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Abstract1

This paper aims for set-to-hypergraph prediction, where the goal is to infer the set2

of relations for a given set of entities. This is a common abstraction for applications3

in particle physics, biological systems, and combinatorial optimization. We address4

two common scaling problems encountered in set-to-hypergraph tasks that limit5

the size of the input set: the exponentially growing number of hyperedges and the6

run-time complexity, both leading to higher memory requirements. We make three7

contributions. First, we propose to predict and supervise the positive edges only,8

which changes the asymptotic memory scaling from exponential to linear. Second,9

we introduce a training method that encourages iterative refinement of the predicted10

hypergraph, which allows us to skip iterations in the backward pass for improved11

efficiency and constant memory usage. Third, we combine both contributions in12

a single set-to-hypergraph model that enables us to address problems with larger13

input set sizes. We provide ablations for our main technical contributions and show14

that our model outperforms prior state-of-the-art, especially for larger sets.15

1 Introduction16

Inferring the relational structure for a given set of entities is a common abstraction for many applica-17

tions, including vertex reconstruction in particle physics [1, 2], inferring higher-order interactions18

in biological and social systems [3, 4] or combinatorial optimization problems, such as finding the19

convex hull or Delaunay triangulation [2, 5]. The wide spectrum of different application areas under-20

lines the expressivity of this abstract task, which is known in machine learning as set-to-hypergraph21

prediction [2]. Here, the hypergraph generalizes the pairwise relations in a graph to multi-way22

relations, a.k.a. hyperedges. In biological systems, multi-way relationships (hyperedges) among23

genes and proteins are relevant for protein complexes and metabolic reactions [6]. A subgroup in a24

social network can be understood as a hyperedge that connects subgroup members [7] and in images25

interacting objects can be modeled by scene graphs [8] which is useful for counting objects [9]. We26

distinguish the set-to-hypergraph task from the related, but different, task of link prediction that aims27

to discover the missing edges in a graph, given the set of vertices and a subset of the edges [10].28

For the set-to-hypergraph problem considered in this paper, we start with a set of nodes without any29

edges.30

A common approach to set-to-hypergraph problems is to decide for every edge, whether it exists31

or not [2]. For a set of n nodes, the number of all possible hyperedges grows in O(2n), which32

already becomes intractable for moderately sized n. This is the scaling problem of set-to-hypergraph33

prediction that we will address in this paper. Combinatorial optimization challenges, like set-to-34

hypergraph prediction, introduce the additional problem of complexity. For example, convex hull35

finding in d dimensions has a run time complexity of O(n log(n) + n⌊ d
2 ⌋) [11]. This means that36

larger input sets require more computation regardless of the quality of the hypergraph prediction37

algorithm. Indeed, it was observed in [2] that for larger set sizes performance was worse. In this38

paper, we aim to address the scaling and complexity problems in order to predict hypergraphs from39

larger sets.40
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Figure 1: Outline of the paper and our contributions.

We make three contributions in this paper. 1. We propose a scalable set-to-hypergraph framework that41

represents the hypergraph structure with a pruned incidence matrix — the incidence matrix without42

the edges (rows) that have no incident nodes (Section 2). We prove that computing the loss over the43

full incidence matrix is equivalent solely using the pruned version, thus improving the asymptotic44

memory requirements from O(2n) to O(mn), that is linear in the input set size. 2. To address the45

complexity problem, we introduce in Section 3 a training method that encourages iterative refinement46

of the predicted hypergraph with memory requirements scaling constant in the number of refinement47

steps. This addresses the need for more compute by complex problems in a scalable manner. Third,48

we combine in Section 4 the efficient representation from the first contribution with the requirements49

of the scalable training method from the second contribution in a recurrent model that performs50

iterative refinement on a pruned incidence matrix. Our model handles different input set sizes and51

varying numbers of edges while respecting the permutation symmetry of both. Figure 1 illustrates52

the three contributions, the neural network, and the organization of the paper. In our experiments in53

Section 5, we provide an in-depth ablation of each of our technical contributions and compare our54

model against prior work on common set-to-hypergraph benchmarks.55

Preliminary. Hypergraphs generalize normal graphs by replacing the normal edges that connect56

exactly two nodes with hyperedges that connect an arbitrary number of nodes. Since we only consider57

the general version, we shorten hyperedges to edges in the remainder of the paper. Given a set of58

nodes and their corresponding input feature vectors X , in the set-to-hypergraph task we want to learn59

a neural network f that predicts for all possible edges whether the target hypergraph contains that60

edge. Two edges are equivalent if and only if they are incident to the same nodes. For example,61

the input set could consist of objects in an image and the edges would represent their relations.62

Next, we provide an overview of the Set2Graph neural network [2]. We focus on it because most63

previous networks follow a similar structure. In Set2Graph, f consists of a collection of functions64

f := (F 1, F 2, . . . , F k), where F k maps a set of nodes to a set of k-edges (edges with k incident65

nodes). All F k are composed of three steps: a set-to-set model maps the input set to a latent set,66

a broadcasting step forms all possible k-tuples from the latent set elements, and a final graph-to-67

graph model that predicts for each k-edge whether it exists or not. The output of every F k is then68

represented by an adjacency tensor, a tensor with k dimensions each of length n. Serviansky et al. [2]69

show that this can approximate any continuous set-to-k-edge function, and by extension, the family70

of F k functions can approximate any continuous set-to-hypergraph function. Since the asymptotic71

memory scaling of F k is in O(nk), modeling k-edges beyond k > 2 already becomes intractable in72

many settings and one has to apply heuristics to recover higher-order edges from pairwise edges [2].73

2 Scaling by pruning the non-existing edges74

In this section, we propose a solution for the memory scaling problem encountered in set-to-75

hypergraph tasks. The goal is to learn a model f(X) = H that maps a set X of input vectors76

to the hypergraph H = (V ,E, I) that consists of latent node and edge features and the incidence77

matrix. In what follows, we describe each constituent of H and how the loss is computed.78

Nodes. Each input element x ∈ X gets an “identity” as a node in the hypergraph, meaning if a79

subset of the nodes is connected by an edge then there exists a relation between the corresponding80

input elements. We differentiate between the input elements and the nodes of the hypergraph, as we81
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expect the latter to be represented as latent vectors v ∈ V = {vi ∈ RdV |xi ∈ X}. The importance82

of this becomes clear in the discussion on the training objective later on.83

Edges. The set of all possible edges can be expressed using the power set P(V) \ {∅}, that is the84

set of all subsets of V minus the empty set. Different from the situation with the nodes, we do not85

know which edge will be part of the hypergraph, since this is what we want to predict. Listing out86

all 2|V |−1 possible edges and deciding for each edge whether it exists or not, becomes intractable87

very quickly. Furthermore, we observe that in many cases the number of existing edges is much88

smaller than the total number of possible edges. We leverage this observation by keeping only a fixed89

number of edges m that is sufficient to cover all (or most) hypergraphs for a given task. Thus, we90

improve the memory requirement from O(2|V |dE) to O(mdE), where dE is the vector size of the91

edge representations e ∈ E . All possible edges that do not have an edge representation in E are92

implicitly predicted to not exist. After specifying the training objective, we provide a more formal93

argument on why pruning all but m edges from E is sound.94

Incidence matrix. Since both the nodes and edges are represented by latent vectors, we require95

an additional component for specifying the connections. Different from previous approaches, we96

use the incidence matrix over adjacency tensors [2, 12]. The two differ in that incidence describes97

whether an edge is connected to a node, while adjacency describes whether an edge between a subset98

of nodes exists. The rows of the incidence matrix I correspond to the edges and the columns to the99

nodes. Thus, an entry Ii,j ∈ [0, 1] represents the probability of the i-th edge being incident to the100

j-th node. Theoretically, we can express any hypergraph in both representations, but pruning edges101

becomes especially simple in the incidence matrix, where we just remove the corresponding rows.102

We interpret the pruned edges e /∈ E that have no corresponding row in the pruned I as having zero103

probability of being incident to any node.104

Loss function. We apply the loss function only on the incidence probability matrix I . For efficiency105

purposes, we would like to train each incidence value separately as a binary classification and apply a106

constant threshold (> 0.5) on I at inference time to get a binary incidence matrix. In probabilistic107

terms, this translates to a factorization of the joint distribution p(I|X) as,
∏

i,j p(Ii,j |X). In order to108

still be able to model interrelations between different incidence probabilities, we impose a requirement109

on the model f : the probability Ii,j produced by f depends on ei and vj . We could alternatively110

factorize p(I|X) through the chain rule, but that is much less efficient as it introduces nm non-111

parallelizable steps. This highlights the importance of the latent node and edge representations, which112

enable us to model the dependencies in the output efficiently because predicting all Ii,j can happen113

in parallel. Furthermore, this changes our assumption on the incidence probabilities from that of114

independence to conditional independence on ei and vj , and we apply the binary cross-entropy loss115

on each Ii,j .116

The binary classification over Ii,j highlights yet another reason for picking the incidence representa-117

tion over the adjacency. Let us assume we are trying to learn a binary classifier that predicts for every118

entry in the adjacency tensor whether it is 0 or 1. Removing all the 0 values (non-existing edges)119

from the training set will clearly not work out in the adjacency case. In contrast, an existing edge in120

the incidence matrix contains both 1s and 0s (except for the edge connecting all nodes), ensuring121

that a binary incidence classifier sees both positive and negative examples. However, an adjacency122

tensor has the advantage that the order of the entries is fully decided by the order of the nodes, which123

are given by the input X in our case. In the incidence matrix, the row order of the incidence matrix124

depends on the edges, which are orderless.125

When comparing the predicted incidence matrix with a ground-truth matrix, we need to account for126

the orderless nature of the edges and the given order of the nodes. Hence, we require a loss function127

that is invariant toward reordering over the rows of the incidence matrix, but equivariant to reordering128

over the columns. We achieve this by matching every row in I with a row in the pruned ground-truth129

incidence matrix I∗ (containing the existing edges), such that the binary cross-entropy loss H over130

all entries is minimal:131

L(I, I∗) = min
π∈Π

∑
i,j

H(Iπ(i),j , I
∗
i,j) (1)

Finding a permutation π that minimizes the total loss is known as the linear assignment problem and132

we solve it with an efficient variant of the Hungarian algorithm [13, 14]. We discuss the implications133

on the computational complexity of this in Appendix B.134
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Having established the training objective in Equation 1, we can now offer a more formal argument on135

the soundness of supervising existing edges only while pruning the non-existing ones, where J can136

be understood as the full incidence matrix (proof in Appendix A):137

Proposition 1 (Supervising only existing edges). Let J ∈ [ϵ, 1)
(2n−1)×n be a matrix with at most138

m rows for which ∃j : Jij > ϵ, with a small ϵ > 0. Similarly, let J∗ ∈ {0, 1}(2
n−1)×n be a matrix139

with at most m rows for which ∃j : Jij = 1. Let prune(·) denote the function that maps from a140

(2n − 1)× n matrix to a k × n matrix, by removing (2n − 1) − k rows where all values are ≤ ϵ.141

Then, for a constant c = (2n−1−k)n ·H(ϵ, 0) and all such J and J∗:142

L(J ,J∗) = L(prune(J), prune(J∗)) + c (2)

The matrix prune(J) can be understood as the pruned incidence matrix that we defined earlier and143

prune(J∗) as the pruned ground-truth. In practice, the ϵ corresponds to a lower bound on the log in144

the entropy computation, like -100 in PyTorch [15]. Since the losses in Equation 2 are equivalent145

up to an additive constant, the gradients of the parameters are exactly equal in both the pruned and146

non-pruned cases. Thus, pruning the non-existing edges does not affect learning, while significantly147

reducing the asymptotic memory requirements.148

Summary. In set-to-hypergraph tasks, the number of different edges that can be predicted grows149

exponentially with the input set size. We address this computational limitation by representing the150

edge connections with the incidence matrix and pruning all non-existing edges before explicitly151

deciding for each edge whether it exists or not. We show that pruning the edges is sound when the152

loss function respects the permutation symmetry in the edges.153

3 Scaling by skipping the non-essential gradients154

Next, we consider how to learn the pruned incidence matrix. Some tasks may require more compute155

than others, which can result in worse performance or intractable models if not properly addressed.156

A naive approach would increase the number of parameters, either by increasing the number of157

hidden dimensions or the depth of the neural network, which is clearly not scalable. Furthermore,158

the memory requirement of backprop would also grow with greater depth. Instead, we would like to159

increase the amount of sequential computation by reusing parameters. That is, we want the model160

f to be recurrent, Ht+1 = f(X,Ht) with t denoting the t-th application of f starting from t = 0.161

Recurrent models are commonly applied to sequential data, where the input varies for each time step t162

[16], for example, the words in a sentence. In our case, we use the same input X at every step. Using163

a recurrent model, we can increase the total number of iterations – to scale the number of sequential164

computation steps – without increasing the number of parameters. However, the recurrence does not165

address the growing memory requirements of backprop, since the activations of each iteration still166

need to be kept in memory.167

Iterative refinement. In the rest of this section, we present an efficient training algorithm that168

can scale to any number of iterations at a constant memory cost. We build on the idea that if each169

iteration applies a small refinement, then it becomes unnecessary to backprop through every iteration.170

Algorithm 1: Backprop with skips
Input: X, I∗, S,B
H← initialize(X)
for s in S :

with no_grad():
for t in range(s) :

H←f(X,H)
l← 0
for t in range(B) :

H←f(X,H)
l← l + L(H, I∗)

backward(l)
gradient_step_and_reset()

We can define an iterative refinement as reducing the loss171

(by a little) after every iteration, L(It, I∗) < L(It−1, I∗).172

Thus, the long-term dependencies between Ht for t’s that173

are far apart can also be ignored, since f only needs to174

improve the current Ht. We can encourage f to iteratively175

refine the prediction Ht, by applying the loss L after each176

iteration. This has the effect that f learns to move the Ht in177

the direction of the negative gradient of L, making it similar178

to a gradient descent update.179

Backprop with skips. Similar to previous works that en-180

courage iterative refinement through (indirect) supervision181

on the intermediate steps [17], we expect the changes of each182

step to be small. Thus, it stands to reason that supervising183

every step is unnecessary and redundant. This leads us to184

a more efficient training algorithm that skips iterations in185

the backward-pass of backprop. Algorithm 1 describes the186
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training procedure in pseudocode (in a syntax similar to PyTorch [15]). The argument S is a list of187

integers of length N that is the number of gradient updates per mini-batch. Each gradient update188

consists of two phases, first s ∈ S iterations without gradient accumulation and then B iterations that189

add up the losses for backprop. Through these hyperparameters, we control the amount of resources190

used during training. Increasing hyperparameter B allows for models that do not strictly decrease the191

loss after every step and require supervision over multiple subsequent steps. Note that having the192

input X at every refinement step is important so that the model does not forget the initial problem.193

Summary. Motivated by the need for more compute to address complex problems, we propose a194

method that increases the amount of sequential compute of the neural network without increasing195

the memory requirement at training time. Our training algorithm requires the model f to perform196

iterative refining of the hypergraph, for which we present a method in the next section.197

4 Scaling the set-to-hypergraph prediction model198

In Section 2 and Section 3 we proposed two methods to overcome the memory scaling problems that199

appear for set-to-hypergraph tasks. To put these methods into practice, we need to specify a model f200

that fulfills the required properties. In what follows, we propose a specific implementation for each201

such property.202

Initialization. As the starting point for the iterative refinement, we initialize the nodes V0 from the203

input set as v0
i = Wxi + b, where W ∈ RdV×dX , b ∈ RdV are learnable parameters. The affine204

map allows for hidden dimensions dV that are different from the input feature dimensions dX . An205

informed initialization similar to the nodes is not available for the edges and the incidence matrix,206

since these are what we aim to predict. Instead, we choose an initialization scheme that respects207

the permutation symmetry of a set of edges while also ensuring that each edge starts out differently.208

The last point is necessary for permutation-equivariant operations to distinguish between different209

edges. The random initialization e0i ∼ N (µ, diag(σ)), with shared learnable parameters µ ∈ RdE210

and σ ∈ RdE fulfills both these properties, as it is highly unlikely for two samples to be identical.211

Conditional independence. We want the incidence probabilities Ii,j to be conditionally indepen-212

dent of each other given ei and vj . A straightforward way to model this is by concatenating both213

vectors (denoted with [·]) and applying an MLP with a sigmoid activation on the scalar output:214

It
i,j = MLP

([
et−1
i , vt−1

j

])
(3)

The superscripts point out that we produce a new incidence matrix for step t based on the edge and215

node vectors from the previous step. Note that we did not specify an initialization for the incidence216

matrix, since we directly replace it in the first step.217

Iterative refinement. The training algorithm in Section 3 assumes that f performs iterative re-218

finement on Ht, but leaves open the question on how to design such a model. Instead of iteratively219

refining the incidence matrix, i.e., the only term that appears in the loss (Equation 1), we focus on220

refining the edges and nodes.221

A refinement step for some node vi ∈ V needs to account for the rest of the hypergraph, which222

also changes with each iteration. For this purpose, we apply the permutation-equivariant DeepSets223

[18] to produce node updates dependent on the full set of nodes from the previous iteration Vt−1.224

The permutation-equivariance of DeepSets means that the output set retains the input order; thus225

it is sensible to refer to vt
i as the updated version of the same node vt−1

i from the previous step.226

Furthermore, we concatenate the aggregated neighboring edges weighted by the incidence probabili-227

ties ρE→V (j, t) =
∑k

i=1 I
t
i,je

t−1
i , to incorporate the relational structure between the nodes. This228

aggregation works akin to message passing in graph neural networks [19]. An indispensable input,229

required for adding skips in the backward pass during training, is the input features X . Instead230

of directly concatenating the raw features xi, we use the initial nodes v0
i . Finally, we express the231

refinement part for the nodes as:232

Vt = DeepSets
({[

vt−1
j , ρE→V (j, t) ,v0

j

]∣∣j = 1 . . . n
})

(4)

The updates to the edges Et mirror that of the nodes, except for the injection of the input set. Together233

with the aggregation function ρV→E (i, t) =
∑n

j=1 I
t
i,jv

t−1
j , we can update the edges as:234

Et = DeepSets
({[

et−1
i , ρV→E (i, t)

]∣∣i = 1 . . . k
})

(5)
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By sharing the parameters between different refinement steps, we naturally obtain a recurrent model.235

Previous works on recurrent models [20] saw improvements in training convergence by including236

layer normalization [21] between each iteration. Shortcut connections in ResNets [22] have been237

shown to encourage iterative refinement of the latent vector [17]. We add both shortcut connections238

and layer normalization to the updates in Equation 4 and Equation 5. Although we prune the negative239

edges, we still want to predict a variable number thereof. To achieve that we simply extend the240

incidence model in Equation 3 with an existence indicator:241

Ît
i = σt

iI
t
i (6)

This can be seen as factorizing the probability into “p(ei incident to vj) · p(ei exists)” and replaces242

the aggregation weights in ρE→V and ρV→E .243

Summary. We propose a model that fulfills the requirements of our scalable set-to-hypergraph244

training framework from Section 2 and Section 3. By adding shortcut connections, we encourage it245

to perform iterative refinements on the hypergraph while being permutation equivariant with respect246

to both the nodes and the edges.247

5 Experiments248

In this section, we evaluate our approach on multiple set-to-hypergraph tasks, in order to compare to249

prior work and examine the main design choices. We refer to Appendix D for further details, results,250

and ablations. Code is included in the supplementary material.251

5.1 Scaling Set-to-Hypergraph Prediction252

First, we compare our model from Section 4 on three different set-to-hypergraph tasks against the253

state-of-the-art model. This allows us to see the difference between predicting the incidence matrix254

and predicting the adjacency tensors.255

Baselines. Our main comparison is against Set2Graph [2], which is a strong and representative256

baseline for approaches that predict the adjacency structure, which we generally refer to as adjacency-257

based approaches. Serviansky et al. [2] modify the task in two of the benchmarks, to avoid storing258

an intractably large adjacency tensor. We explain in Appendix D how this affects the comparison.259

Additionally, we compare to Set Transformer [23] and Slot Attention [20], which we adapt to the260

set-to-hypergraph setting by treating the output as the pruned set of edges and producing the incidence261

matrix with the MLP from Equation 3. We refer to these two as incidence-based approaches that also262

include our model.263

Particle partitioning. Particle colliders are an important tool for studying the fundamental particles264

of nature and their interactions. During a collision, several particles are emanated and measured by265

nearby detectors, while some particles decay beforehand. Identifying which measured particles share266

a common progenitor is an important subtask in the context of vertex reconstruction [24]. We can267

treat this as a set-to-hypergraph task: the set of measured particles is the input set and the common268

progenitors are the edges of the hypergraph. We use a simulated dataset of 0.9M data-sample with269

the default train/validation/test split [2, 24]. Each data-sample is generated from on one of three270

different distributions for which we report the results separately: bottom jets, charm jets and light271

jets. The ground-truth target is the incidence matrix that can also be interpreted as a partitioning272

of the input elements since every particle has exactly one progenitor (edge). In Table 1 we report273

the performances on each type of jet as the F1 score and Adjusted Rand Index (ARI). Our method274

outperforms all alternatives on bottom and charm jets while being competitive on light jets.275

Convex hull. The convex hull of a finite set of d-dimensional points can be efficiently represented276

as the set of simplices that enclose all points. In the 3D case, each simplex consists of 3 points277

that together form a triangle. For the general d-dimensional case, the valid incidence matrices are278

limited to those with d incident vertices per edge. Finding the convex hull is an important and279

well-understood task in computational geometry, with optimal exact solutions [11, 25]. Nonetheless,280

predicting the convex hull for a given set of points poses a challenging problem for current machine281

learning methods, especially when the number of points increases [2, 5]. We generate an input set282

by drawing n 3-dimensional vectors from one of two distributions: Gaussian or spherical. For the283

Gaussian setting, points are sampled i.i.d. from a standard normal distribution. For the spherical284

6
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Table 1: Particle partitioning results. On three jet types performance measured in F1 score and
adjusted rand index (ARI) for 11 different seeds. Our method outperforms the baselines on bottom
and charm jets while being competitive on light jets.

bottom jets charm jets light jets
Model F1 ARI F1 ARI F1 ARI

Set2Graph 0.646±0.003 0.491±0.006 0.747±0.001 0.457±0.004 0.972±0.001 0.931±0.003

Set Transformer 0.630±0.004 0.464±0.007 0.747±0.003 0.466±0.007 0.970±0.001 0.922±0.003

Slot Attention 0.600±0.012 0.411±0.021 0.728±0.008 0.429±0.016 0.963±0.002 0.895±0.009

Ours 0.679±0.002 0.548±0.003 0.763±0.001 0.499±0.002 0.972±0.001 0.926±0.002

Table 2: Convex hull results measured as F1 score. Our method outperforms all baselines consider-
ably for all settings and set sizes (n).

Spherical Gaussian

Model n=30 n=50 n∈[20 . . 100] n=30 n=50 n∈[20 . . 100]
Set2Graph 0.780 0.686 0.535 0.707 0.661 0.552
Set Transformer 0.773 0.752 0.703 0.741 0.727 0.686
Slot Attention 0.668 0.629 0.495 0.662 0.665 0.620
Ours 0.892 0.868 0.823 0.851 0.831 0.809

setting, we additionally normalize each point to lie on the unit sphere. Following Serviansky et al.285

[2], we use n=30, n=50 and n∈[20 . . 100], where in the latter case the input set size varies between286

20 and 100. Table 2 shows our results. Our method consistently outperforms all the baselines by a287

considerable margin. In contrast to Set2Graph, our model does not suffer from a drastic performance288

decline when increasing the input set size from 30 to 50. Furthermore, based on the results in the289

Gaussian setting, we also observe that all the incidence-based approaches handle varying input sizes290

much better than the adjacency-based approach.291

Delaunay triangulation. A Delaunay triangulation of a finite set of 2D points is a set of triangles292

for which the circumcircles of all triangles have no point lying inside. When there exists more than293

one such set, Delaunay triangulation aims to maximize the minimum angle of all triangles. We294

consider the same learning task and setup as Serviansky et al. [2], who frame Delaunay triangulation295

as a mapping from a set of 2D points to the set of Delaunay edges, represented by the adjacency296

matrix. Since this is essentially a set-to-graph problem instead of a set-to-hypergraph one, we297

adapt our method for efficiency reasons, as we describe in Appendix D. We generate the input298

sets of size n, by sampling 2-dimensional vectors uniformly from the unit square, with n=50 or299

n ∈ [20 . . 80]. In Table 3, we report the results for Set2Graph [2] and our adapted method. Since the300

other baselines were not competitive in convex hull finding, we do not repeat them here. Our method301

again outperforms Set2Graph on all metrics.302

Summary. By predicting the positive edges only, we can significantly reduce the amount of required303

memory for set-to-hypergraph tasks. On three different benchmarks, we observe performance304

improvements when using this incidence-based approach, compared to the adjacency-based baseline.305

Interestingly, our method does not see a large discrepancy in performance between different input set306

sizes, both in convex hull finding and Delaunay triangulation. We attribute this to the recurrence of307

our iterative refinement scheme, which we look into next.308

5.2 Ablations309

Effects of increasing (time) complexity. The intrinsic complexity of finding a convex hull for310

a d-dimensional set of n points is in O(n log(n) + n⌊ d
2 ⌋) [11]. This scaling behavior offers an311

Table 3: Delaunay triangulation results for different set sizes (n). Our method outperforms
Set2Graph on all metrics.

n=50 n∈[20 . . 80]
Model Acc Pre Rec F1 Acc Pre Rec F1

Set2Graph 0.984 0.927 0.926 0.926 0.947 0.736 0.934 0.799
Ours 0.989 0.953 0.946 0.950 0.987 0.945 0.942 0.943
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interesting opportunity to study the effects of increasing (time) complexity on model performance.312

The time complexity implies that any algorithm for convex hull finding scales super-linearly with313

the input set size. Since our learned model is not considered an algorithm that (exactly) solves the314

convex hull problem, the implications become less clear. In order to assess the relevancy of the315

problem’s complexity for our approach, we examine the relation between the number of refining steps316

and increases in the intrinsic resource requirement. The following experiments are all performed317

with standard backprop, in order to not introduce additional hyperparameters that may affect the318

conclusions.319

10 20 30 40
set size

50

60

70

80

F1

Fixed T = 3
Increasing T [3. . 7]

Figure 2: Increasing complexity.
Increasing the iterations counter-
acts the performance decline from
larger set sizes.

First, we examine the performance of our approach with 3 iter-320

ations, trained on increasing set sizes n∈[10 . . 50]. In Figure 2321

we observe a monotone drop in performance when training322

with the same number of iterations. The negative correlation323

between the set size and the performance confirms a relation-324

ship between the computational complexity and the difficulty325

of the learning task. Next, we examine the performance for326

varying numbers of iterations and set sizes. We refer to the327

setting, where the number of iterations is 3 and set size n=10,328

as the base case. All other set sizes and number of iterations329

are chosen such that the performance matches the base case as330

closely as possible. In Figure 2, we observe that the required331

number of iterations increases with the input set size, further332

highlighting that an increase in the number of iterations actually333

suffices in counteracting the performance decrease. Further-334

more, we observe that the number of refinement steps scales sub-linearly with the set size, different335

from what we would expect based on the complexity of the problem. We speculate this is due to the336

parallelization of our edge finding process, differing from incremental approaches that produce one337

edge at a time.338

2 4 6
Relative training time

0.7

0.8

0.9

F1 Training Algorithm
Standard backprop
TBPTT
Backprop with fixed skips
Backprop with random skips

Figure 3: Training time of backprop with
skips. Relative training time and performance
for different T∈{4, 16, 32}. All runs require
the same memory, except standard backprop
T∈{16, 32}, which require more.

Efficiency of backprop with skips. To assess the339

efficiency of backprop with skips, we compare to340

truncated backpropagation through time (TBPTT)341

[26]. We consider two variants of our training algo-342

rithm: 1. Skipping iterations at fixed time steps and 2.343

Skipping randomly sampled time steps. In both the344

fixed and random skips versions, we skip half of the345

total iterations. We train all models on convex hull346

finding in 3-dimensions for 30 spherically distributed347

points. In addition, we include baselines trained with348

standard backprop that contingently inform us about349

performance degradation incurred by our method or350

TBPTT. Standard backprop increases the memory351

footprint linearly with the number of iterations T ,352

inevitably exceeding the available memory at some353

threshold. Hence, we deliberately choose a small set354

size in order to accommodate training with backprop355

for T∈{4, 16, 32} number of iterations. We illustrate356

the differences between standard backprop, TBPTT and our backprop with skips in Figure 5 in the357

Appendix. The results in Figure 3 demonstrate that skipping half of the iterations in the backward-pass358

significantly decreases the training time without hurting predictive performance. When the memory359

budget is constricted to 4 iterations in the backward-pass, both TBPTT and backprop with skips360

outperform standard backprop considerably. We provide a detailed discussion of the computational361

complexity of our framework in Appendix B.362

Recurrent vs. stacked. Recurrence plays a crucial role in enabling more computation without an363

increase in the number of parameters. By training the recurrent model using backprop with skips, we364

can further reduce the memory cost during training to a constant amount. Since our proposed training365

algorithm from Section 3 encourages iterative refinement akin to gradient descent, it is natural to366

believe that the weight-tying aspect of recurrence is a good inductive bias for modeling this. A reason367

for thinking so is that the “gradient” should be the same for the same I , no matter at which iteration368
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3 4 5 6 7 8 9
# of iterations

0.8

0.9

F1

Stacked
Recurrent

(a)

10 12 14 16 18 20
set size

0.2

0.4

0.6

0.8

F1

Stacked
Recurrent

(b)

Figure 4: Recurrent vs. stacked. (a) Performance for different numbers of iterations. (b) Extrap-
olation performance on n∈[11 . . 20] for models trained with set size n=10. We stop training the
recurrent model early, to match the validation performance of the stacked on n=10. The recurrent
model derives greater benefits from adding iterations and generalizes better.

it is computed. Hence, we compare the recurrent model against a non-weight-tied (stacked) version369

that applies different parameters at each iteration. First, we compare the models trained for 3 to 9370

refinement steps. In Figure 4a, we show that both cases benefit from increasing the iterations. Adding371

more iterations beyond 6 only slightly improves the performance of the stacked model, while the372

recurrent version still benefits, leading to an absolute difference of 0.03 in F1 score for 9 iterations.373

Next, we train both versions with 15 iterations until they achieve a similar validation performance, by374

stopping training early on the recurrent model. The results in Figure 4b show that the recurrent variant375

performs better when tested at larger set sizes than trained, indicating an improved generalization376

ability.377

6 Related Work378

Set2Graph [2] is a family of maximally expressive permutation equivariant neural networks that379

map from an input set to (hyper)graphs. They show that their method outperforms many popular380

alternatives, including Siamese networks [27] and graph neural networks [28] applied to a k-NN381

induced graph. [2] extend the general idea, of applying a scalar-valued adjacency indicator function382

on all pairs of nodes [29], to the l-edge case (edges that connect l nodes). In Set2Graph, for each l the383

adjacency structure is modeled by an l-tensor, requiring memory in O(nl). This becomes intractable384

already for small l and moderate set sizes. By pruning the negative edges, our approach scales in385

O(nk), making it applicable even when l=n. Recent works on set prediction map a learned initial386

set [23, 30] or a randomly initialized set [20, 31, 32] to the target space. Out of these, the closest one387

to our hypergraph refining approach is Slot Attention [20], which recurrently applies the Sinkhorn388

operator [33] in order to associate each element in the input set with a single slot (hyperedge). None389

of the prior works on set prediction consider the set-to-hypergraph task, but some can be naturally390

extended by mapping the input set to the set of positive edges, an approach similar to ours.391

7 Conclusion and future work392

By representing and supervising the set of positive edges only, we substantially improve the asymp-393

totic scaling and enable learning tasks with higher-order edges. On common benchmarks, we have394

demonstrated that our method outperforms previous works while offering a more favorable asymp-395

totic scaling behavior. In further evaluations, we have highlighted the importance of recurrence for396

addressing the intrinsic complexity of problems. We identify the Hungarian matching [13] as the397

main computational bottleneck during training. Replacing the Hungarian matched loss with a faster398

alternative, like a learned energy function [32], would greatly speed up training for tasks with a large399

maximum number of edges. Our empirical analysis is limited to datasets with low dimensional inputs.400

Learning on higher dimensional input data might require extensions to the model that can make larger401

changes to the latent hypergraph than is feasible with small iterative refinement steps. The idea here402

is similar to the observation from Jastrzebski et al. [17] for ResNets [22] that also encourage iterative403

refinement: earlier residual blocks apply large changes to the intermediate features while later layers404

perform (small) iterative refinements.405

9



Pruning Edges and Gradients to Learn Hypergraphs from Larger Sets

References406

[1] Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. Graph neural networks in particle407

physics. Machine Learning: Science and Technology, 2020. 1, 14408

[2] Hadar Serviansky, Nimrod Segol, Jonathan Shlomi, Kyle Cranmer, Eilam Gross, Haggai Maron,409

and Yaron Lipman. Set2graph: Learning graphs from sets. In Advances in Neural Information410

Processing Systems, 2020. 1, 2, 3, 6, 7, 9, 14, 15, 16411

[3] Ivan Brugere, Brian Gallagher, and Tanya Y Berger-Wolf. Network structure inference, a survey:412

Motivations, methods, and applications. ACM Computing Surveys, 51(2):1–39, 2018. 1413

[4] Federico Battiston, Giulia Cencetti, Iacopo Iacopini, Vito Latora, Maxime Lucas, Alice Patania,414

Jean-Gabriel Young, and Giovanni Petri. Networks beyond pairwise interactions: structure and415

dynamics. Physics Reports, 2020. 1416

[5] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural417

Information Processing Systems, 2015. 1, 6418

[6] S. Feng, E. Heath, and B. Jefferson. Hypergraph models of biological networks to identify419

genes critical to pathogenic viral response. "BMC Bioinformatics", 22:287, 2021. 1420

[7] O. Frank and D. Strauss. Markov graphs. J. Am. Stat. Assoc., 81:832–842, 1986. 1421

[8] Yibing Zhan, Zhi Chen, Jun Yu, BaoSheng Yu, Dacheng Tao, and Yong Luo. Hyper-relationship422

learning network for scene graph generation. arXiv preprint arXiv:2202.07271, 2022. 1423

[9] Alexander Trott, Caiming Xiong, and Richard Socher. Interpretable counting for visual question424

answering. In International Conference on Learning Representations, 2018. 1425

[10] Linyuan Lü and Tao Zhou. Link prediction in complex networks: A survey. Physica A:426

statistical mechanics and its applications, 390(6):1150–1170, 2011. 1427

[11] Bernard Chazelle. An optimal convex hull algorithm in any fixed dimension. Discrete &428

Computational Geometry, 1993. 1, 6, 7429

[12] Xavier Ouvrard, Jean-Marie Le Goff, and Stéphane Marchand-Maillet. Adjacency and ten-430

sor representation in general hypergraphs part 1: e-adjacency tensor uniformisation using431

homogeneous polynomials. arXiv preprint arXiv:1712.08189, 2017. 3432

[13] Harold W Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics433

Quarterly, 2(1-2):83–97, 1955. 3, 9434

[14] Roy Jonker and Anton Volgenant. A shortest augmenting path algorithm for dense and sparse435

linear assignment problems. Computing, 1987. 3, 13436

[15] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,437

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas438

Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,439

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,440

high-performance deep learning library. In Advances in Neural Information Processing Systems,441

pages 8024–8035, 2019. 4, 5442

[16] Zachary C Lipton, John Berkowitz, and Charles Elkan. A critical review of recurrent neural443

networks for sequence learning. arXiv preprint arXiv:1506.00019, 2015. 4444

[17] Stanisław Jastrzebski, Devansh Arpit, Nicolas Ballas, Vikas Verma, Tong Che, and Yoshua445

Bengio. Residual connections encourage iterative inference. In International Conference on446

Learning Representations, 2018. 4, 6, 9447

[18] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,448

and Alexander J Smola. Deep sets. In Advances in Neural Information Processing Systems,449

2017. 5450

[19] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural451

message passing for quantum chemistry. In International Conference on Machine Learning,452

2017. 5453

[20] Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg454

Heigold, Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with455

slot attention. In Advances in Neural Information Processing Systems, 2020. 6, 9, 14456

10



Pruning Edges and Gradients to Learn Hypergraphs from Larger Sets

[21] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint457

arXiv:1607.06450, 2016. 6458

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image459

recognition. In Conference on Computer Vision and Pattern Recognition, 2016. 6, 9460

[23] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh.461

Set transformer: A framework for attention-based permutation-invariant neural networks. In462

International Conference on Machine Learning, 2019. 6, 9463

[24] Jonathan Shlomi, Sanmay Ganguly, Eilam Gross, Kyle Cranmer, Yaron Lipman, Hadar Servian-464

sky, Haggai Maron, and Nimrod Segol. Secondary vertex finding in jets with neural networks.465

arXiv preprint arXiv:2008.02831, 2020. 6, 14466

[25] Franco P Preparata and Michael I Shamos. Computational geometry: an introduction. Springer467

Science & Business Media, 2012. 6468

[26] Ronald J Williams and Jing Peng. An efficient gradient-based algorithm for on-line training of469

recurrent network trajectories. Neural computation, 1990. 8, 16470

[27] Sergey Zagoruyko and Nikos Komodakis. Learning to compare image patches via convolutional471

neural networks. In Conference on Computer Vision and Pattern Recognition, 2015. 9472

[28] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,473

Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural474

networks. In Proceedings of the AAAI Conference on Artificial Intelligence, 2019. 9475

[29] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint476

arXiv:1611.07308, 2016. 9477

[30] Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett. Deep set prediction networks. In478

Advances in Neural Information Processing Systems, 2019. 9479

[31] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and480

Sergey Zagoruyko. End-to-end object detection with transformers. In European Conference on481

Computer Vision, 2020. 9482

[32] David W Zhang, Gertjan J Burghouts, and Cees G M Snoek. Set prediction without im-483

posing structure as conditional density estimation. In International Conference on Learning484

Representations, 2021. 9485

[33] Ryan Prescott Adams and Richard S Zemel. Ranking via sinkhorn propagation. arXiv preprint486

arXiv:1106.1925, 2011. 9487

[34] David F Crouse. On implementing 2d rectangular assignment algorithms. IEEE Transactions488

on Aerospace and Electronic Systems, 2016. 13489

[35] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David490

Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.491

van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew492

R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W.493
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A Proof: Supervising positive edges only suffices507

Proposition 1 (Supervising only existing edges). Let J ∈ [ϵ, 1)
(2n−1)×n be a matrix with at most508

m rows for which ∃j : Jij > ϵ, with a small ϵ > 0. Similarly, let J∗ ∈ {0, 1}(2
n−1)×n be a matrix509

with at most m rows for which ∃j : Jij = 1. Let prune(·) denote the function that maps from a510

(2n − 1)× n matrix to a k × n matrix, by removing (2n − 1) − k rows where all values are ≤ ϵ.511

Then, for a constant c = (2n−1−k)n ·H(ϵ, 0) and all such J and J∗:512

L(J ,J∗) = L(prune(J), prune(J∗)) + c (2)

Proof. We shorten the notation with I=prune(J) and I∗=prune(J)∗, making the relation to513

the incidence matrix I defined in Section 2 explicit. Since L is invariant to permutations over514

the rows of its input matrices, we can assume w.l.o.g. that the not-pruned rows are the first k515

rows, J:k = I and J∗
:k = I∗. For improved readability, let Ĥ(Jπ(i),J

∗
i ) =

∑
j H(Jπ(i),j ,J

∗
i,j)516

denote the element-wise binary cross-entropy, thus the loss in Equation 1 can be rewritten as517

L(J ,J∗)=minπ∈Π

∑
i Ĥ(Jπ(i),J

∗
i ).518

First, we show that there exists an optimal assignment between J ,J∗ that assigns the first519

k rows equally to an optimal assignment between I, I∗. More formally, for an optimal as-520

signment πI∈ argminπ∈Π

∑
i Ĥ(Iπ(i), I

∗
i ) we show that there exists an optimal assignment521

πJ∈ argminπ∈Π

∑
i Ĥ(Jπ(i),J

∗
i ) such that ∀1≤i≤k : πJ (i)=πI(i). If πJ (i)≤k for all 1≤i≤k522

then the assignment for the first k rows is also optimal for I, I∗. So we only need to show that there523

exists a πJ such that πJ (i)≤k for all 1≤i≤k. Let πJ be an optimal assignment that maps an i<k to524

πJ>k. Since πJ is a bijection, there also exists a j<k that π−1
J (j)>k assigns to. The corresponding525

loss terms are lower bounded as follows:526

Ĥ(Ji,J
∗
πJ (i)

) + Ĥ(Jπ−1
J (j),J

∗
j ) (7)

=Ĥ(Ji,0) + Ĥ(ϵ,J∗
j ) (8)

=−
n∑

l=1

log(1− Ji,l) + J∗
j,l log(ϵ) + (1− J∗

j,l) log(1− ϵ) (9)

≥−
n∑

l=1

(1− J∗
j,l) log(1− Ji,l) + J∗

j,l log(ϵ) + (1− J∗
j,l) log(1− ϵ) (10)

≥−
n∑

l=1

(1− J∗
j,l) log(1− Ji,l) + J∗

j,l log(Ji,l) + (1− J∗
j,l) log(1− ϵ) (11)

=Ĥ(Ji,J
∗
j )−

n∑
l=1

(1− J∗
j,l) log(1− ϵ) (12)

≥Ĥ(Ji,J
∗
j )−

n∑
l=1

log(1− ϵ) (13)

=Ĥ(Ji,J
∗
j ) + Ĥ(ϵ,0) (14)

Equality of Equation 8 holds since all rows with index >k are ϵ-vectors in J and zero-vectors527

in J∗. The inequality in Equation 11 holds since all values in J are lower bounded by ϵ. Thus,528

we have shown that either there exists no optimal assignment πJ that maps from a value ≤k to529

a value >k (which is the case when Ĥ(Ji,J
∗
πJ (i)

) + Ĥ(Jπ−1
J (j) > Ĥ(Ji,J

∗
j ) + Ĥ(ϵ,0)) or that530

there exists an equally good assignment that does not mix between the rows below and above k.531

Since the pruned rows are all identical, any assignment between these result in the same value532

(2n−1−k)Ĥ(ϵ,0)=(2n−1−k)n ·H(ϵ, 0) that only depends on the number of pruned rows 2n−1−k533

and number of columns n.534

B Computational complexity535

The space complexity of the hypergraph representation presented in Section 2 is in O(nm), offering536

an efficient representation for hypergraphs when the maximal number of edges m is low, relative to537
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the number of all possible edges m ≪ 2n. Problems that involve edges connecting many vertices538

benefit from this choice of representation, as the memory requirement is independent of the maximal539

connectivity of an edge. This differs from the adjacency-based approaches that not only depend on540

the maximum number of nodes an edge connects, but scale exponentially with it. In practice, this541

improvement from O(2n) to O(mn) is important even for moderate set sizes because the amount of542

required memory determines whether it is possible to use efficient hardware like GPUs. We showcase543

this in Section D.4.544

Backprop with skips, introduced Section 3, further scales the memory requirement by a factor of B545

that is the number of iterations to backprop through in a single gradient update step. Notably, this546

scales constantly in the number of gradient update steps N and iterations skipped during backprop547 ∑
i Si. Hence, we can increase the number of recurrent steps to adapt the model to the problem548

complexity (which is important, as we show in Section 5.2), at a constant memory footprint.549

To compute the loss in Equation 1, we apply a modified Jonker-Volgenant algorithm [14, 34, 35] that550

finds the minimum assignment between the rows of the predicted and the ground truth incidence551

matrices in O(m3). In practice, this can be the main bottleneck of the proposed method when the552

number of edges becomes large. For problems with m ≪ n, the runtime complexity is especially553

efficient since it is independent of the number of nodes.554

Comparison to Set2Graph. When we compare Set2Graph and our method for hyperedges that555

connect two nodes (i.e., a normal graph) then Set2Graph has an efficiency advantage. For example,556

the authors report for Set2Graph a training time of 1 hour (on a Tesla V100 GPU) for Delaunay557

triangulations, while our method takes up to 9 hours (on a GTX 1080 Ti GPU). Nevertheless, the558

major bottleneck of the Set2Graph method is its memory and time complexity, which in practice559

can lead to intractable memory requirements even for small problems. For example, the convex560

hull problem in 10-dimensional space over 13 points requires more than 500GB (≈ 4 ∗ 1310) just561

for storing the adjacency tensor – that is without even considering the intermediate neural network562

activations. Even when we keep the space 3-dimensional as in the experiments reported by Set2Graph,563

it already struggles with memory requirements as the authors point out themselves. They circumvent564

this issue by considering an easier local version of the problem and restrict the adjacent nodes to565

the k-Nearest-Neighbors with k=10. In conclusion, when the hypergraph has relatively few edges,566

then our framework offers a much better scaling than Set2Graph. In practice, this does not merely567

translate to faster runtime but turns tasks that were previously intractable into feasible tasks.568

C Backprop with skips569

Our backprop with skips training consists of two aspects:570

• Truncation of the backprop through time, and571

• Skipping the gradient calculations for some intermediate f(X,H) as specified by the S.572

To understand what the effect of truncation is, we first consider the case of standard backprop. When573

training a residual neural network with standard backprop it is possible to expand the loss function574

around Ht from previous iterations t < T as L(HT ) = L(Ht) +
∑T−1

i=t f(X,Hi)∂L(Hi)
∂ Hi +575

O(f2(X,Hi) (see equation 4 in [13]). Jastrzebski et al. [13] point out that the sum terms’ gradients576

point into the same half space as that of ∂L(Hi)
∂ Hi , implying that

∑T−1
i=t L(Hi) is also a descent577

direction for L(HT ). Thus, truncation can be interpreted as removing L(Hi) terms from the loss578

function for earlier steps i. We remedy this, by explicitly adding (back) the L(Hi) terms to the579

training objective. The second aspect of backprop with skips involves skipping gradients of some580

intermediate steps f(X,Hi) entirely. Given a specific data point X , we view f as approximating581

the gradient ∂ H(t)
∂t where we denote the time step t as the argument of H instead of as the subscript.582

From this viewpoint, we are learning a vector field (analog to neural ODE [36] or diffusion models583

[37]) over the space of H which we train by randomly sampling different values for the Ht’s.584

D Experimental details585

In this section, we provide further details on the experimental setup and additional results.586

13



Pruning Edges and Gradients to Learn Hypergraphs from Larger Sets

D.1 Particle partitioning587

The problem considers the case where particles are collided at high energy, resulting in multiple588

particles shooting out from the collision. Each example in the dataset consists of the input set,589

which corresponds to the measured outgoing particles, and the ground truth partition of the input590

set. Each element in the partition is a subset of the input set and corresponds to some intermediate591

particle that was not measured, because it decayed into multiple particles before it could reach the592

sensors. The learning task consists of inferring which elements in the input set originated from the593

same intermediate particle. Note that the particle partitioning task bears resemblance to the classical594

clustering setting. It can be understood as a meta-learning clustering task, where both the number of595

clusters and the similarity function depend on the context that is given by X . That is why clustering596

algorithms such as k-means cannot be directly applied to this task. For more information on how this597

task fits into the area of particle physics more broadly, we refer to Shlomi et al. [1].598

Dataset. We use the publicly available dataset of 0.9M data-sample with the default599

train/validation/test split [2, 24]. The input sets consist of 2 to 14 particles, with each particle600

represented by 10 features. The target partitioning indicate the common progenitors and restrict the601

valid incidence matrices to those with a single incident edge per node.602

Setup. While Set2Graph is only one instance of an adjacency-based approach, [2] show that it603

outperforms many popular alternatives: Siamese networks, graph neural networks and a non-learnable604

geometric-based baseline. All adjacency-based approaches incur a prohibitively large memory cost605

when predicting edges with high connectivity. In the case of particle partitioning, Set2Graph resorts606

to only predicting edges with at most 2 connecting nodes, followed by an additional heuristic to infer607

the partitions [2]. In contrast to that, all the incidence-based approaches do not require the additional608

post-processing step at the end.609

We simplify the hyperparameter search by choosing the same number of hidden dimensions d for the610

latent vector representations of both the nodes dV and the edges dE . In all runs dedicated to searching611

d, we set the number of total iterations T=3 and backpropagate through all iterations. We start with612

d=32 and double it, until an increase yields no substantial performance gains on the validation set,613

resulting in d=128. In our reported runs, we use T=16 total iterations, B=4 backprop iterations,614

N=2 gradient updates per mini-batch, and a maximum of 10 edges.615

We apply the same d=128 to both the Slot Attention and Set Transformer baselines. Similar to the616

original version [20], we train Slot Attention with 3 iterations. Attempts with more than 3 iterations617

resulted in frequent divergences in the training losses. We attribute this behavior to the recurrent618

sinkhorn operation, that acts as a contraction map, forcing all slots to the same vector in the limit.619

We train all models using the Adam optimizer [38] with a learning rate of 0.0003 for 400 epochs and620

retain the parameters corresponding to the lowest validation loss. All models additionally minimize a621

soft F1 score [2]. Since each particle can only be part of a single partition, we choose the one with622

the highest incidence probability at test time. Our model has 268162 trainable parameters, similar623

to 251906 for the Slot Attention baseline, but less than 517250 for Set Transformer and 461289 for624

Set2Graph [2]. The total training time is less than 12 hours on a single GTX 1080 Ti and 10 CPU625

cores.626

The maximum number of edges is set to m = 10.627

Further results. For completeness, we also report the results for the rand index (RI) in Table 4.628

D.2 Convex hull finding629

On convex hull finding in 3D, we compare our method to the same baselines as on the particle630

partitioning task.631

Setup. Set2Graph learns to map the set of 3D points to the 3rd order adjacency tensor. Since storing632

this tensor in memory is not feasible, they instead concentrate on a local version of the problem,633

which only considers the k-nearest neighbors for each point [2]. We train our method with Ttotal=48,634

TBPTT=4, NBPTT=6 and set k equal to the highest number of triangles in the training data. At test635

time, a prediction admits an edge ei if its existence indicator σi > 0.5. Each edge is incident to the636

three nodes with the highest incidence probability. We apply the same hyperparameters, architectures637
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Table 4: Additional particle partitioning results. On three jet types performance measured as rand
index (RI). Our method outperforms the baselines on bottom and charm jets, while being competitive
on light jets.

bottom jets charm jets light jets
Model RI RI RI

Set2Graph 0.736±0.004 0.727±0.003 0.970±0.001

Set Transformer 0.734±0.004 0.734±0.004 0.967±0.002

Slot Attention 0.703±0.013 0.714±0.009 0.958±0.003

Ours 0.781±0.002 0.751±0.001 0.969±0.001

and optimizer as in the particle partitioning experiment, except for: T=48, B=4, N=6. Since we638

do not change the model, the number of parameters remains at 268162 for our model. This notably639

differs to Set2Graph, which reports an increased parameter count of 1186689 [2]. We train our640

method until we observe no improvements on the F1 validation performance for 20 epochs, with a641

maximum of 1000 epochs. The set-to-set baselines are trained for 4000 epochs, and we retain the642

parameters resulting in the highest f1 score on the validation set. The training time is similar to our643

proposed method. The total training time is between 14 and 50 hours on a single GTX 1080 Ti and644

10 CPU cores.645

We set the maximum number of edges m equal to the maximum number of triangles of any example646

in the training data. For the spherically distributed point sets, m is a constant that is m = (n−4)2+4647

for n ≥ 4. This can be seen from the fact that all points lie on the convex hull in this case. Note that648

the challenge lies not with finding which points lie on the convex hull, but in finding all the facets649

that constitute the convex hull. For the Gaussian distributed point sets, m varies between different650

samples. For n = 30 most examples have < 40 edges, for n = 50 most examples have < 50 edges,651

and for n = 100 most examples have < 60 edges.652

D.3 Delaunay triangulation653

The problem of Delaunay triangulation is, similar to convex hull finding a well-studied problem in654

computational geometry and has exact solutions in O(n log (n)) [39]. We consider the same learning655

task as Serviansky et al. [2], who frame Delaunay triangulation as mapping from a set of 2D points to656

the set of Delaunay edges, represented by the adjacency matrix. Note that this differs from finding657

the set of triangles, as an edge no longer remembers which triangles it is part of. Thus, this reduces to658

a set-to-graph task, instead of a set-to-hypergraph task.659

Model adaptation. The goal in this task is to predict the adjacency matrix of an ordinary graph – a660

graph consisting of edges that connect two nodes – where the number of edges are greater than the661

number of nodes. One could recover the adjacency matrix based on the matrix product of IT I , by662

clipping all values above 1 back to 1 and setting the diagonal to 0. This approach is inefficient, since663

in this case the incidence matrix is actually larger than the adjacency matrix. Instead of applying our664

method directly, we consider a simple adaptation of our approach to the graph setting. We replace the665

initial set of edges with the (smaller) set of nodes and apply the same node refinements on both sets.666

This change results in E =V for the prediction and effectively reduces the incidence matrix to an667

adjacency matrix, since it is computed based on all pairwise combinations of E and V . We further668

replace the concatenation for the MLP modelling the incidence probability with a sum, to ensure that669

the predicted adjacency matrix is symmetric and represents an undirected graph. Two of the main670

design choices of our approach remain in this adaptation: Iterative refining of the complete graph671

with a recurrent neural network and BPTT with gradient skips. We train our model with T=32, B=4672

and N=4. At test-time, an edge between two nodes exists if the adjacency value is greater than 0.5.673

Setup. We increase the latent dimensions to d=256, resulting in 595201 trainable parameters.674

This notably differs to Set2Graph, which increases the parameter count to 5918742 [2], an order of675

magnitude larger. The total training time is less than 9 hours on a single GTX 1080 Ti and 10 CPU676

cores.677
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D.4 Learning higher-order edges678

The particle partitioning experiment exemplifies a case where a single edge can connect up to 14679

vertices. Set2Graph [2] demonstrates that in this specific case it is possible to approximate the680

hypergraph with a graph. They leverage the fact that any vertex is incident to exactly one edge and681

apply a post-processing step that constructs the edges from noisy cliques. Instead, we consider a task682

for which no straightforward graph based approximation exists. Specifically, we consider convex683

hull finding in 10-dimensional space for 13 standard normal distributed points. We train with T=32,684

N=4 and B=4. The test performance reaches an F1 score of 0.75, clearly demonstrating that the685

model managed to learn. This result demonstrates the improved scaling behavior can be leveraged686

for tasks that are computationally out of reach for adjacency-based approaches.687

We demonstrated that the improved scaling behavior of our proposed method can be leveraged for688

tasks that are computationally out of reach for adjacency based approaches. The number of points and689

dimensions were chosen in conjunction, such that the corresponding adjacency tensor would require690

more storage than is feasible with current GPUs (available to us). For 13 points in 10 dimensions,691

explicitly storing the full adjacency tensor using 32-bit floating-point numbers would already require692

more than 500 GB. We intentionally kept the number of points and dimensions low, to highlight693

that the asymptotic scaling issue cannot be met by hardware improvements, since small numbers694

already pose a problem. Note that Set2Graph already struggles with convex hull finding in 3D, where695

the authors report that storing 3-rd order tensors in memory is not feasible. Instead, they consider a696

local version of the problem and take the k-Nearest-Neighbors out of the set of points that are part697

of the convex hull, with k = 10. While we limited our calculation of the storage requirement to698

the adjacency tensor itself, a typical implementation of a neural network also requires storing the699

intermediate activations, further exacerbating the problem for adjacency based approaches.700

D.5 Backprop with skips701

We compare backprop with skips to TBPTT [26] with B=4 every 4 iterations, which is the setting702

that is most similar to ours with regard to training time. In general, TBPTT allows for overlaps703

between subsequent BPTT applications, as we illustrate in Figure 5. We constrict both TBPTT and704

backprop with skips to a fixed memory budget, by limiting any backward pass to the most recent705

B=4 iterations, for T∈{16, 32}. The standard backprop results serve as a reference point to answer706

the question: “What if we apply backprop more frequently, resulting in a better approximation to the707

true gradients?”, without necessitating a grid search over all possible hyperparameter combinations708

for TBPTT. The results on standard backprop appear to indicate that performance worsens when709

increasing the number of iterations from 16 to 32. We observe that applying backprop on many710

iterations leads to increasing gradient norms in the course of training, complicating the training711

process. The memory limited versions did not exhibit a similar behavior, evident from the improved712

performance, when increasing the iterations from 16 to 32.713

(a)
1 2 … 𝑇

(b)
1 2 … 𝑇

(c)
B B B

1 2 𝑇

𝑆[1] 𝑆[2]

…

𝑆[0]

6 7 8

Figure 5: Adding gradient skips to
backprop (a) Standard backprop (b)
TBPTT, applying backprop on 4 itera-
tions every 2nd iteration (c) Backprop
with skips at iterations 1, 6, 7, 8, which
effectively reduces the training time,
while retaining the same number of re-
finement steps.
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