refines the masking strategy by introducing a
structure-guided approach, where nodes are scored based on structural significance and an easy-to-hard masking process
gradually enhances structural awareness. Additionally, AUG-MAE Wang et al. [2024] introduces adversarial masking and
a uniformity regularizer to improve alignment and representation consistency. Other methods Tian et al. [2023], Ye et al.
[2023], Liu et al. [2024b], Luo et al. [2024] integrate GMAE with contrastive learning, heterogeneous graphs, and sequential
recommendation tasks. However, these methods are designed for static graphs and cannot address both the structural patterns
and temporal dependencies of dynamic graphs.

Submitted to the 41st Conference on Uncertainty in Artificial Intelligence (UAI 2025). To be used for reviewing only.



Algorithm 1: Dynamic Graph Masked Autoencoder (DyGMAE)
Input: Dynamic graph snapshots G = {G1, G2, . . . , GT }; Number of masks K; Set of masking strategies

{f1
M, f2

M, . . . , fK
M }; Weight coefficients λ; Maximum iteration epoch_max

Output: Predicted adjacency matrix ÂT+1

1 while epoch ≤ epoch_max do
2 for each snapshot t ∈ {1, 2, . . . , T} do
3 for each view k ∈ {1, 2, . . . ,K} do
4 Generate unmasked view Guk

t using fk
M;

5 Compute latent representation Hk
t using the encoder and projector (Equations 4 and 5);

6 Compute reconstruction losses LEk
t and LAk

t (Equations 8 and 10);
7 end
8 Compute contrastive loss LC

t to align multi-mask representations (Equation 11);
9 Aggregate representations from all masked views to obtain Ht (Equation 12);

10 Update temporal dependencies using GRU to compute Zt (Equation 13);
11 end
12 Compute total loss L (Equation 19);
13 Update parameters using gradient descent;
14 end
15 return Predicted adjacency matrix ÂT+1;

B ALGORITHM AND COMPLEXITY

B.1 ALGORITHM

We summarized the details of our proposed method DyGAME in the Algorithm 1. We input the dynamic graph snapshots
G, and the parameters. During the training of snapshots, for each individual snapshot, we generate K masks in MSMS.
For each masked view, the encoder generates representations. Subsequently, we calculate the edge reconstruction loss
and the adjacency matrix reconstruction loss using Equations 8 and 10 respectively. For each snapshot, we also need to
compute the contrastive loss according to Equation 11 (LC

t ). Then, we aggregate the representations from all views and pass
them through the GRU. After that, we calculate the overall loss to update the parameters. Finally, we output the predicted
adjacency matrix for the next time step.

B.2 COMPLEXITY ANALYSIS

We conduct a time-complexity analysis of DyGMAE. First, generating masked views for each snapshot t and each masking
strategy K requires O(T ·K ·M), where T is the number of snapshots, K is the number of masking strategies, and M is
the number of edges. Next, computing the latent representations Hk

t using the encoder and projector involves a complexity
of O(T ·K · (L · (N +M) · d2 + N · d2)), where L is the number of GNN layers, N is the number of nodes, and d is
the feature dimension. The all reconstruction losses LEk

t and LAk
t are computed with a complexity of O(T ·K ·N · d).

For the contrastive loss LC
t , aligning multi-mask representations incurs a complexity of O(T ·K2 ·N · d). Aggregating

representations from all masked views to obtain Ht requires O(T ·K ·N ·d). Finally, updating temporal dependencies using
GRU has a complexity of O(T ·N · d2). Overall, the dominant factors in the time complexity are the number of snapshots
T , the graph size N and M , and the feature dimension d, leading to an approximate complexity of O(T · (N +M) · d2)
when K and L are small constants.

C DATASETS

We conduct the experiments on five datasets, which vary in size and the length of their snapshots. Some datasets are large
while others are small, and some have long - term snapshots whereas others have short - term ones. Table 3 summarizes
the key statistics of the datasets used in our experiments, providing an overview of their size and structural properties. The
notation "Train : Test" represents the length of the training snapshots and test snapshots, respectively. The datasets include:
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Table 3: Statistics of datasets.

Datasets Enron DBLP Facebook Email AS733
#Nodes 184 315 663 2029 6,628
#Edges 115-266 165-308 844-1068 104-711 1734-12572
#Snapshots 11 10 9 29 30
Train : Test 8:3 7:3 6:3 26:3 20:10

Enron1, an email communication dataset where edges represent emails exchanged between employees; DBLP2, an academic
co-authorship network where nodes represent authors and edges represent collaborations; Facebook, a social communication
network; Email3, an email communication dataset. AS7334, a graph representing autonomous systems (AS) of routers and
their traffic exchanges via the Border Gateway Protocol;

D BASELINES

• GAE: GAE consists of an encoder and a decoder. The encoder learns to map the input graph data into a low-dimensional
latent space, while the decoder reconstructs the graph data from the latent vectors.

• VGAE Kipf and Welling [2016]: The VGAE combines the concepts of the VAE and the GCN, and it consists of an
encoder and a decoder. The encoder uses the GCN to map the node features of a graph to a latent space and outputs the
mean and variance of the latent variables to represent the distribution of the node features.

• DynAE Goyal et al. [2020]: It is a dynamic autoencoder method extended from the static graph autoencoder. It processes
the adjacency matrix information of multiple time steps through fully connected layers. It is suitable for capturing
short-term dynamic patterns, but has limited ability to model long-term dependencies.

• DynRNN Goyal et al. [2020]: It inputs the sequence of node adjacency vectors into the LSTM (Long Short-Term
Memory) units and learns the evolutionary patterns across time steps through the memory gating mechanism. The
LSTM also serves as the decoder.

• DynAERNN Goyal et al. [2020]: DynAERNN uses a fully connected encoder to reduce the dimension of the adjacency
matrix into a low-dimensional representation. Then, it inputs the low-dimensional sequence into the LSTM for temporal
modeling. The decoder used is a fully connected layer.

• VGRNN Hajiramezanali et al. [2019]: It is a novel hierarchical variational model for representation learning on dynamic
graphs. It extends the graph convolutional recurrent neural network (GCRN) to form a graph recurrent neural network
(GRNN), then enhances it by introducing high-level latent random variables to create the variational graph recurrent
neural network (VGRNN).

• EvolveGCN Pareja et al. [2020]: EvolveGCN offers a solution for dynamic graphs by adapting GCN over time without
relying on node embeddings. It uses an RNN to dynamically update GCN parameters, with two architectures explored
for this process.

• DGCN Gao et al. [2023]: DGCN is a GCN-based dynamic graph representation learning method. It maximizes the
mutual information between local node and global graph representations to capture snapshot-level global structure
and uses LSTM to update GCN weight parameters across time steps. A new Dice similarity is proposed to guide the
aggregation and better distinguish the importance of neighboring nodes.

• DySAT Sankar et al. [2020]: It employs two self-attention mechanisms, the structural attention block and the temporal
attention block, to capture information from two dimensions: structural neighborhood and historical representations.

• HTGN Yang et al. [2021]: HTGN migrates the space to the hyperbolic geometry space. It utilizes Hypergraph Neural
Network (HGNN) and Hypergraph Gated Recurrent Unit (HGRU) to obtain topological and dynamic information.
Moreover, it introduces the Hyperbolic Temporal Contextual Self-Attention (HTA) module to focus on historical states
and the Hyperbolic Temporal Consistency (HTC) module to ensure stability and generalization ability.

• HGWaveNet Bai et al. [2023]: HGWaveNet uses hyperbolic diffusion graph convolution (HDGC) to aggregate
neighborhood information and hyperbolic dilated causal convolution (HDCC) to obtain historical state information.

1https://www.cs.cornell.edu/ arb/data/email-Enron/
2https://github.com/VGraphRNN/VGRNN
3http://networkrepository.com/dynamic.php
4https://snap.stanford.edu/data/as-733.html
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E MULTI-SCALE REPRESENTATION FUSION TYPE ANALYSIS

In this study, we performed a comprehensive analysis of diverse fusion types within the Multi-Scale Representation Fusion
(MSRF) introduced in Section 3.2. To gauge its efficacy, we conducted experiments employing four distinct fusion strategies:
mean, sum, max, and an attention-based mechanism. The outcomes of the DLP and DNLP tasks are respectively presented
in Table 4 and Table 5.

The experimental results indicate that different datasets require different strategies to achieve optimal performance, showing
significant differences. The max strategy demonstrates good performance across multiple datasets and tasks. However, the
performance of each strategy varies significantly among different datasets. This suggests that in practical applications, we
need to select appropriate fusion strategies according to the characteristics of the datasets to improve the accuracy and
reliability of predictions.

Table 4: AUC and AP scores of dynamic link prediction for various fusion methods. Best results are in bold.

Dataset Enron Facebook Email
Metric AUC AP AUC AP AUC AP
Mean 96.55±0.23 96.70±0.16 94.25±0.09 94.39±0.11 95.79±0.36 96.70±0.17
Sum 96.14±0.16 96.44±0.06 94.17±0.10 94.55±0.09 95.82±0.33 96.75±0.15
Max 96.89±0.15 96.91±0.15 93.25±0.21 93.56±0.18 95.67±0.36 96.60±0.15

Attention 96.25±0.08 96.57±0.06 93.43±0.10 93.41±0.12 95.01±1.18 96.17±0.79

Table 5: AUC and AP scores of dynamic new link prediction for various fusion methods. Best results are in bold.

Dataset Enron Facebook Email
Metric AUC AP AUC AP AUC AP
Mean 92.38±0.66 92.00±0.57 92.10±0.09 91.93±0.10 93.88±0.56 95.04±0.19
Sum 91.84±0.41 91.92±0.42 92.09±0.15 92.18±0.10 93.98±0.51 95.16±0.17
Max 93.35±0.28 92.53±0.13 90.81±0.23 90.84±0.13 93.67±0.52 94.86±0.17

Attention 91.70±0.32 91.63±0.38 91.01±0.16 90.65±0.13 92.72±1.68 94.26±1.16

F MULTI-STEP DYNAMIC LINK PREDICTION RESULTS

Table 6: AUC and AP scores of multi-step dynamic link prediction in real-world dynamic graphs. Best results are in bold.

Dataset Enron Facebook Email
Metric AUC AP AUC AP AUC AP

VGRNN 91.91±0.32 92.15±0.58 89.32±0.51 89.59±0.49 92.14±0.85 92.73±1.32
HTGN 94.38±0.29 94.91±0.26 86.26±0.58 86.60±0.47 93.71±0.27 94.78±0.19

HGWaveNet 95.02±0.25 94.54±0.18 88.01±0.44 87.17±0.19 92.34±0.26 93.84±0.29
DyGMAE 95.97±0.12 96.20±0.13 93.49±0.09 94.32±0.17 95.30±0.21 96.37±0.11

Table 7: AUC and AP scores of multi-step dynamic new link prediction in real-world dynamic graphs. Best results are in
bold.

Dataset Enron Facebook Email
Metric AUC AP AUC AP AUC AP

VGRNN 86.78±0.40 86.81±0.49 86.70±0.43 86.21±0.38 90.75±0.23 91.14±0.34
HTGN 90.01±0.34 89.53±0.33 82.96±0.58 82.66±0.48 91.89±0.33 93.26±0.12

HGWaveNet 92.16±0.46 91.74±0.35 85.08±0.56 83.11±0.32 90.23±0.31 92.15±0.42
DyGMAE 92.34±0.24 92.15±0.32 91.60±0.13 92.09±0.11 93.50±0.33 94.88±0.13

Multi-step dynamic link prediction aims to train a projection function f given a sequence of dynamic graph adjacency
matrices of length l, denoted as {A1,A2, · · · ,Al}. This function maps the input snapshot sequence to the output sequence,
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predicting the future adjacency matrices Al+1,Al+2, · · · ,Al+k such that Al+1,Al+2, · · · ,Al+k = f(A1,A2, · · · ,Al).It
must be pointed out that the multi-step dynamic link prediction has no access to the entire set of test snapshots. In contrast,
the dynamic link prediction can see the snapshot at the previous time step of the snapshot to be predicted, but the model
parameters cannot be updated through training on the test set. Compared with DLP, multi-step dynamic link prediction
requires methods to be more effective in capturing the dynamic evolution information of graph structures. We conducted
multi-step dynamic link prediction and also multi-step dynamic new link prediction experiments on three datasets and
compared with several state-of-the-art methods. The experimental settings were the same as those in the DLP experiments.
The results are presented in the Table 6 and Table 7 respectively. As can be seen, our method achieves the best performance
on these two tasks, demonstrating that DyGMAE can better capture the dynamic dependencies.
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