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A APPENDIX

A.1 MINIMUM VOLUME PRINCIPLE IN DETAIL

The proposed approach for recovering the pose of an object is described in Algorithm 1. A visu-
alisation of how the estimated pose evolves as the volume of the AABB that contains the object
decreases is depicted in Figure 5. An advantage of the proposed minimum volume principle is that
the recovered pose will align one of its coordinate planes with the symmetry plane of the object if it
exists.
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Figure 5: We demonstrate the point cloud of a chair (A) in arbitrary pose (B) and how its pose is
recovered using the minimum volume principle. The selection matrices R𝑠 are illustrated in (C) by
rotating a point at [1, 1, 1] with all the selection matrices. (D) and (E) depict how the estimated object
orientation represented by a bounding box and the object viewed with respect to its reference pose
evolve with respect to the volume of the AABB.

Algorithm 1: Minimum Volume Principle

Input: points P ∈ R𝑁×3 representing the object, and selection rotation matrices R𝑠 ∈ R𝑁𝑠×3×3.
Output: translation and rotation parameters {T,R} that map P to their cannonical coordinates

𝛽 ← 0.01 ⊲ Tolerance hyperparameter
P̂ = (R𝑠)−1P ⊲ Transform points into coodinates with orientations
R𝑠

𝑉 = COMPUTEVOLUME(P̂) ⊲ Compute volume of AABBs that contain P̂
𝑉min = min(𝑉) ⊲ Find smallest volume
R̂𝑠 = {R𝑠

𝑖 |𝑉𝑖 ∈ [𝑉min, (1 + 𝛽)𝑉min]} ⊲ Select similar sized AABBs to
minimum

𝑑SO(3) = arccos ( tr(R̂𝑠)−1
2 ) ⊲ Compute geodesic distance to the world

frame
R = R̂𝑠

𝑗 with 𝑗 = argmin(𝑑SO(3) ) ⊲ Find AABB closest to the world frame

T = 1
𝑁

Í
𝑖∈{1,...,𝑁 } p𝑖 with p𝑖 ∈ P ⊲ Compute centre of mass for points

A.2 TRAINING AND IMPLEMENTATION DETAILS

Training takes about 35 hours for the YCB moving-object dataset and 20 hours for the YCB static
dataset on a single NVIDIA Titan RTX GPU. The video model and the static model are trained for
100k and 100.5k iterations, each with a batch size of 2 and 8, respectively, selected according to the
available GPU memory. The IC-SBP ablation has a batch size of 8 for the video experiments as it’s
a static image-based approach. Video length is 5 frames randomly cropped from the full video for
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training and we use the full video length (typically 15 frames or longer) for testing. The model is
thus able to process videos that are much longer than the videos seen during training. The YCB
moving-object dataset has 4000 videos for training and 500 videos for testing. The YCB static dataset
has 12000 scenes for training and 1500 scenes for testing. We summarise all the hyper-parameters in
Table 3. In the ablation study we use slot attention with a background slot as introduced in Yu et al.
(2021). For video data, slots from the last time step are used to initialise slot attention at the current
time step. For both datasets, OBPOSE estimates poses with all points below the ground surface being
neglected, as we find that NeRF can mistakenly predict the occupancy of the points below the ground
surface whose x-y coordinates are within the object’s convex hull. This (erroneous) generalisation
follows from the fact that this part of the scene receives no training signal, due to the ray marching
used in NeRFs. For the training on the CLEVR dataset, we find that using a L2 loss rather than a
mixture of Gaussian loss for the eq. (13) can improve the robustness of the training, i.e.:

Latt =
𝐾∑︁
𝑘=1

(N (x|c𝑘 ,𝜎2
std)/N (0|0,𝜎2

std) − m𝑘)2 +
𝐾∑︁
𝑘=1

(m𝑘 − 𝜎̂surface
𝑘 /𝜎max)2 (16)

A.3 NETWORK STRUCTURES

The KPConv encoder backbone consists of an input block and three consecutive encoding blocks with
radiuses of [0.025, 0.05, 0.1, 0.2] meters for the KPConv layers. Each block has three sub-blocks
which each has a structure of Conv1d-Group norm(Wu & He, 2018)-ReLU-KPConv-Conv1d-Group
norm-ReLU with a skip connection being built between the output of the first ReLU layer and
the output. The skip connection takes the output of the ReLU and feeds it into a Conv1d layer
followed by a Group norm. The input block consists of an input layer of KPConv-Group norm-
ReLU and a single sub-block as described above. For the input block and all the sub-blocks, the
number of channels are [16, 16, 32, 32, 32, 64, 64, 64, 64, 64, 64] respectively and the strides are
[8, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1]. The KPConv-aggregate layer has a channel number of 64 and a radius
of 1 meter. Two trilinear interpolation layers are used to up-sample the embedding and predict
embedding of 64 channels and 32 channels respectively. A Conv1d-Group norm-ReLU encoding is
used in both the input and the skip connection between the input and the output of the interpolation
layer. A final output layer of structure Conv1d-Group norm-LeakyReLU(0.1)-Conv1d is appended
to the output embedding with channel numbers of 32 and 16 for the two Conv1d layers. The where
encoder and the what encoder share the same structure of the backbone encoder and have channel
numbers of [16, 16, 32, 32, 32, 64, 64, 64, 64, 64, 64] and strides of [1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1]. A
final output layer of structure Linear-Group norm-LeakyReLU(0.1)-Linear is used to predict the final
embedding. Both linear layers have 64 output channels. The RNNs used to parameterise the posterior
and the prior distribution of the where and the what latent embedding has a dimension of 32 for
the hidden state followed by an MLP of size [32, 32, 64] with the output 64 channels being further
divided into the mean and the standard deviation of the Gaussian. The zwhere is decoded into the ΔT
using an MLP of sizes [32, 256, 3]. We use the default NeRF decoder open-sourced by Niemeyer &
Geiger (2021).

Table 3: Hyperparameters of OBPOSE.
Parameter Description Value
𝜎std Standard deviation of colour dist. 0.1
𝜎max Maximum density 10/1 for YCB/CLEVR
𝑠 Bounding box size 0.4/0.2 for YCB/CLEVR
𝑁thresh Number of points to use the pose of last time step 10
𝑇max Maximally allowed ΔT 0.1
S Number of sparse voxels along each dimension 24
𝛿 Noise added to depths 𝑑surface 0.01/0.7 for YCB/CLEVR
𝛽 tolerance factor to select minimum volume bounding box 0.1/0.01 for video/static images
𝐾 Number of slots for IC-SBP 4
𝑑𝑤ℎ𝑎𝑡
𝑧 Dimensionality of zwhat 32/256 for YCB/CLEVR

𝑑𝑤ℎ𝑒𝑟𝑒
𝑧 Dimensionality of zwhere 32

A.4 SEGMENTATION RESULTS ON YCB STATIC

We illustrate additional segmentation results on YCB static dataset in Figure 6.
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Figure 6: Qualitative results on YCB static dataset.

A.5 RENDERING RESULTS ON YCB STATIC

We illustrate additional NeRF rendering results on YCB static dataset in Figure 7.

A.6 RESULTS ON CLEVR-3D

We show qualitative results on CLEVR-3D dataset in Figure 8. We find that OBPOSE can segment
part of the shadows of the objects as part of the objects because the shadows are caused by the
existence of the objects. The shape of the objects can be recovered even OBPOSE is trained without
multi-view supervisions.

A.7 COMPARISON BETWEEN VIDEO INPUTS AND SINGLE FRAME INPUTS

We show OBPOSE’s performence taking video inputs and single frame inputs in Table 4 and Figure 9
respectively. We find that OBPOSE’s performance is only slightly worse with single frame inputs, but
the ability of tracking objects is lost in that input setting.

A.8 MORE QUALITATIVE RESULTS

We illustrate additional segmentation results on CLEVR-3D and MultiShapeNet datasets in Figure 10.
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Figure 7: NeRF rendering results on YCB static dataset.

Table 4: The segmentation results on the YCB moving-object dataset evaluated on video inputs and
single-frame inputs. The results are rounded to two decimal places.

mIoU-BG↑ ARI-FG↑ MSC-FG↑
OBPOSE + VIDEO INPUTS 1.00 ± 0.00 0.96 ± 0.00 0.97 ± 0.00
OBPOSE + SINGLE FRAME INPUTS 1.00 ± 0.00 0.94 ± 0.00 0.97 ± 0.00

A.9 POSE ESTIMATION FOR VARIANCE REDUCTION ENCODING

We show how the variance of the object appearance can be reduced by leveraging the shape-based
estimated object location and orientation for the encoding of the objects in the fig. 11.

A.10 LIMITATIONS AND FAILURE MODE

The present work advances the state-of-the-art in unsupervised 3D-scene segmentation and interpreta-
tion. While OBPOSE is important for advancing research, its impact outside of the machine learning
community is low as current methods can not yet deal effectively with real images. This highlights
the current limitations of the proposed model. In the future, we will investigate how to build a model
that can explain complex real-world observations (e.g. including shadows). OBPOSE will then be
ready for real-world robotics applications as a vision backbone.

An important failure mode of OBPOSE is that our model can not predict meaningful object orientations
when the object is severely occluded. In this case, we thus do not condition the encoding on the
object orientation but only on the object location. Also, we found that the wooden box in the YCB
static dataset is segmented as part of the background. We hypothesise that this is due to it having a
similar texture to the wooden table (background). However, the wooden box is segmented correctly
in the YCB video dataset, which would appear to suggest that the temporal structure of video can
improve object segmentations.
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Figure 8: Qualitative results on CLEVR-3D dataset.
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Figure 9: Qualitative results on YCB moving-object dataset. Performance is evaluated on video
inputs and single frame inputs respectively. While segmentation looks similarly good in both cases,
note that the single frame input results lose the ability to track objects, as indicated by the occasional
change in object mask colourbetween frames.
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Scene GT ObPose ObSuRF

Figure 10: Qualitative results on CLEVR-3D and MultiShapeNet. We find that OBPOSE can
successfully identify part of the shadows of the objects. This is contradictory to the ground-truth
labels where all object shadows are labelled as background.20
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Scene Input Shape-based Poses No Cond. Cond. on location Cond. on full pose

Figure 11: Visualisation of the recovered bounding boxes estimated from the object shape. We
additionally illustrate the object (wooden box) appearance viewed by (a) being not conditioned on
any location information (b) being conditioned on the shape-based estimated object location and (c)
being conditioned on the shape-based estimated object location and orientation. We show that the
variance of the object appearance is reduced leveraging the pose information.
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