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ABSTRACT

Vision-Language-Action (VLA) models, which integrate pretrained large Vision-
Language Models (VLMs) into their policy backbone, are gaining significant
attention for their promising generalization capabilities. This paper revisits a fun-
damental yet seldom systematically studied question: how the choice and specific
capabilities of the underlying VLM affect the performance of VLA policies? We
introduce VLM4VLA, a minimal adaptation pipeline that converts general-purpose
VLMs into VLA policies using only a small set of new learnable parameters for
fair and efficient comparison. Our pipeline, though simple, proves surprisingly
competitive with more sophisticated network designs. Through extensive empiri-
cal studies on various downstream tasks across three benchmarks, we find that a
VLM'’s general capabilities are poor predictors of its downstream task performance,
contrary to common assumptions. Inconsistencies across benchmarks suggest that
VLA policies require capabilities beyond what current VLMs pursue. We fur-
ther investigate the impact of specific embodied capabilities by fine-tuning VLMs
on seven auxiliary embodied tasks (e.g., embodied QA, visual pointing, depth
estimation). Contrary to intuition, improving a VLM’s performance on specific
embodied skills does not guarantee better downstream control performance. Lastly,
our analysis also reveals that the vision encoder is a critical bottleneck, and the
ability to fine-tune it is crucial for strong performance. These results highlight a sig-
nificant gap between current VLM pretraining paradigms and the specific demands
of embodied tasks. We will release our code, models, and evaluation logs at|our
anonymous website|to encourage further research and help better understanding in
this direction.

1 INTRODUCTION

Vision-Language-Action (VLA) models (Brohan et al., | 2023) have recently emerged as a central
research focus, as they leverage the extensive visual-language knowledge from Vision-Language
Models (VLMs) as a prior for enhancing the generalization of robotic strategies (Kim et al.| 2024}
Black et al.| [2024; Zhang et al.,|2024;|Chen et al., 2025c). The majority of existing VLA methods
have focused on developing more advanced network architectures (Li et al., 2023; |Shi et al.| 2025),
incorporating additional training paradigms or modalities (Zheng et al., 2024; |Chen et al., 2024aj;
Zhang et al.| 2025), and refining action decoding schemes (Zhao et al., 2023} [Pertsch et al., |[2025;
Wen et al., 2025)). However, limited attention (Liu et al., |2025) has been given to a fundamental
question at the core of VLA: how do the choice and specific capabilities of the underlying VLM
affect the performance of VLA policies?

In this paper, we revisit this crucial problem. To provide a fair and clean test interface that evaluates the
capabilities of VLMs without introducing extraneous variables, we first build the generic VLM4VLA
pipeline to convert general-purpose VLMs into VLAs, as shown in Figure[2] VLM4VLA is a carefully
designed network plug-in, introducing fewer than 1% new parameters. To enhance the stability of
inference and the robustness of evaluation, we use a simple MLP head rather than a diffusion-based
approach, thus controlling stochasticity and reducing tuning complexity. This network allows us
to train the modified VLMs directly using downstream robot data, facilitating alignment between
the VLM’s capabilities and the demands of robotic tasks. Despite its simplicity, VLM4VLA proves
effective, demonstrating competitive performance against more advanced network designs, such as the
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Figure 1: An overview of our VLM4VLA framework. (Left) The evaluation pipeline for testing
different VLM backbones, which are evaluated on downstream tasks after an optional fine-tuning
stage on auxiliary embodied tasks. (Bottom Right) We systematically investigate three factors
influencing VLM-to-VLA transfer: the choice of VLM backbone, the impact of fine-tuning on
auxiliary embodied tasks, and the vision encoder’s training strategy (frozen vs. fine-tuned). (Top
Right) A visualization of inconsistent performance of various VLM backbones across downstream
tasks.

flow-matching action expert (Black et al.|[2024)), on benchmark tests. This provides a solid foundation
for conducting fair and scalable experiments across various VLMs, aligning their capabilities with
the demands of embodied tasks.

Based on the VLM4VLA pipeline, we conduct a large-scale empirical study across various down-
stream tasks on three commonly used benchmarks, evaluating 17 different VLMs that are either
zero-shot or fine-tuned. Specifically, we investigate the VLM capabilities across three dimensions:

* General capability. Given that the VLM backbone provides superior generalization in
VLAs, we first explore the relationship between the general capabilities of VLMs and their
performance on downstream control tasks.

* Embodied-specific capability. Recent works have sought to enhance VLAs by improving
the VLM backbone on a series of VLM tasks. We examine how the embodied-specific
capabilities of VLMs correlate with performance on downstream control tasks.

* Vision encoder. Finally, we investigate the influence of the vision encoder in VLMs on
downstream control task performance.

For general capability, we select seven open-sourced VLMs as the backbone. As shown in Figure|T]
(a), we apply the VLM4VLA pipeline directly to these VLMs and fine-tune them with robot data.
For embodied-specific capability, we collect seven commonly used embodied tasks or pretrained
models based on the Qwen2.5-VL backbone to conduct ablation studies. As
shown in Figure [I] (b), we either fine-tune the VLM using auxiliary datasets or directly use the
released fine-tuned models. We then apply the VLM4VLA pipeline to adapt these models to the
embodied policies. Lastly, for the vision encoder, we test three VLMs with either frozen or fine-tuned
vision encoders (Figurem (c)). We evaluate the fine-tuned models on a range of tasks across three

benchmarks including Calvin 2022), SimplerEnv 2024), and Libero
2023)) to assess their embodied capabilities.
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To our suprise, our findings reveal that a VLM’s general capabilities are poor predictors of its
downstream task performance, contrary to common assumptions. For instance, we observe that
Kosmos (Peng et al.|[2023) outperforms Qwen-2 . 5VL (Bai et al.,|2025) and Paligemma (Steiner
et al., 2024) across multiple environments. Inconsistencies across benchmarks suggest that VLA
policies require capabilities beyond those currently pursued by VLMs. Furthermore, the gains by
fine-tuning VLMs on specific auxiliary embodied tasks do not transfer to the downstream control
tasks. Lastly, we identify the vision encoder as a critical bottleneck, with fine-tuning the vision
encoder proving crucial for strong control performance.

Taken together, these results indicate a significant gap between current VLM research and the practical
demands of VLA models. We believe this work highlights the fundamental question of the VLM’s
role in embodied agents and can help guide future exploration in this area.

2 RELATED WORKS

Vision-Language-Action Models Recent works are increasingly focusing on introducing Vision-
Language-Models (VLMs) (Dai et al., [2024; [Touvron et al., [2023; |Wang et al., |2025; Bai et al.,
2025) into robot policies to enhance their generalization capabilities (Brohan et al., 2023} |Guo et al.,
2025; Hu et al., 2024; |Chen et al.l [2024b), which are known as Vision-Language-Action (VLA)
models. Early methods like RT—-2 (Brohan et al.,2023) and OpenVLA (Kim et al., 2024) discretized
actions into language tokens, enabling action learning through the VLM’s autoregressive framework.
Subsequent works have utilized policy heads to decode continuous actions, gradually evolving the
VLA design into a hierarchical structure that combines a VLM with a policy head (Black et al.,
2024; [Zhang et al.| [2024; |Cui et al., [2025). However, most prior works focused on constructing
complex policy networks, while overlooking the impact of the VLM backbone itself on the overall
VLA performance. Though RoboVLMs (Liu et al., 2025) compared the influence of a few early
VLM backbones, it did not ensure consistency in its implementations. In contrast, we design a
fairer experimental framework to comprehensively test the impact of various advanced VLMs across
multiple environments. By employing the simplest and a consistent additional action policy, we
minimize the influence of the policy head component on the experimental results.

Embodied Tasks for VLM  Many prior works have explored introducing embodiment-related tasks
into Vision-Language Models to enhance their spatial understanding (Yang et al., 2025} [Feng, |2025)
and task execution capabilities (Intelligence et al.l 2025} [Zhou et al., [2025b)). These tasks include
dense prediction (Zhen et al.,[2024)) and autoregressive VQA tasks (Rana et al.l 2023; Yuan et al.|
2024; |Sermanet et al., 2024)). Recently, inspired by the hierarchical System 1 and System 2 design
paradigm (Zhang et al.| 2024; [Shentu et al., [2024)), much research focused on using VLMs to build a
general-purpose “robot brain”—a large language model capable of planning or completing real-world
tasks via language. For instance, Robo2v1m (Chen et al.,|2025b) annotated datasets like Open-X
for VQA tasks, while Robobrain (Team), |2025) constructed affordance and visual trace tasks from
RoboVQA (Sermanet et al. [2024) and video datasets. Additionally, many VLA studies leverage
auxiliary post-training or co-training tasks of VLM (Intelligence et al., 2025} Zhang et al., [2025)
to obtain better backbone networks. In our subsequent experiments, we fine-tune VLM on various
post-training tasks and compare its performance as a VLA backbone against the corresponding VLM
baselines, thereby validating the effectiveness of these auxiliary tasks for VLA performance.

3 STUDY DESIGN

To create a comprehensive and fair benchmark of VLM performance on manipulation tasks, we
designed the VLM4VLA framework around three core principles:

* Fairness and Reproducibility We employ a consistent model architecture and training/testing
settings across multiple simulation environments to ensure fair and reproducible comparisons.

* Minimalist Design We encapsulate VLMs within a simple yet effective VLA framework,
thereby minimizing the influence of complex, extraneous policy designs on the comparison.

* Isolating Core VLM Capabilities To directly evaluate the VLM’s intrinsic knowledge, our
framework relies exclusively on visual-language inputs. We format input sequences to match
each VLM’s native instruction-tuning format and deliberately exclude other modalities like
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proprioceptive state or tactile feedback. This isolates the VLM’s contribution and directly tests
how its intrinsic capabilities translate to manipulation.

In the following sections, we will detail the VLM4VLA research framework. In Sec @] we introduce
the basic experimental design. We then describe the model architecture within VLM4VLA in Sec
and Sec[3.3]explains the experiment setup and evaluation protocol.

3.1 BASIC EXPERIMENT DESIGN

As shown in Figure |1} our objective is to investigate the impact of different VLMs, as well as
VLM-specific fine-tuning tasks, on the performance of the resulting VLA. Our experiments primarily
focus on VLMs ranging from 1B to 10B parameters and various embodiment-related auxiliary
tasks. Beyond fundamental vision-language alignment, the general capabilities of VLMs relevant
to embodied tasks include visual grounding, trajectory and action prediction, task planning, video
understanding, and spatial reasoning. Some models also possess image rendering capabilities, such
as depth prediction and semantic segmentation, as seen in works like |[Beyer et al.| (2024)); |Chen
et al.| (2025a); Deng et al.| (2025). To compare the effectiveness of these models and tasks, we
encapsulate each VLM—both in its original form and after being fine-tuned on a specific auxiliary
task—into a VLA, following the methodology described in Sec All VLAs, despite their different
backbones, share an identical action encoding and decoding scheme and introduce a minimal number
of additional trainable parameters (less than 1%).

Subsequently, these VLM4VLA models are trained on robotic datasets using a consistent training
setup. During this process, we fine-tune all model parameters, as our studys in Sec .3|demonstrate
that freezing parts of the model leads to significant performance degradation. The fine-tuned models
are then deployed for rollouts in the target environments, where we measure the success rates on
various tasks. The VLA performance is assessed according to the protocol detailed in Sect[3.3]

3.2 VLM4VLA NETWORK DESIGN

In this section, we detail the method for con-
structing a consistent VLA from various VLMs
within the VLM4VLA framework, as illustrated
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lightweight, and capable of fully leveraging the MP N\ Text Token
VLM’s intrinsic knowledge. e ) Learnable

Action Query

We introduce a learnable action query token to

: VLM Backbone
extract embodiment-related knowledge from the R ::'e”tzr:geters
VLM. The representation of this token is then [3 D .:

decoded into an action chunk. To align with

the pre-training input format of each model,

we adapt a unique token concatenation scheme Figure 2: VLA Network in VLM4VLA

for each VLM4VLA instance. We take the

last_hidden_state of the (ActionQuery) token, as encoded by the VLM, and decode it into an
action chunk using a small MLP-based policy head. The overall action output can be formulated as:

action = MLP(VLM([(img) ... (img)(text) . .. (text) (ActionQuery))]))

where (img) represents the visual embeddings from the vision encoder, (text) corresponds to the
language embeddings containing the instruction and any additional prompts, and (ActionQuery) is
the learnable action query token. The token sequence above omits VLM-specific special tokens (e.g.
(PAD) or (EOS) ...) for brevity. Further details can be found in Appendix

Training Objective During training, we finetune all parameters of the VLM, including the LLM,
the vision encoder, and the word embeddings. We deliberately avoid widely-used objectives like
diffusion loss and flow-matching loss. Our preliminary experiments revealed that these losses
introduce significant stochasticity during inference, requiring a much larger number of rollouts
for accurate evaluation. They also cause substantial performance fluctuations between different
checkpoints late in training, which is not conducive to the fair comparison we aim to achieve. As a
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result, we utilize a maximum likelihood imitation learning objective. The desired relative position
aP® of the end-effector (or continuous joint action) is optimized via a MSE loss. The discrete status
a®™ of the end-effector is optimized with a binary cross-entropy loss:

1
L= @ Z (”apos _ &POS”% + BCE(aend7dend)) 1)
B

where aP* and a°" denote the demonstration data for the relative position and status of the end-
effector in a sampled mini-batch B.

3.3 EXPERIMENT SETTINGS AND EVALUATION PROTOCOL

We fine-tune the VLM and the action policy for each model using identical hyperparameters and
model configurations for fair comparisons. Specifically, the model uses a single-view image of the
current frame as its visual input and does not take proprioceptive information; this prevents the model
from directly learning actions from the state. To handle inconsistent input image sizes across different
VLMs, we standardize the input to 224 x 224 resolution for all training. If a VLM requires a different
input size, we first process the image at 224 x 224 and then resize it to the model-specific dimensions.
During training, all parameters of VLM are trained, including the vision encoder, word embeddings,
LLM, and small policy head. For each VLM, we use a simple instruction prompt consistent with its
pre-training format (detailed prompts format for each model can be found in Appendix [A.2.7).

To ensure the reproducibility and fairness of our experiments, we do not use real-world tasks for
evaluation. A direct consequence of this choice is that it prevents other researchers from directly
comparing their own models against our findings on physical robots. We test different models in three
simulation environments: Calvin (Mees et al., 2022)), SimplerEnv (Li et al.|[2024), and Libero (Liu
et al., [2023)). Since each environment requires separate training and testing, to improve the efficiency
and rigor of our evaluation, we select the most challenging scenarios as our evaluation benchmarks.
During tests, we experiment with executing the full action chunk, half of the action chunk, and a
single step over all validation checkpoints. We report the best-performing result. More details about
the settings of different environments can be found in the Appendix [A.T}

Calvin ABC-D We evaluate on the Calvin ABC-D task. We train the model for 30k steps on the
ABC splits and evaluate it on 1000 task sequences, each with a length of 5. During testing, the policy
is required to complete a sequence of 1-5 tasks. This setup challenges the VLM’s ability to generalize
to novel visual scenes. We report the average number of successfully completed tasks per sequence.

SimplerEnv Bridge To better differentiate the performance of various VLM-based policies, we
choose the WindowX (Bridge V2) task suite, which is more challenging than the Fractal suite.
We train for 50k steps on Bridge-Vv2 (Walke et al.,|2023). During evaluation, we run 24 trials
with random initializations for each of the four scenes (Pick Carrot,Pick Eggplant,Pick
Spoon, and Stack Cube) and calculate the success rate.

Libero-Long (-10) Among the five task suites in Libero, we evaluate different models on the most
challenging suite Libero-Long, which consists of 10 tasks involving a variety of objects and skills.
All models are trained for 50k steps on the training split and evaluated with 50 trials with random
initializations for each task.

4 EXPERIMENT AND RESULTS

To comprehensively evaluate how VLM capabilities transfer to robot manipulation, our experimental
analysis is three-fold. First, in Sec[d.I] we benchmark various open-source VLMs on a challenging
set of tasks across three simulators to assess the relationship between general capability and the
downstream performance. Second, in Sec we investigate whether improvements gained from
fine-tuning on specific auxiliary embodied tasks translate to better final performance. Finally, in Sec
A.3] we analyze the importance of the vision encoder by comparing the outcomes of freezing versus
fine-tuning it during VLA adaptation.
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4.1 PERFORMANCE OF DIFFERENT VLMS ON VLM4VLA

4.1.1 BASELINES

VLM Baselines We evaluate several Vision-Language Models commonly used in open-source
VLAs, with model sizes generally ranging from 1B to 10B parameters, which ensures the feasibility
of extensive action-learning finetuning and rollout testing. We test a variety of VLM models
from the VLA domain, including the Paligemma series (paligemma-1 (Beyer et al.|l[2024) and
paligemma-2 (Steiner et al., 2024)), the QwenVL series (Qwen2 .5VL-3B, Qwen2.5VL-7B
and Qwen3VL-4B) (Bai et al.| [2025), InternVL3.5-4B (Wang et al., 2025) and Kosmos-2 (Peng
et al.;|2023). Among these, the QwenVL and InternVL series are top-tier general-purpose open-
source VLMs, Paligemma is designed for better adaptability to downstream finetuning, and the
Kosmos series excels at grounding tasks. These models cover a range of multimodal LLMs with
diverse architectures and strengths, allowing us to comprehensively compare their action-learning
capabilities.

VLA Baselines For comparison, we select several expert VLAs as reference baselines, which use
different VLMs as their backbones:

¢ OpenVLA (Kim et al.l 2024): Uses Llama2-7B with DINOv2/SigLIP as its VLM
backbone. It differs from our VLM4VLA framework by decoding actions into a discrete
space. The total model size is approximately 7.7B. For the Calvin environment, we report
our reproduced OpenVLA results, while for the Simpler and Libero environments, we report
the official results. Similar to our VLM4VLA setup, this model uses only a single image as
input and does not leverage proprioceptive state.

* pi0 (Black et al.||2024)): Based on Paligemma—1, with a total size of approximately 3.1B.
We modify the code provided by open-pi-zero to train and test within our setups, ensuring
consistent settings with other backbones. We remove the proprioceptive expert and use a
single image as input. More details can be found in Appendix [A.3]

* ThinkAct (Huang et al. [2025a)): A recent VLA model enhanced with reinforcement
learning, based on Qwen?2 . 5VL-7B. We report its official results on Simpler and Libero
for comparison against our Qwen?2 . 5VL-7B baseline. Unlike other baselines, ThinkAct
takes use of proprioceptive state as an input.

4.1.2 MAIN RESULTS

The performance of different VLMs on robotics tasks is presented in Tables[T]and 2] In addition to
success rates, we report the number of finetuned parameters for each model in the size column.

Table 1: Results on Calvin ABC-D. Entries marked with * are expert VLAs modified and reproduced
with our training and test settings.

Model (VLM Backbone) Size | Task-1  Task-2  Task-3  Task-4 Task-5 | Calvint

Expert Vision-Lanugage-Action Models

OpenVLA¥* (Llama-2)  7.7B 0.792 0.644 0.499 0.368 0.245 2.548
pi0* (Paligemma-1)  3.1B 0.896 0.785 0.786 0.610 0.532 3.509
VLM with VLM4VLA Models
Qwen2.5VL-3B 3.8B 0.922 0.842 0.766 0.700 0.626 3.856
Qwen2.5VL-7B 8.3B 0.935 0.864 0.807 0.758 0.693 4.057
Qwen3VL-4B  44B 0.933 0.857 0.790 0.719 0.644 3.943
Paligemma-1 2.9B 0914 0.813 0.692 0.599 0.488 3.506
Paligemma-2  3.0B 0.901 0.775 0.669 0.575 0.486 3.406
KosMos-2 1.7B 0.878 0.721 0.591 0.498 0.408 3.096
InternVL3.5-4B  4.7B 0.934 0.864 0.795 0.728 0.656 3.977

As shown in Table ] for the Calvin ABC-D task, QwenVL and InternVL significantly outperform
other VLMs. Notably, the average of 4.057 completed tasks by Qwen?2 . 5VL-7B is nearly on par
with state-of-the-art VLAs. Furthermore, VLMs that perform better on QA-benchmarks, such as
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the QwenVL series, also exhibit superior performance on Calvin, suggesting a correlation between
the capabilities tested by Calvin and other VQA benchmarks. Concurrently, we observe that pi0,
which is based on Paligemma—1 and does not use state information, performs similarly to the base
Paligemma-1 model. This indicates that the additional action expert is constrained by the inherent
capabilities of VLM backbone itself and fails to yield performance improvements in the Calvin
environment. Table 2]displays the performance of the models on the Simpler-Bridge and Libero-10
(long) tasks. We find that KosMos—2, the smallest model, achieves the highest success rate on both
tasks. On the Simpler-Bridge task, the Paligemma series models outperform the Qwen2 . 5VL
series, whereas on Libero-10, the performance across different VLM categories is comparable. It
is worth noting that ThinkAct, finetuned from Qwen?2 . 5VL~-7B, performs similarly to the base
Qwen?2.5VL-7B on Simpler-Bridge. However, its performance on Libero-10 is substantially better
than all other models. This may be caused by the proprioceptive state information utilized by
ThinkAct, which can be a useful input for Libero environment.

Table 2: Results on SimplerEnv-Bridge and Libero-10. Entries marked with * are expert VLAs
modified and reproduced with our training and test settings.

Model (VLM Backbone) ~ Size | Carrot  Eggplant Spoon Cube | Simplert | Liberot

Expert Vision-Lanugage-Action Models

OpenVLA (Llama-2) 7.7B 4.2 0.0 0.0 12.5 4.2 53.7
pi0* (Paligemma-1) 3.1B 62.5 100.0 54.2 25.0 60.4 46.0
ThinkAct (Qwen2.5VL-7B) 7.4B 37.5 70.8 58.3 8.7 43.8 70.9
VLM with VLM4VLA Models
Qwen2.5VL-3B 3.8B 20.8 91.7 79.2 0.0 47.9 43.0
Qwen2.5VL-7B 8.3B 12.5 100.0 75.0 0.0 46.9 45.0
Qwen3VL-4B 4.4B 54.2 95.8 75.0 0.0 56.3 44.4
Paligemma-1 2.9B 50.0 91.7 75.0 4.2 55.2 44.2
Paligemma-2 3.0B 75.0 75.0 79.2 0.0 57.3 46.2
KosMos-2 1.7B 37.5 100.0 75.0 29.2 60.4 55.0
InternVL3.5-4B 4.7B 12.5 100.0 62.5 54.2 57.3 62.8

As illustrated in Figure[3] we conducted a linear
regression analysis to examine the relationship
between VLA performance and the general capa-
bilities of the underlying VLMs. We plot the per-
formance of various VLMs on several general-
purpose VQA benchmarks against their perfor-
mance on VLA tasks. For Paligemma and
Kosmos, we approximated their general capa-
bilities using results from their proprietary tasks.
For Qwen-VL and InternVL, we used the
average scores from multiple general-purpose
VQA benchmarks. A linear regression line is
fitted to visualize the correlation between these
two sets of metrics. The results indicate that dif-
ferent evaluation environments exhibit varying
degrees of linear correlation with these general
VLM capabilities. We found that the results on
the Calvin benchmark exhibit a high correlation
with performance on VQA benchmarks. In con-
trast, for the Simpler and Libero environments, there is no apparent correlation between a VLM’s QA
performance and its VLA performance. This suggests a significant gap exists between the capabilities
required for VLA manipulation tasks and those measured by existing VQA benchmarks.

\'Calvin: Strong Positive Correlation |

—
‘Simpler: Weak Negative Correlation’

{Libero: Weak Positive Correlation}
—@— SimplerEnv
—— Calvin

—&— Libero-Long

VLA Performance Score

VLM General Capability

Figure 3: Comparison of the linear relationship
between general VLM capabilities and VLA per-
formance.

4.2 IMPACT OF DIFFERENT VLM AUXILIARY TASKS ON VLA PERFORMANCE

Recent works have proposed using robotic data to construct VQA datasets for improving VLM
backbones, e.g., Robobrain (Team, |[2025)), Robix (Huang et al.| 2025b). However, few studies have
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investigated whether this additional continual finetuning actually benefits VLAs in downstream tasks.
In this section, we construct or collect several SFT tasks for VLM, including VQA datasets and
a generation task. We first finetune the Qwen2 . 5VL model and subsequently, we employ each
finetuned VLM as the backbone for our VLM4 VLA framework and evaluate its performance on the
Calvin benchmark. Specifically, we compare the following finetuned VLMs (more details about SFT
datasets can be found in Appendix [A.3):

Robopoint (Yuan et al., 2024) A pointing task dataset collected in simulator. Given an image
and a target location, the model is required to output the 2D coordinates that satisfy the target
requirement. This finetuning dataset contains 1.432M samples. After finetuning, the performance of
Qwen?2 . 5VL-3B on the pointing task improved by ~20% on the test split.

Vica-332k (Feng, 2025) A spatial understanding dataset constructed from RGB-D datasets. It
covers a wide range of capabilities, including size estimation, position understanding, distance
estimation, and so on. After finetuning Qwen?2 . 5VL—-3B on this dataset, we achieve a performance
improvement of ~15% on VSI-Bench Yang et al.|(2025).

Bridgevga We used VOASynth|to annotate data from Bridge-v2, Fractal, and Calvin ABC,
combining them into a spatial understanding question-answering dataset. The main QA content
includes judging the distance, size, and depth between two objects.

Robo2vlm (Chen et al.,[2025b) An action-oriented question-answering dataset built from 176k real
robot trajectories, containing 667k VQA pairs. It involves tasks such as multi-view understanding, suc-
cess prediction, position management, and trajectory judgment. After finetuning Qwen2 .5VL~-3B
on this dataset, we achieved a 60% performance improvement on its test set.

Robobrain2 (Team) 2025) A large-scale embodied VQA dataset and a VLM finetuned on
Qwen?2 .5VL-7B. The tasks include pointing, planning, and marking trajectory. We directly use
their finetuned VLM as the backbone for our VLM4VLA.

Omni-Generation We integrate a diffusion model into QwenVL-7B and train on both image
generation, depth map generation, and semantic segmentation map generation tasks together with
general VQA tasks. We use the resulting VLM part as the backbone for VLM4VLA.

VQA-Mix We mix the aforementioned VQA datasets with other large-scale general data to finetune
Qwen?2.5VL-7B.
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Figure 4: Performance of different auxiliary VLM finetune tasks. The *Length’ dimension is scaled
by a factor of 5 to normalize it to the range [0, 1]. The results for the VL As trained under each task
and for each gradient steps (10k, 15k, 20k, 25k and 30k) are rendered as box plots to provide a view
of the impact of different tasks on the VLA’s performance and stability.

Figure ] presents the performance of the various finetuned VLMs. Overall, all models underperform
the original baseline, with most exhibiting a slight degradation in performance and an obvious
increase in variance. For Qwen?2 . 5VL-3B, the model finetuned on Vica332k performs better
than those finetuned on other datasets. This could be attributed to the dataset’s broad data coverage
and diverse task types, which may prevent the model from overfitting to a narrow set of capabilities
and consequently degrading others. For Qwen2.5VL-7B, the VOA-Mix model shows the least
performance degradation, achieving results nearly identical to the baseline. This suggests that general-
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purpose VQA data plays a crucial role during embodiment-focused finetuning, further implying
that VLAs may require broad, general capabilities, beyond just embodied skills, to perform well on
downstream tasks.

It is also worth noting that finetuning with generation tasks (i.e., Omni-Generation on
Qwen2.5VL-7B), such as depth and semantic map prediction, did not yield performance ben-
efits. This may indicate that simply introducing generation tasks or dense 3D-aware tasks into VLM
finetuning process does not provide a tangible advantage for the VLA. Similarly, Robobrain2,
positioned as a general-purpose embodied brain, also underperformed the baseline in our VLM4VLA
tests. This suggest that existing embodied VQA-style tasks do not offer a clear benefit for training
end-to-end VLAS to execute downstream manipulation tasks.

4.3 IMPORTANCE OF VISION ENCODER

Table 3: Influence of freezing vision encoder of VLMs

Size | Calvin ABC-DT | SimplerBridget

Qwen2.5VL-3B 3.8B 3.856 48.00

+ freeze vision encoder 3.1B 2.855 (-1.001) 23.95 (-24.05)
Qwen2.5VL-7B 8.3B 4.057 46.75

+ freeze vision encoder  7.6B 2.823 (-1.234) 25.50(-21.25)
Paligemma-1 2.9B 3.506 55.25

+ freeze vision encoder 2.5B 0.495 (-3.011) 13.25 (-42.00)

Table 3] shows the performance of three models when the vision encoder is frozen during VLM4VLA
training. We observe a significant performance degradation for all models on both the Calvin and
Simpler benchmarks after freezing the vision encoder, with this drop being particularly pronounced
for the Paligemma models. In the case of Qwen2.5VL-7B, the vision encoder accounts for
0.7B parameters. When it is frozen, the total number of tunable parameters is still a substantial
7.6B, which is much larger than 3.8B in Qwen?2 . 5VL-3B. However, the performance of the frozen
Qwen?2 .5VL-7B is not only significantly worse than its fully finetuned counterpart but also substan-
tially underperforms the fully finetuned Qwen?2 . 5VL—-3B.

This finding strongly suggests that finetuning the vision encoder is crucial when adapting a VLM into
a VLA, and that the impact of this module can be more significant than merely increasing the number
of trainable parameters in the language model. A potential reason for this phenomenon is that the
VLM’s pre-trained vision encoder is not well-aligned with the visual domain of embodied scenes.
The model likely requires significant adaptation of its vision module to effectively process and align
with the visual signals from these novel environments. This highlights a promising direction for
future research.

5 CONCLUSIONS

In this paper, we investigated the impact of various VLMs—including the effect of auxiliary fine-
tuning tasks—on the performance of VLA models. Through over 100 training and evaluation
experiments conducted across three distinct environments, we assessed the capabilities of seven
models and seven categories of auxiliary data for executing manipulation tasks. Our findings offer
practical recommendations and a performance reference for the community. A core insight from
our study is the significant gap between the capabilities of current VLMs and the demands of VLA
embodied tasks. Specifically, we observe a notable discrepancy between a VLM’s performance
on standard VQA benchmarks and its actual effectiveness when deployed in a VLA. A limitation
of our work is the absence of experiments on physical robots. This decision was motivated by
challenges related to reproducibility, as well as difficulties in ensuring test efficiency and fairness
across physical hardware setups. While real-world deployment remains the ultimate goal, we believe
that our comprehensive results across multiple, diverse simulation benchmarks provide valuable
insights that can inspire and guide future research in this area.
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A APPENDIX

A.1 MORE DETAILS ABOUT TESING ENVIRONMENTS

Calvin ABC-D Calvin is a simulation benchmark for various tabletop manipulation tasks. Its dataset
consists of four splits (A, B, C, and D), each with different scene configurations (primarily changes
in object and scene colors). During testing, the policy is required to complete a sequence of 1-5 tasks.
To prevent larger models from merely overfitting to seen color schemes, we adopt the ABC-D setup,
where the model is trained on scenes A, B, and C, and tested on scene D. This setup challenges the
VLM'’s ability to generalize to novel visual scenes. We train the model for 30k steps on the ABC
splits and evaluate it on 1000 task sequences, each with a length of 5. We report the average number
of successfully completed tasks per sequence.

SimplerEnv Bridge SimplerEnv is a suite of real-to-sim evaluation environments where the policy is
trained on real-world data and tested in simulation. The test scenarios are divided into two categories
based on the data source: Google Robot (Fractal) and WindowX (Bridge V2). The former has a
smaller visual gap between the training and testing domains, where most policies perform well. To
better differentiate the performance of various VLM-based policies, we choose the more challenging
Bridge split as our evaluation metric. We train for 50k steps on BridgeV2, with validation every 5k
steps (for a total of 10 checkpoints). During evaluation, we run 24 trials with random initializations for
each of the four scenes (Pick Carrot,Pick Eggplant,Pick Spoon,and Stack Cube)
and calculate the success rate. We report the best result from the validation checkpoints.

Libero-Long (-10) Libero is a simulation benchmark for multi-category manipulation tasks on a
fixed tabletop, which contains five task suites. We select the most challenging suite, Libero-Long
(also known as Libero—-10), which consists of 10 long-horizon tasks involving a variety of objects,
scenes, and manipulation types.

A.2 MORE IMPLEMENTATION DETAILS
A.2.1 TRAINING SETUPS

To ensure a fair comparison, we fine-tune the Vision-Language Model (VLM) and the action policy
with identical hyperparameters and model configurations in each test environment. Specifically, all
our experiments are conducted on 8 NVIDIA A100 GPUs. The model uses a single-view image of the
current frame as its visual input and does not take state information as input, which prevents the model
from directly learning actions from the state. We fine-tune all parameters of the VLM, including the
vision encoder, token embeddings, and the LLM part. The detailed training hyperparameters are as
follows:

« Calvin: We use a batch size of 256, a learning rate of 2 x 10~ for all models, and an action
chunk size of 10.

» Simpler & Libero: We use a batch size of 512, a uniform learning rate of 5 x 1075, and an
action chunk size of 4.

A.2.2 LANGUAGE PROMPTS AND FORMAT

For fair comparison between different VLMs, we prompt all models with the simplest format of
prompts while keeping consistent with the VLM’s pretraining prompt format. The detailed prompts for
the different VLMs used in VLM4VLA are as follows (including special tokens). For convenience,
here we use the robotic instruction pick up cube as an example of an input encoded in this
manner.

Paligemma-1 & Paligemma-2

The Paligemma model employs a prefix—suffix encoding scheme during its pre-training.
In this scheme, the prefix part is processed with bidirectional attention, while the suffix part uses
unidirectional (causal) attention for generative tasks. The two parts are demarcated by a <bos>
token. For our implementation, we adopt the prefix encoding scheme for image tokens and the suffix
encoding scheme for text tokens, as this aligns with the model’s generative training objective.

(img) . .. (img)(bos)pick up cube\n{ActionQuery)
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Kosmos-2

Kosmos is a VLM optimized for grounding tasks, where its training sequences contain multiple
task-specific tokens. Since the action output of a VLA is not a grounding task, we do not include
these additional task tokens in our input. The expectation is that the model will automatically learn to
leverage its skills acquired from other tasks during the fine-tuning process.

(s)(image)(img) . . . (img) (/image) (p)pick up cube\n{/p){ActionQuery)
Qwen2.5VL-3B & Qwen2.5VL-7B & Qwen3VL-4B
For the Qwen series of models, which are instruction-fine-tuned, general-purpose conversational

models, an input format that closely mirrors their training would necessitate the inclusion of both
system and user prompts. We therefore compared two distinct token concatenation schemes:

* Scheme 1 (Full Compliance): This approach strictly adheres to the instruction-SFT format.
While this ensures maximum alignment with the model’s pre-training, it results in a longer
input token sequence:

([im_start|)system\nYou are a helpful assistant.(|im_end|)\n
(|im_start|yuser\n(|vision_start|) (img) . . . (img)(|vision_end|) What action should the
robotic arm take to pick up cube(|im_end|)\n

(|im_start|)assistant\n{ActionQuery)

* Scheme 2 (Simplified Consistency): This scheme aligns with the simplified approach we
used for Kosmos and Paligemma. It omits the extraneous conversational prompts (e.g.,
system and user roles) and includes only the most essential special tokens required for
sequence construction:

(|im_start|) (|vision_start|) (img) . . . (img){|vision_end|)pick up cube\n({ActionQuery)

Prompt | Calvin ABC-DT | SimplerBridget

Qwen2.5VL-3B Long 3.856 48.00
Qwen2.5VL-3B Short 3.844 (-0.012) 46.75 (-1.25)

Qwen2.5VL-7B Long ‘ 4.057 ‘ 46.75

Qwen2.5VL-7B Short 3.947 (-0.110) 44.00 (-2.75)

Table 4: Comparison between different prompt formats. Long prompt denotes Scheme 1, while the
Short prompt denote the Scheme 2.

The comparison in Table ] indicates that prompts perfectly matching the Supervised Fine-Tuning
(SFT) format perform marginally better than their minimal counterparts. Consequently, we con-
sistently apply the Scheme 1 prompt style to the QwenVL and InternVL series in our remaining
experiments to maintain alignment with their original training formats.

InternVL3.5-4B

The training format of InternVL is highly similar to that of Qwen-VL, as both models utilize the
same Qwen-LLM backbone. Accordingly, we adopt the same prompt format as the Qwen series, with
modifications made to certain differing special tokens:

(|im_start|)system'\nYou are a helpful assistant.(|im_end|)\n

(lim_start|)user\n(|img|) (img) . . . (img) (|/img|) What action should the

robotic arm take to pick up cube(|im_end|)\n

([im_start|)assistant\n(ActionQuery)

A.2.3 IMPLEMENTATION DETAILS ABOUT VLM4VLA ARCHITECHTURE

We provide the detailed model architechture in Table[5] We maintain a consistent architecture for
the action-specific modules across all models, including a fixed number of learnable tokens and a
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uniform hidden size for the action head. Consequently, the variation in the number of additional
trainable parameters is solely dependent on the VLM’s native hidden_size. The Policy Head
architecture presented here omits the final linear layer, which maps the features to the action space
(i.e., Linear (1024, 7)).

Backbone Policy Head Learnable LLM Hidden

VIM Size Size Tokens Size

Policy Head

Linear (2048,1024)
Qwen2.5VL-3B 3755M 6.58M 1 2048 ReLU
Linear (1024,1024)

Linear (3584,1792)
Qwen2.5VL-7B 8292M 11.69M 1 3584 RelLU
Linear (1792,1024)

Linear (2560, 1280)
Qwen3VL-4B 4437M 8.02M 1 2560 RelU
Linear (1280,1024)

Linear (2048,1024)
Paligemma-1 2923M 6.58M 1 2048 RelU
Linear (1024,1024)

Linear (2304,1502)
Paligemma-2 3032M 7.27TM 1 2304 RelLU
Linear (1502,1024)

Linear (2048,1024)
KosMos-2 1664M 6.58M 1 2048 ReLU
Linear (1024,1024)

Linear (2560, 1280)
InternVL3.5-4B 4732M 8.02M 1 2560 RelU
Linear (1280,1024)

Table 5: Detailed architecture of different VLM4VLA backbones.

A.3 IMPLEMENTATION AND EVALUATION DETAILS FOR THE PI0

Reproducing pi0 In our experiments, we reproduced the pi0 model to serve as a strong compar-
ative baseline. We leveraged the model implementation from the official code released by Allen/but
excluded its proprioceptive input module. Specifically, we integrated the pi 0 model architecture into
the VLM4VLA data-loading and training framework for fine-tuning and evaluation. This model-only
migration was a deliberate choice, as we observed that the data preprocessing strategies used in the
original pi0 implementation for the Simpler environment were inconsistent with those of OpenVLA
and our VLM4VLA framework, thus ensuring a fairer comparison.

Modification of the Proprioceptive State Expert We modified the state expert in pi0 by directly
concatenating the outputs of the VLM expert and the action expert. Since the state and action experts
in the original pi 0 architecture share the same parameters, our modification only alters the model’s
input pathway without changing its underlying structure or parameter count.

Evaluation Protocol During our experiments, we discovered that the Flow-matching loss used
in pi0 leads to significant performance instability. Specifically, multiple rollouts of the same pi0
policy in an identical starting environment could yield success rate fluctuations as high as +20%.
In stark contrast, our VLM4VLA approach is deterministic under the same conditions, producing
identical outcomes for each run without stochasticity. This high variance necessitated a more extensive
evaluation rollouts for pi0 to obtain a reliable estimate of its true performance. Consequently, when
testing pi0, we performed a greater number of rollouts for each checkpoint under various settings:
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VLM4VLA Baseline | Task-1 — Task-2  Task-3  Task-4  Task-5 | ALL?T

Qwen2.5VL-3B 0.922 0.842 0.766 0.700 0.626 3.856
+ Robopoint 0.924 0.829 0.749 0.683 0.598 3.783 (-0.073)

+ Vica332k 0.940 0.842 0.758 0.692 0.615 3.847 (-0.009)

+ Bridgeqva 0.945 0.843 0.744 0.657 0.577 | 3.765 (-0.091)

+ Robo2vim 0.925 0.833 0.737 0.668 0.597 | 3.760 (-0.096)

Qwen2.5VL-7B 0.935 0.864 0.807 0.758 0.693 4.057
+ Robobrain2 0.938 0.849 0.767 0.704 0.629 | 3.887(-0.170)
+ Omni-Generation 0.928 0.833 0.760 0.711 0.654 | 3.876(-0.181)

+ VQA-Mix 0.938 0.856 0.794 0.732 0.658 | 3.978 (-0.079)

Table 6: Comparison of different Embodied VQA finetuning on VLM4VLA (best results on each
settings)

 Calvin: We averaged the results over 3 evaluation runs per model.
» Simpler: We performed 240 evaluation runs for each model on every task.

* Libero: We performed 250 evaluation runs for each model on every task.

A.4 DETAILED RESULTS OF AUXILIARY TASKS

The results on each finetuned VLM on VLA tasks (Calvin ABC-D) are shown in Table@ (correspond-
ing to Chart ).

A.5 DETAILS ABOUT DATASETS USED FOR FINETUNING VLM

Robopoint (Yuan et al., 2024) A pointing task dataset collected in a simulator. Given an image and
a target location, the model is required to output the 2D coordinates that satisfy the target requirement.
This finetuning dataset contains 1.432M samples. As shown in the table, after finetuning, the
performance of Qwen?2 . 5VL-3B on the pointing task improved by ~20% on the test split.

Vica-332k (Feng, 2025) A spatial understanding dataset constructed from RGB-D datasets. It
covers a wide range of capabilities, including size estimation, position understanding, distance
estimation, and so on. After finetuning Qwen?2 . 5VL—-3B on this dataset, we achieve a performance
improvement of ~15% on VSI-Bench Yang et al.|(2025)).

Bridgevqga We used VQASynth to annotate data from Bridge-v2, Fractal, and Calvin ABC,
combining them into a spatial understanding question-answering dataset. The main QA content
includes judging the distance, size, and depth between two objects.

Robo2vlm (Chen et al.,[2025b) An action-oriented question-answering dataset built from 176k real
robot trajectories, containing 667k VQA pairs. It involves tasks such as multi-view understanding, suc-
cess prediction, position management, and trajectory judgment. After finetuning Qwen?2 .5VL-3B
on this dataset, we achieved a 60% performance improvement on its test set.

Robobrain2 (Team) 2025) A large-scale embodied VQA dataset and a VLM finetuned on
Qwen?2 . 5VL-7B. The tasks include pointing, planning, and marking trajectory. We directly use
their finetuned VLM as the backbone for our VLM4VLA.

Omni-Generation Qwen-vlo integrates a diffusion model into VLM and trains on both image
generation, depth map generation, and semantic segmentation map generation tasks. We use the
resulting VLM part (Qwen?2 . 5VL—-7B as the backbone for VLM4VLA.

VQA-Mix We mix the aforementioned VQA datasets with other large-scale general VQA data to
finetune Qwen?2 . 5VL—-7B. The embodied related tasks include approximately 620k image-text pairs,
including Vica Feng|(2025), SpaceR |Ouyang et al.| (2025), Embspatial Du et al.|(2024) and Refspatial
Zhou et al.|(2025a). The general VQA data consists of 360k QA pairs.
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https://github.com/remyxai/VQASynth
https://qwenlm.github.io/zh/blog/qwen-vlo/
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Example of Robopoint Data

Question: Locate several points on an item
situated beneath the bordered item.

Answer:  [(0.56, 0.69), (0.53, 0.76), (0.45,
0.72), (0.43, 0.67)]

Example of Vica Data

Question: How large is this room in terms of
square meters? If more than one room is shown,
approximate the overall space.

Answer: 18.33

Example of Bridgevqa Data

Question: Who is positioned more to the
left, the red spoon or the robot arm?

Answer: Red spoon is more to the left.

Example of Robo2VLM Data

Question: The robot task is to flip the switch of
the extension cord. Which colored arrow correctly
shows the direction the robot will move next?
Choices: A. Yellow. B. Blue. C. None of the
above. D. Purple. E. Green. Please answer directly
with only the letter of the correct option and
nothing else.

Answer: C

B USAGE OF LLMS

In the final stages of preparing this manuscript, the authors used a Large Language Model (LLM)
solely for grammar checking and language polishing. The model assisted in improving sentence
structure and correcting grammatical errors to enhance readability.
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Example of Robobrain Data (ShareRobot)
Question: reach for the ketchup bottle

Answer: [[113.66,106.19],[153.30,111.42],
[217.61,121.14],[248.27,135.35]]

Example of Omni-Generation Tasks

Question: Use a red mask to segment the
edges of the banana in the image.

Answer: Generated mask in the image.
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