
Appendix

Table of Contents
A Broader Impacts 14

B Ablations 14
B.1 Effect of Chain-of-Thought Reasoning . 14
B.2 Model Scaling . 15
B.3 Task-wise Performance on MiniWoB++ . 16

C Experimental Details 18
C.1 HeaP Planner Policy Code Architecture . 18
C.2 Hyper-parameters . 18

D Autolabeling and Prompt Generation 18
D.1 Collect and Autolabel demonstrations . 18
D.2 Autogenerate prompts from labeled demonstrations 19
D.3 Augmenting prompts with chain-of-thought reasoning 19
D.4 Autolabeling Examples . 19

E Airline CRM Environment 19

F Live Websites Dataset 22
F.1 Collecting Human Task Demos . 22
F.2 Parsing Browser Content . 22
F.3 Augmenting with Conversations . 22

G Evaluation with Llama2 model 23

H Library of Prompts 25
H.1 HeaP Few-shot Prompt . 25
H.2 Flat Few-shot Prompt . 32
H.3 Flat Zero-shot Prompt . 34
H.4 HeaP Zero-shot Prompt . 35
H.5 Auto-labeling Prompt . 38
H.6 Reasoning Prompt . 41

13

A BROADER IMPACTS

This paper presents a novel method of using Large Language Models (LLMs) to execute web actions through
hierarchical prompting and few-shot examples. The broader impact of our work spans both technological and
societal dimensions.

Technological Impact: By enabling LLMs to perform web actions, a vast range of applications can be
automated and improved, leading to greater efficiencies and new capabilities. For instance, customer service can
be improved by automating frequently performed web actions, thereby increasing productivity and customer
satisfaction. The automation can streamline processes and free up human resources for more complex, nuanced
interactions.

The idea of hierarchical prompting opens up new avenues for artificial intelligence research, especially in the
field of natural language understanding and web interaction. As LLMs become more and more capable, we need
scalable approaches for decision making that allow these models handle a diverse array of tasks while being able
to fail gracefully. Approaches that build on ideas around task decomposition, modularity and reusability would
enable improved scalability and failure handling.

Societal Impact: Equipping LLMs with the ability to carry out web tasks opens up a a variety of possibilities
for societal benefits and change. For instance, the technology could transform accessibility to digital services,
in particular for the elderly or individuals with certain disabilities.This technology also serves as a powerful
assistant to humans by automating repetitive tasks hence reducing cognitive burden on employees across different
sectors such as customer care and IT services.

However, while these advancements promise substantial benefits, they also present challenges that need to be
diligently addressed. The potential for misuse of this technology, such as unauthorized data access, privacy
breaches, or malicious automation, is of serious concern. It is essential to develop robust security measures and
clear ethical guidelines for the use of LLMs that respect users’ privacy. Moreover, care must be taken that the
deployment of such technologies is to eventually augment humans and help free them up for more creative and
nuanced interactions. This calls for careful planning and implementation, including strategies for re-skilling or
up-skilling.

B ABLATIONS

We conduct two ablations. The first studies how the performance of all methods vary with model architectures.
The second looks at the performance gains from adding chain-of-thought reasoning to all prompts.

B.1 EFFECT OF CHAIN-OF-THOUGHT REASONING

While we initially did not have chain-of-thought reasoning 4, we found that adding it in helped HeaP
Few-shot rationalize a particular action well and boost performance. We wanted to understand which
tasks in particular were helped by chain-of-thought reasoning, and what the trade-offs were.

We wanted to test the following hypothesis for HeaP Few-shot with and without chain-of-thought:

1. Hypothesis 1: Chain-of-thought reasoning helps across all tasks. Even though chain-of-thought
reasoning makes prompts slightly longer, the added step of rationalizing actions should always boost
performance.

2. Hypothesis 2: Chain-of-thought reasoning particularly helps in multi-step tasks. Multi-step
tasks often require breaking down a problem into a set of steps and executing each step. While
demonstrations certainly show how to break down task, adding chain-of-thought better rationalizes
this breakdown and helps generalize to new tasks not covered in the demonstrations.

We compared HeaP Few-shot with two versions - having chain of thought, and not having. Fig. 10 shows a
plot of success rate for each of the 3 clusters of tasks - single, composite, multi.

Hypothesis 1: Chain-of-thought reasoning helps across all tasks.. We find this to be true since for all tasks,
chain-of-thought performs either equally or better. This confirms that the extra tokens consumed by the reasoning
does not hurt performance and in fact helps significantly in some cases.

Hypothesis 2: Chain-of-thought reasoning particularly helps in multi-step tasks. We find this to be true as
well. Looking at the multi-step tasks, chain-of-thought has the largest performance gains compared to any other
cluster. The performance gains are he largest in book-flight and search-engine where the horizon length is the

4Chain-of-Thought Prompting Elicits Reasoning in Large Language Modelshttps://arxiv.org/abs/2201.11903

14

N
o

C
ha

in
-o

f-t
ho

ug
ht

 C
ha

in
-o

f-t
ho

ug
ht

Composite

Single

Mulit-step

Su
cc

es
s

Ra
te

Su
cc

es
s

Ra
te

Su
cc

es
s

Ra
te

Figure 10: Success rate of HeaP Few-shot with both chain-of-thought and without.

largest. In comparison, for single and composite the performace gains vary, being higher for certain tasks like
choose-date and find-word and zero for others like click tasks.

B.2 MODEL SCALING

While we developed the prompts with text-davinci-003, we wanted to compare how performance varies
with newer models gpt-3.5-turbo and gpt-4. gpt-3.5-turbo is also an InstructGPT model optimized
for chat and trained at 1/10th the price of text-davinci-003. gpt-4 is a significantly larger model, and
capable of solving more complex tasks.

We wanted to test the following hypothesis:

1. Hypothesis 1: GPT-4 improves performance across all methods, but both hierarchical prompting
and few-shot examples help. GPT-4 is a powerful model and with an exhaustive set of instructions in
the prompt, it should be able to achieve perfect performance. However, designing such exhaustive
prompts for all web tasks is challenging. We hypothesize that hierarchical prompting helps break
down and scope instructions leading to better performance for GPT-4. Similarly, few-shot examples
helps GPT-4 ground instructions in the webpage.

2. Hypothesis 2: gpt-3.5-turbo slightly worse than text-davinci-003 given few-shot
examples. Practioners have noted that while gpt-3.5-turbo has better 0 shot performance,
text-davinci-003 is trained on a more diverse set of tasks and performs better with k-shot
learning https://scale.com/blog/chatgpt-vs-davinci#Introduction. Since 0
shot performance for web-tasks is challenging without exhaustive instructions, we hypothesize that
text-davinci-003 will perform better.

15

https://scale.com/blog/chatgpt-vs-davinci#Introduction

bo
ok

-fl
ig

ht

Su
cc

es
s

Ra
te

Se
ar

ch
-e

ng
in

e

Su

cc
es

s
Ra

te
Si

m
pl

e-
al

ge
br

a

Su

cc
es

s
ra

te

gp
t-3

.5
-tu

rb
o

te
xt

-d
av

in
ci

-0
03

gp

t-4

Figure 11: Success rate of all methods with different models.

We compare three language models text-davinci-003, gpt-3.5-turbo and gpt-4 for all baselines
on 3 tasks from MiniWoB++ - book-flight, search-engine, simple-algebra. Fig. 11 shows a plot for each of these
tasks.

Hypothesis 1: GPT-4 improves performance across all methods, but both hierarchical prompting and
few-shot examples help. We find this to be true. GPT-4 is unambiguously better than any other model and
improves all methods. However, as shown in book-flights and search-engine, both hierarchical prompting
(HeaP) and few-shot examples boost performance. In simpler reasoning tasks like simple algebra, it gets it
correct right away.

Hypothesis 2: gpt-3.5-turbo slightly worse than text-davinci-003 given few-shot exam-
ples. We also find evidence for this. text-davinci-003 with few-shot examples always outperforms
gpt-3.5-turbo. Although, in simple-algebra, zero shot performance of gpt-3.5-turbo is better than
text-davinci-003, matching what other practitioners have observed in other tasks.

B.3 TASK-WISE PERFORMANCE ON MINIWOB++

Table 4 shows a task-wise performance breakup on the MiniWoB++ benchmark for various models. We choose
a set of 45 tasks that don’t require visual reasoning. HEAP FEW-SHOT has competitive performance to prior
works like WGE Liu et al. (2018), CC-Net Humphreys et al. (2022), WebN-T5 Gur et al. (2022), WebGUM
Furuta et al. (2023) while using 1000x or more lower data. See Table 1 for aggregate metrics on success rates
and dataset sizes.

The gap in HEAP FEW-SHOT and FLAT FEW-SHOT performance is particularly pronounced on tasks involving
multiple steps and composing different low-level actions, demonstrating that hierarchy is helpful in solving
more complex tasks. Few-shot variants of both HeaP and FLAT generally leads to improved success rates and

16

WGE CC-Net WebN-T5 WebGUM Flat Flat HeaP HeaP
Task (SL+RL) (HTML) Zero-shot Few-shot Zero-shot Few-shot

%suc" %suc" %suc" %suc" %suc" #act# %suc" #act# %suc" #act# %suc" #act#

sim
pl

e

click-link 1.00 0.99 1.00 1.00 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00
click-option 1.00 0.99 0.37 1.00 0.76 3.68 1.00 2.62 0.80 2.94 1.00 1.94
focus-text 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
click-button 1.00 1.00 1.00 0.98 0.98 1.02 1.00 1.00 1.00 1.00 1.00 1.00
click-button-sequence 0.99 1.00 1.00 1.00 0.96 2.00 1.00 2.00 1.00 2.00 1.00 2.00
click-dialog 1.00 1.00 1.00 1.00 1.00 1.06 1.00 1.20 1.00 1.28 1.00 1.02
click-dialog-2 1.00 1.00 0.24 0.34 0.98 1.00 1.00 1.00 0.98 1.00 1.00 1.02
click-tab 0.55 1.00 0.74 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.04
click-test 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
click-test-2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
enter-text 1.00 1.00 0.89 1.00 1.00 2.50 1.00 2.00 1.00 2.10 1.00 2.00
focus-text-2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
enter-text-dynamic 1.00 1.00 0.98 1.00 0.98 2.44 1.00 2.00 0.98 2.06 1.00 2.00
enter-password 0.99 1.00 0.97 1.00 1.00 3.08 1.00 3.00 1.00 3.20 1.00 4.52
login-user 0.99 1.00 0.82 1.00 0.96 3.42 1.00 3.00 1.00 3.06 1.00 3.00
click-pie 0.32 0.97 0.51 0.99 1.00 3.00 1.00 3.00 1.00 3.00 1.00 3.00
enter-date 0.00 1.00 0.00 1.00 1.00 3.00 1.00 2.00 0.00 4.08 1.00 2.00
grid-coordinate 1.00 1.00 0.49 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
click-widget 0.93 1.00 1.00 1.00 0.94 1.00 0.94 1.00 0.94 1.00 1.00 1.00

co
m

pl
ex

email-inbox 0.43 1.00 0.38 0.99 0.40 7.00 0.70 4.50 0.00 3.00 0.90 5.20
email-inbox-nl-turk 0.77 1.00 0.23 0.92 0.40 7.20 0.50 6.00 0.00 2.90 1.00 4.58
email-inbox-forward-nl-turk - 1.00 0.33 1.00 0.30 5.08 0.40 4.80 0.00 3.50 0.90 4.30
multi-orderings 0.99 1.00 0.88 1.00 0.56 3.60 0.98 3.98 0.76 4.28 1.00 4.00
choose-date 0.00 0.97 0.00 0.08 0.20 3.00 0.94 3.60 0.20 5.80 1.00 5.40
click-collapsible-2 0.65 0.98 0.00 0.94 0.60 3.64 0.74 4.14 0.34 3.34 0.80 4.50
simple-arithmetic - 0.86 0.00 0.00 0.82 2.12 0.92 2.12 0.54 2.66 1.00 2.00
click-tab-2 0.64 0.98 0.18 0.94 0.76 5.58 0.88 4.62 0.88 2.84 1.00 2.24
click-tab-2-hard - 0.98 0.12 0.57 0.68 3.36 0.88 3.84 0.76 3.06 1.00 2.42
multi-layouts 0.99 1.00 0.83 1.00 0.42 4.46 0.72 3.94 0.66 4.82 0.94 4.00
copy-paste - 0.79 0.00 0.00 0.14 2.14 0.70 3.48 0.98 2.72 1.00 2.00
click-collapsible 1.00 1.00 0.00 1.00 0.54 1.76 0.68 1.88 0.86 1.88 1.00 2.00
choose-date-easy - 0.99 0.03 1.00 0.74 2.74 0.62 2.62 0.20 10.18 1.00 3.10
copy-paste-2 - 0.63 0.00 0.00 0.54 7.66 0.56 4.00 0.48 3.84 0.96 2.04
simple-algebra - 0.75 0.00 0.00 0.14 8.80 0.30 6.78 0.04 4.38 0.74 2.00
click-checkboxes 0.98 0.98 0.96 1.00 0.40 4.90 0.44 5.94 0.74 3.20 0.90 3.14
click-checkboxes-transfer 0.64 0.99 0.63 0.99 0.40 4.80 0.40 3.90 0.54 3.20 0.94 2.84
login-user-popup - 1.00 0.72 0.97 0.46 6.28 0.46 3.52 0.46 5.82 1.00 4.88
click-checkboxes-soft 0.51 0.95 0.54 1.00 0.00 7.00 0.00 7.30 0.04 6.94 0.54 5.64
enter-text-2 - 0.98 0.00 0.00 0.00 2.60 0.40 5.20 0.40 2.00 1.00 2.00
email-inbox-forward-nl - 1.00 0.60 1.00 0.10 5.04 0.10 4.58 0.00 3.24 0.74 4.74
search-engine 0.26 1.00 0.34 0.59 0.38 3.64 0.38 3.16 0.26 4.46 1.00 4.30
find-word - 0.88 0.00 0.00 0.22 2.62 0.26 5.18 0.12 2.92 0.98 2.00
choose-date-medium - 0.99 0.00 0.57 0.32 2.90 0.20 2.76 0.20 9.26 1.00 3.86
click-checkboxes-large 0.68 0.71 0.22 0.98 0.00 8.40 0.20 8.40 0.00 7.00 1.00 6.20
book-flight 0.00 0.87 0.00 0.48 0.00 16.00 0.10 11.10 0.00 13.52 0.90 9.14

Mean 0.77 0.96 0.56 0.91 0.62 3.70 0.72 3.38 0.60 3.43 0.96 2.89

Table 4: Task-wise performance breakup on MiniWoB++ benchmark on a set of 45 tasks.

class Policy:
 def __init__(self, env):
 self.env = env
 self.base_prompt = None
 self.prev_actions = []
 def act(self, **kwargs):
 # abstract method to
execute policy
 pass

class HighLevelTask(Policy):
 def __init__(self, env):
 self.env = env
 self.base_prompt = getattr(prompts, “task_planner”)
 self.prev_actions = []
 def _get_llm_action(self, obs, objective):
 pass
 def _is_done(self, obs, action):
 pass
 def act(self, objective):
 # call low-level policies
 pass

class LowLevelPolicy(Policy):
 def __init__(self, env):
 self.env = env
 self.base_prompt =
getattr(prompts, “fill_text”)
 self.prev_actions = []
 def _get_llm_action(self, obs,
objective):
 pass
 def _is_done(self, obs, action):
 pass
 def act(self, objective):
 # execute action on browser
 pass

class LowLevelPolicy(Policy):
 def __init__(self, env):
 self.env = env
 self.base_prompt =
getattr(prompts, “choose_date")
 self.prev_actions = []
 def _get_llm_action(self, obs,
objective):
 pass
 def _is_done(self, obs, action):
 pass
 def act(self, objective):
 # execute action on browser
 pass

class LowLevelPolicy(Policy):
 def __init__(self, env):
 self.env = env
 self.base_prompt =
getattr(prompts, “find_directions”)
 self.prev_actions = []
 def _get_llm_action(self, obs,
objective):
 pass
 def _is_done(self, obs, action):
 pass
 def act(self, objective):
 # execute action on browser
 pass

Figure 12: HeaP Planner Policy Code Architecture

efficiency, as evident from the reduced number of actions needed for task completion. This underlines the
importance of having a handful of demonstrations to ground the task on the UI.

17

C EXPERIMENTAL DETAILS

C.1 HEAP PLANNER POLICY CODE ARCHITECTURE

Fig. 12 shows the hierarchical architecture as a code skeleton consisting of a high-level task planner and various
low-level policies for executing web actions. The high-level planner is represented by the HighLevelTask
class, which inherits from a generic Policy class. LowLevelPolicy also inherits from the generic Policy
class, but is instantiated with different base prompts to serve as specialized policies for various sub-tasks.

HighLevelTask is responsible for orchestrating the execution of tasks by calling upon different low-level
policies as needed to accomplish specific sub-tasks. It does so by instantiating the LowLevelPolicy class
with different base prompt parameters, like fill_text, choose_date, find_directions, etc. This
helps tailor the low-level policy for a specialized sub-task like filling text fields, selecting dates, finding directions.
This design allows for the easy addition of new policies to handle complex web tasks, creating a library of skills,
hence providing a dynamic and flexible framework for executing a wide array of web tasks.

C.2 HYPER-PARAMETERS

We use OpenAI API for model calls, text-davinci-003 as the default model with a temperature of 0.3
and set the number of calls to 3. For gpt-3.5-turbo gpt-4 we use the same temperature and number of
calls. Below are the exact API calls,

Listing 1: Hyper-parameters for different models
if (model_type == "gpt-3.5-turbo"):

response = openai.ChatCompletion.create(
model=model_type,
messages=[{"role": "user", "content": prompt}],
temperature=0.3,
top_p=1,
n=3,
max_tokens=max_tokens

)
response = response.choices[0].message.content.strip()

elif (model_type == "gpt-4"):
response = openai.ChatCompletion.create(

model=model_type,
messages=[{"role": "user", "content": prompt}],
temperature=0.3,
top_p=1,
n=3,
max_tokens=max_tokens

)
response = response.choices[0].message.content.strip()

elif (model_type == "text-davinci-003"):
response = openai.Completion.create(

model=model_type,
prompt=prompt,
temperature=0.3,
best_of=3,
n=3,
max_tokens=max_tokens

)
response = response.choices[0].text.strip()

D AUTOLABELING AND PROMPT GENERATION

We first collect a dataset of human demonstrations. We then “autolabel” each timestep with the low-level policy
that was being executed. We convert the labelled datasets to prompts for both high-level planner and low-level
policy. Finally, we augment prompts with chain-of-thought reasoning.

D.1 COLLECT AND AUTOLABEL DEMONSTRATIONS

We collect demonstrations from a human user who is given a conversation context � and performs a sequence
of actions in the browser to complete the task. We design a browser plugin to record webpage DOM d and
events such as clicks and types. Each demonstration is parsed as text by converting the DOM tree into a
list of salient web elements like links, buttons, inputs. Each element is represented as text, e.g. <button

18

id=18 title="Travelers">1 Adult />. Action events are parsed as a CLICK <id> or TYPE
<id> <val>. The parsed demonstration dataset is represented as D = {(�, s1, a1, . . . , sT , aT)}.

We then “autolabel” each timestep t with a low-level policy ⇡t and instruction t to cre-
ate a labeled dataset (�, s1, a1,⇡1, 1, . . . , sT , aT ,⇡T , T). Ideally, to label full sequences,
we would select the most likely sequence of policies given the entire state-action sequence
arg max⇡1:T , 1:T logP (⇡1, 1 . . . ,⇡T , T |s1, a1, . . . , sT , aT). However, this becomes impractical given
demonstrations are too long to fit in to context length. Instead, we relax the problem to predicting the current
policy given the previous policy, i.e. arg max⇡t P (⇡t|⇡t�1, st, at).

We construct an autolabeling prompt (Appendix H.5) that consists of an overall instruction along with a small set
of human-annotated labels as in-context examples. Each in-context example has the following format: {input:
[state st, action at, previous policy ⇡t�1)], output: current policy ⇡t}.

In-context examples are chosen such that they cover every low-level policy. We note that the auto-labeller can
generalize to new tasks not contained in the prompt as long as the constituent low-level policies are covered (e.g.
Search Flight ! Cancel Booking)

D.2 AUTOGENERATE PROMPTS FROM LABELED DEMONSTRATIONS

Once we have a dataset of labeled demonstrations Dlabel = {(�, s0, a0, (⇡0, 0), . . . , sT , aT , (⇡T , T))},
we can use that to generate base prompts for both the high-level task planner and low-level policies. For
the task planner, we concatenate the following input–output pairs as in-context examples in the base prompt:
{input: [context �, initial state s0]} and {output: sequence of web policy
calls (⇡1, 1), (⇡2, 2) . . . , (⇡T , T)}. For each web policy, we search the dataset Dlabel for all instances
of the policy and create a prompt by concatenating examples of {input: [instruction t, current
state st, previous actions at:t�k]} and {output: next action at}.

D.3 AUGMENTING PROMPTS WITH CHAIN-OF-THOUGHT REASONING

Empirically, we observed that directly going from input browser content to output web actions can be difficult or
error prone for the LLM. Chain-of-thought prompting Wei et al. (2022) has shown to be effective to mitigate
this. We additionally include a reasoning section between the input and output sections of the prompt that forces
the LLM to generate a series of short sentences that provide justifications for the actions it predictions. We
found this to uniformly improve performance for both task and policy prompts (Appendix B). We subsequently
added in a simple reason generator prompt (Appendix H.6) that works across both high-level tasks and low-level
policies. The prompt takes the current browser content st, previous actions at�1:t�k, current action at and
generates a reason r.

D.4 AUTOLABELING EXAMPLES

We include the following set of in-context examples for autolabeling that allows us to cover the different low-level
policies:

1. MiniWoB: In-context examples include 1 book flight demo, 1 search engine demo. This
lets us cover CHOOSE_DATE(), FILL_TEXT(), FIND_AND_CLICK_SEARCH_LINK(),
FIND_AND_CLICK_TAB_LINK() policies.

2. Airline CRM: In-context examples include 1 demo of search flight, covering CHOOSE_DATE(),
FILL_TEXT() policies.

3. LiveWeb: In-context examples include 1 demo of book flight, covering CHOOSE_DATE(),
FILL_TEXT()

E AIRLINE CRM ENVIRONMENT

We constructed a mock Airline CRM environment based on typical airline call-center workflows, and modelled
on public airline websites (e.g., jetblue.com, aa.com). The website is built as a standard single-page web
application, using a light-weight web development stack. Figs 13, 14 shows sample screenshots from the CRM.

This CRM allows us to test scenarios that are more complex than those in MiniWoB++, and scenarios that cannot
practically be run on public websites (e.g., cancelling a flight). The scenarios currently supported are described
below.

1. Find one-way or return flight. This is a single step task, that requires the source & destination
airports and flight dates to be entered in the UI, and the search button to be clicked.

19

Figure 13: search flight screen of the mock airline CRM.

2. Book flight This is a four step task:

(a) Find flight (scenario 1),
(b) Select desired outward and return flights & click Confirm,
(c) Enter passenger details (Title, first name, last name, gender, date-of-birth) & click Save,
(d) Enter payment card details (card number, expiry, CVC/CVV) & click Book flight.

3. Find a booking This is a single step task - enter booking reference & click Search.

4. Cancel a booking This is a three step task:

(a) Find booking (scenario 3),
(b) Click Cancel,
(c) Confirm cancellation by re-entering booking reference & click Cancel.

5. Modify passenger details on an existing booking This is a three step task:

(a) Find booking (scenario 3),
(b) Click Modify,
(c) Change any required passenger details & click Save.

6. Modify flights on an existing booking This is

(a) Find booking (scenario 3),
(b) Click Modify,
(c) Find flight (scenario 1),

20

Figure 14: find and modify booking screen of the mock airline CRM.

(d) Select desired outward and return flights & click Save,

In addition to supporting the above scenarios, the CRM also exposes a few helper APIs that make running and
evaluating experiments easier. Two of these are of interest here:

• https://<base-url>/generate-random-scenario. This API returns a scenario ran-
domly selected from those listed above, along with all of the data required for completing that scenario
on the UI. Shown below is an example of a scenario returned by this API. In addition to the task
specific data, the scenario includes a unique id, and a unique URL on which the task can be executed.

{
"scenario": "TASK_FIND_FLIGHT",
"id": "ylmjd3iuqpdc3gdrvspq",
"url": "https://<base-url>/?scenario=ylmjd3iuqpdc3gdrvspq",
"details": {

"flight": {
"from": "JFK",
"to": "FLL",
"departure": "2023-07-07",
"return": "2023-09-13",
"outward-departure-time": "7:01pm",
"outward-arrival-time": "0:13pm",
"return-departure-time": "6:00am",
"return-arrival-time": "8:43am"

}
}

}

• https://<base-url>/evaluate?scenario=<id> This API provides a means of automat-
ically evaluating the success rate and task progress metrics for scenarios generated by the API above.
Specifically, if the UI actions are performed on the unique URL returned by the generate-random-

scenario API, calling the evaluate API afterwards with the scenario id will return the metrics. These
metrics are calculated with reference to the gold standard actions required for the given scenario.

21

F LIVE WEBSITES DATASET

F.1 COLLECTING HUMAN TASK DEMOS

We collected a dataset of human agents searching for flights across three websites: https://www.jetblue.
com/, https://www.aa.com/, https://www.united.com/en/us. For each of the websites, a
human agent was given a set of 10 task specifications as short conversations, e.g. "Book a flight departing from
<>, arriving at <>, leaving on <> and returning on <>". The actions of the human agent, e.g. the click and types,
were recorded for each episode. Along with the actions, the raw DOM of the website was also recorded. This is
crucial as over the course of the paper, the DOM would change as a result of updates to the website. This also
goes to show that simply memorizing actions is unlikely to succeed for these live website tasks.

F.2 PARSING BROWSER CONTENT

Given a data point of raw website DOM (Document Object Model) and action, we make use of playwright
https://playwright.dev to parse the DOM and extract a list of web elements. This process involves
traversing the DOM tree and extracting salient nodes, i.e. nodes with actionable elements like <input>, <button>,
<link>. We also propagate up text attributes from child nodes to the salient parent nodes since the text label for
an element may occur inside the subtree. Every web element in the list is represented by an id and optionally a
value. The list of all such elements is concatenated to represent the browser content in natural text form. This
is input as the browser observation in the LLM context. Natural language descriptions attached to different web
elements helps it generalize across different websites since LLMs have been pre-trained on natural language
data. This text form is included under Browser Content in the LLM context. We also convert the demonstrated
actions to CLICK <id> or TYPE <id> "TEXT".

F.3 AUGMENTING WITH CONVERSATIONS

Each episode of the dataset is represented by the task, the sequence of browser content and actions. Since we
wanted to test how models can generalize to different conversations, we used an LLM to automatically generate
conversations between a customer and agent that converted the task specification into a short conversational
context. We specified the conversations to be diverse and set the temperature to be high (0.6) which naturally
resulted in different conversations for every task.

22

https://www.jetblue.com/
https://www.jetblue.com/
https://www.aa.com/
https://www.united.com/en/us
https://playwright.dev

G EVALUATION WITH LLAMA2 MODEL

We also compare Flat and HeaP with open-source models like LLaMA2-Chat-{7B, 13B}. The models
are all pre-trained instruction following models without any additional fine-tuning. The prompts used are the
same as Flat Zero-shot and HeaP Zero-shot.

Overall, we find the performance to be lower than gpt-{3,3.5,4}. The drop in performance could be due to
a number of reasons such as the model size or the training data on which the models are trained. However, we
find that HeaP still outperforms Flat for many tasks, which we discuss below.

HeaPFlat

Figure 15: Evaluation with LlaMA2-Chat-13B on a subset of MiniWob++ tasks. Success rate breakdown of 10
tasks averaged over 10 seeds over task.

Figure. 15 shows a comparison of Flat and HeaP on a subset of MiniWob++ tasks. We see that Flat matches
HeaP for simple CLICK tasks, it fails for slightly more complex tasks that require multiple actions, e.g. multiple
CLICK or TYPE.

We also observe that adding few-shot examples did not improve performance. Hence, we chose a subset of
MiniWoB++ tasks that don’t require being grounded in few-shot examples. We believe that finetuning the model
on a larger dataset of demonstrations can help address some of the failure modes that we discuss below and leave
that as interesting future work.

We cluster common failure modes for both Flat, HeaP below:

1. Repeating the same action in multi-step tasks. For tasks that require a sequence of actions, the
model tends to get stuck in the first step repeating the same action over and over. It fails to interpret the previous
actions or take into account updated states, i.e. changing browser contents. This is more pronounced for Flat
since HeaP has a task planner that can generates a sequence of action and track progress along that sequence.

For example, in the click-button-sequence task, for the following input

CONTEXT:
Click button ONE, then click button TWO.
BROWSER CONTENT:
<body id=1 val= />
<div id=2 val=wrap />
<div id=3 val=area />
<button id=4 val=ONE />
<button id=5 val=TWO />
PREVIOUS ACTIONS:
CLICK 4

the model produces the following output

REASON:
To achieve the goal of clicking button ONE and then button TWO, we need to first
click button ONE to activate it, and then click button TWO to activate it.
ACTION:
CLICK 4

when the correct output would have been CLICK 5, given that the previous actions show that CLICK 4 has
already been executed.

23

In contrast, HeaP uses the high-level task planner to predict a list of actions “CLICK 4, CLICK 5” which are
executed in sequence to solve the task.

Similarly, for the enter-task task, for the following input

CONTEXT:
Enter "Agustina" into the text field and press Submit.
BROWSER CONTENT:
<body id=1 val= />
<div id=2 val=wrap />
<div id=3 val=area />
<div id=4 val=form />
<input_text id=5 val=AgustinaAgustina />
<button id=6 val=Submit />
PREVIOUS ACTIONS:
TYPE 5 "Agustina"
TYPE 5 "Agustina"

the model gets stuck producing the output TYPE 5 "Agustina",

REASON:
To achieve the goal of entering "Agustina" into the text field and
submitting the form, we need to first click on the input field to
focus it and then type "Agustina" into it. Once we have entered the text,
we can click on the Submit button to submit the form.
ACTION:
TYPE 5 "Agustina"

and not taking into account changing browser content, i.e. <input_text id=5
val=AgustinaAgustina />

2. Skipping intermediate actions When faced with longer-horizon tasks, Llama2-chat-13B skips over
intermediate actions. For example, on a book flight task with browser content

... <h2 id=5 val=Book Your One-Way Flight />
<input_text id=7 val=flight-from /> ...

the model generates an action like CLICK 5 directly before filling in the empty flight-from input box.

A task like this does require showing examples to the model to ground the task in the UI. Unlike gpt-3.5/4,
the model does not seem to pick up on 1-2 few-shot examples given in-context. Finetuning on a larger set of
demonstrations should be able to address such issues.

3. Not following the desired action formats. We observe that Llama2-chat-13B often times fails to
follow the specified action formats for CLICK and TYPE. This problem occurs for both Flat and HeaP. We
apply post-processing to get structured formats (using a gpt-3.5 prompt) to catch some of these cases.

For example, given the following browser content

... <div id=2 val=wrap />\n<link id=4 val=justo. />...

the models predict CLICK #justo instead of CLICK 4.

Similarly, the model predicts TYPE "Ignacio" instead of TYPE 5 "Ignacio".

24

H LIBRARY OF PROMPTS

We list out prompts for the four different methods Flat Zero-shot, Flat Few-shot, HeaP
Zero-shot, HeaP Few-shot that we use to evaluate across all MiniWoB++ tasks in Table 2. We also
include the train time auto labeling prompt for that was used to annotate human-collected demonstrations for the
search-flight task in the LiveWeb dataset.

H.1 HEAP FEW-SHOT PROMPT

Listing 2: HeaP Few-shot Task Prompt
You are an AI assistant performing tasks in a web browser on behalf of a human agent. To do

this, you will be given specific information and allowed to issue certain actions that
will get you closest to achieving your objective.

You are given:
1. CONTEXT: The goal you need to achieve, either explicitly stated or implied from a

conversation between a customer (CUS) and agent (REP).
2. CURRENT BROWSER CONTENT: A simplified text description of the current browser content,

without formatting elements.
3. CURRENT URL: The current webpage URL.
4. PREVIOUS ACTIONS: A list of your past actions.

You can only interact with web elements like links, inputs, and buttons in the browser content
. You can issue these actions:

- CLICK <element>: Click on the specified element.
- FILL_TEXT <element> "TEXT": Fill a text box with the given text.
- CHOOSE_DATE <element> "DATE": Select a date value from a datepicker.
- FIND_AND_CLICK_SEARCH_LINK "LINK_NUMBER": Find and click a link the LINK_NUMBER from search

results.
- FIND_AND_CLICK_TAB_LINK "LINK": Find and click a link "LINK" by switching between tabs.
- DONE: Once you finish issuing all actions.

In the <element> field above, you may find either an <id>, a <value>, or both. These are used
to identify the specific web element in the browser content.

Here are some examples:

EXAMPLE 1:
==
CONTEXT:
Find the 9th word in the paragraph, type that into the textbox and press "Submit".
<p id=4 val=Egestas lectus sit commodo turpis ultrices ut malesuada vestibulum />
<input_text id=5 val=answer-input />
<button id=6 val=Submit />

CURRENT URL:
https://

PREVIOUS ACTIONS:

REASONING:
I have to find the 9th word in the paragraph and type it into the textbox and press "Submit".
Looking at the browser content, I see a paragraph with id 4 and a textbox with id 5.
The paragraph contains the following words: 1: Egestas, 2: lectus, 3: sit, 4: commodo, 5:

turpis, 6:ultrices, 7:ut, 8:malesuada, 9:vestibulum.
The 9th word is "vestibulum".
I have to fill the textbox with "vestibulum"
I have to click Submit
Finally, I have to issue DONE
YOUR ACTION:
TYPE 5 answer-input "vestibulum"
CLICK Submit
DONE
==

EXAMPLE 2:
==
CONTEXT:
Book the shortest one-way flight from: LEB to: RDG on 12/26/2016.

CURRENT BROWSER CONTENT:
<body id=1 val= />
<div id=2 val=wrap />
<div id=3 val=area />
<div id=4 val=menu />
<h2 id=5 val=Book Your One-Way Flight />
<div id=6 val= />

25

<input_text id=7 val=flight-from />
<div id=8 val= />
<input_text id=9 val=flight-to />
<div id=10 val= />
<div id=11 val=Departure Date />
<div id=12 val= />
<input_text id=13 val=datepicker />
<div id=14 val= />
<button id=15 val=Search />
<div id=16 val= />
<div id=23 val=1 result is available, use up and down arrow keys to navigate. />
<div id=18 val= />
<div id=27 val=1 result is available, use up and down arrow keys to navigate. />

CURRENT URL:
https://

PREVIOUS ACTIONS:

REASONING:
I have to book the shortest flight from LEB to RDG on 12/26/2016
Looking at the browser content, I have to fill in the following fields
I have to fill flight-from with "LEB"
I have to fill flight-to with "RDG"
I have to choose date from the datepicker as 12/26/2016
I have to click Search
Finally, I have to issue DONE
YOUR ACTION:
FILL_TEXT flight-from "LEB"
FILL_TEXT flight-to "RDG"
CHOOSE_DATE datepicker "12/26/2016"
CLICK Search
DONE
==

EXAMPLE 3:
==
CONTEXT:
Book the shortest one-way flight from: Cincinnati, OH to: LEX on 10/16/2016.

CURRENT BROWSER CONTENT:
<label id=362 val=Depart: />
<div id=364 val=2:50 PM />
<div id=365 val=Sun Oct 16 2016 />
<div id=366 val=Cincinnati, OH (CVG) />
<label id=369 val=Arrives: />
<div id=371 val=5:32 AM />
<div id=372 val=Mon Oct 17 2016 />
<div id=373 val=LEX />
<label id=376 val=Duration: />
<div id=378 val=14h 42m />
<button id=380 val=Book flight for $379 />
<div id=383 val= />
<label id=406 val=Depart: />
<div id=408 val=11:06 PM />
<div id=409 val=Sun Oct 16 2016 />
<div id=410 val=Cincinnati, OH (CVG) />
<label id=413 val=Arrives: />
<div id=415 val=2:27 AM />
<div id=416 val=Mon Oct 17 2016 />
<div id=417 val=LEX />
<label id=420 val=Duration: />
<div id=422 val=3h 21m />
<button id=424 val=Book flight for $209 />
<div id=425 val= />
<label id=428 val=Depart: />
<div id=430 val=3:23 AM />
<div id=431 val=Sun Oct 16 2016 />
<div id=432 val=Cincinnati, OH (CVG) />
<label id=435 val=Arrives: />
<div id=437 val=5:19 AM />
<div id=438 val=Mon Oct 17 2016 />
<div id=439 val=LEX />
<label id=442 val=Duration: />
<div id=444 val=25h 56m />
<button id=446 val=Book flight for $1197 />

CURRENT URL:
https://

PREVIOUS ACTIONS:

26

REASONING:
I have to book the shortest flight from Cincinnati, OH to: LEX
Looking at the browser content, I see different flight options with flight durations and

prices
Since I have to book the shortest flight, I should look at duration
The shortest duration is 3h 21m corresponding to id 422
To book this flight, I have to click on button below corresponding to id 424
Finally, I have to issue DONE
YOUR ACTION:
CLICK <button id=424 val=Book flight for $209 />
DONE
==

The current context, url, and browser content follow. Reply with your reasoning and next
action to the browser.

==
CONTEXT:
{context}

CURRENT BROWSER CONTENT:
{browser_content}

CURRENT URL:
{url}

PREVIOUS ACTIONS:
{previous_actions}

REASONING:

Listing 3: HeaP Few-shot FILL_TEXT() Policy Prompt
You are an AI assistant performing tasks in a web browser on behalf of a human agent. Your

goal is to fill a text box.

You are given:
1. CONTEXT: An instruction like FILL_TEXT <element> <text>, where <element> corresponds to a

web element and <text> corresponds to text to fill.
2. CURRENT BROWSER CONTENT: A simplified text description of the current browser content,

without formatting elements.
3. CURRENT URL: The current webpage URL.
4. PREVIOUS ACTIONS: A list of your past actions.

You can only interact with web elements like links, inputs, and buttons in the browser content
. You can issue these actions:

- TYPE <element> "TEXT" - Type "TEXT" into the input element.
- CLICK <element> - Click on the specified element.
- DONE - Once you finish issuing all actions.

In the <element> field above, you may find either an <id>, a <value>, or both. These are used
to identify the specific web element in the browser content.

Before selecting an action, provide reasoning.

Here are some examples:

Example 1:
==
CONTEXT:
FILL_TEXT 10 "Bowen"

CURRENT BROWSER CONTENT:
<body id=1 val= />
<div id=2 val=wrap />
<div id=3 val=area />
<div id=4 val=Movie Search />
<table id=5 val= />
<tbody id=6 val= />
<th id=8 val=Director />
<input_text id=10 val= />
<th id=12 val=Genre />
<input_text id=14 val= />
<th id=16 val=Year />
<input_text id=18 val= />
<div id=19 val=Submit />

CURRENT URL:
https://

27

PREVIOUS ACTIONS:

REASONING:
I have no previous actions.
I have to first type "Bowen" in id 10
YOUR ACTION:
TYPE 10 "Bowen"
==

Example 2:
==
CONTEXT:
FILL_TEXT 10 "Bowen"

CURRENT BROWSER CONTENT:
<body id=1 val= />
<div id=2 val=wrap />
<div id=3 val=area />
<div id=4 val=Movie Search />
<table id=5 val= />
<tbody id=6 val= />
<th id=8 val=Director />
<input_text id=10 val= Bowen/>
<th id=12 val=Genre />
<input_text id=14 val= />
<th id=16 val=Year />
<input_text id=18 val= />
<div id=19 val=Submit />

CURRENT URL:
https://

PREVIOUS ACTIONS:
TYPE 10 "Bowen"

REASONING:
I have already typed "Bowen" in id 10
There seems to be no dropdown text
I am done filling text
YOUR ACTION:
DONE
==

Example 3:
==
CONTEXT:
FILL_TEXT flight-from "LEB"

CURRENT BROWSER CONTENT:
<body id=1 val= />
<div id=2 val=wrap />
<div id=3 val=area />
<div id=4 val=menu />
<h2 id=5 val=Book Your One-Way Flight />
<div id=6 val= />
<input_text id=7 val=flight-from />
<div id=8 val= />
<input_text id=9 val=flight-to />
<div id=10 val= />
<div id=11 val=Departure Date />
<div id=12 val= />
<input_text id=13 val=datepicker />
<div id=14 val= />
<button id=15 val=Search />
<div id=16 val= />
<div id=17 val= />

CURRENT URL:
https://

PREVIOUS ACTIONS:

REASONING:
I have no previous actions.
I have to first type "LEB" in the field flight-from corresponding to id 7
YOUR ACTION:
TYPE 7 flight-from "LEB"
==

Example 4:

28

==
CONTEXT:
FILL_TEXT flight-from "LEB"

CURRENT BROWSER CONTENT:
<body id=1 val= />
<div id=2 val=wrap />
<div id=3 val=area />
<div id=4 val=menu />
<h2 id=5 val=Book Your One-Way Flight />
<div id=6 val= />
<input_text id=7 val=flight-from />
<div id=8 val= />
<input_text id=9 val=flight-to />
<div id=10 val= />
<div id=11 val=Departure Date />
<div id=12 val= />
<input_text id=13 val=datepicker />
<div id=14 val= />
<button id=15 val=Search />
<ul id=18 val=ui-id-1 />
<li id=19 val= />
<div id=20 val=Hanover, NH (HNV) />
<li id=21 val= />
<div id=22 val=Lebanon, NH (LEB) />
<li id=23 val= />
<div id=24 val=White River, VT (WHR) />
<div id=16 val= />
<div id=25 val=3 results are available, use up and down arrow keys to navigate. />
<div id=17 val= />

CURRENT URL:
https://

PREVIOUS ACTIONS:
TYPE 7 flight-from "LEB"

REASONING:
I have already typed in "LEB" in id 7
There is a corresponding dropdown text in "Lebanon, NH (LEB)" in id 22
I have to click on id 22 Lebanon, NH (LEB)
YOUR ACTION:
CLICK 22 Lebanon, NH (LEB)
==

Example 5:
==
CONTEXT:
FILL_TEXT flight-from "LEB"

CURRENT BROWSER CONTENT:
<body id=1 val= />
<div id=2 val=wrap />
<div id=3 val=area />
<div id=4 val=menu />
<h2 id=5 val=Book Your One-Way Flight />
<div id=6 val= />
<input_text id=7 val=flight-from />
<div id=8 val= />
<input_text id=9 val=flight-to />
<div id=10 val= />
<div id=11 val=Departure Date />
<div id=12 val= />
<input_text id=13 val=datepicker />
<div id=14 val= />
<button id=15 val=Search />
<div id=16 val= />
<div id=25 val=3 results are available, use up and down arrow keys to navigate. />
<div id=17 val= />

CURRENT URL:
https://

PREVIOUS ACTIONS:
TYPE 7 flight-from "LEB"
CLICK 22 Lebanon, NH (LEB)

REASONING:
I have already typed in "LEB" in id 7
I have clicked on the dropdown text in id 22 Lebanon, NH (LEB)
I am done filling text

29

YOUR ACTION:
DONE
==

The current context, url, and browser content follow. Reply with your reasoning and next
action to the browser.

==
CONTEXT:
{context}

CURRENT BROWSER CONTENT:
{browser_content}

CURRENT URL:
{url}

PREVIOUS ACTIONS:
{previous_actions}

REASONING:

Listing 4: HeaP Few-shot CHOOSE_DATE() Policy Prompt
You are an AI assistant performing tasks in a web browser on behalf of a human agent. Your

goal is to choose a date from a datepicker by navigating to the right month.

You are given:
1. CONTEXT: An instruction like CHOOSE_DATE <element> <date>, where <element> corresponds to a

web element and <date> corresponds to date to choose.
2. CURRENT BROWSER CONTENT: A simplified text description of the current browser content,

without formatting elements.
3. CURRENT URL: The current webpage URL.
4. PREVIOUS ACTIONS: A list of your past actions.

You can only interact with web elements like links, inputs, and buttons in the browser content
. You can issue these actions:

- CLICK <element> - Click on the specified element.
- DONE - Once you finish issuing all actions.

In the <element> field above, you may find either an <id>, a <value>, or both. These are used
to identify the specific web element in the browser content.

Before selecting an action, provide reasoning.

Here are some examples:

Example 1:
==
CONTEXT:
CHOOSE_DATE datepicker "11/03/2016"

CURRENT BROWSER CONTENT:
<body id=1 val= />
<div id=2 val=wrap />
<div id=3 val=area />
<p id=4 val= />
<t id=-1 val=Date: />
<input_text id=5 val=datepicker />
<button id=6 val=Submit />

CURRENT URL:
https://

PREVIOUS ACTIONS:

REASONING:
I have no previous actions.
I have to first click on a datepicker.
YOUR ACTION:
CLICK 5 datepicker
==

Example 2:
==
CONTEXT:
CHOOSE_DATE datepicker "11/03/2016"

CURRENT BROWSER CONTENT:
<div id=8 val= />

30

<div id=13 val= />

PREVIOUS ACTIONS:
CLICK 5 datepicker

REASONING:
I have already clicked on datepicker.
Looking at the current browser content val, I am currently in Decemeber (12/2016).
I have to go to November (11/2016).
Since 11 < 12, I have to click on Prev
YOUR ACTION:
CLICK 10 Prev
==

Example 3:
==
CONTEXT:
CHOOSE_DATE datepicker "11/03/2016"

CURRENT URL:
https://

CURRENT BROWSER CONTENT:
<tbody id=33 val= />

PREVIOUS ACTIONS:
CLICK 5 datepicker
CLICK 10 Prev

REASONING:
I have already clicked on datepicker.
Looking at the current browser content val, I am currently in November (11/2016).
I have to go to November (11/2016).
Since 11 = 11, I am in the correct month.
I have to click on the id corresponding to 11/3/2016
YOUR ACTION:
CLICK 44 11/3/2016
==

Example 4:
==
CONTEXT:
CHOOSE_DATE datepicker "11/03/2016"

CURRENT URL:
https://

31

CURRENT BROWSER CONTENT:
<body id=1 val= />
<div id=2 val=wrap />
<div id=3 val=area />
<p id=4 val= />
<t id=-1 val=Date: />
<input_text id=5 val=datepicker />
<button id=6 val=Submit />

PREVIOUS ACTIONS:
CLICK 5 datepicker
CLICK 10 prev
CLICK 44 11/3/2016

REASONING:
I am done selecting the dates.
YOUR ACTION:
DONE
==

The current context, url, and browser content follow. Reply with your reasoning and next
action to the browser.

==
CONTEXT:
{context}

CURRENT BROWSER CONTENT:
{browser_content}

CURRENT URL:
{url}

PREVIOUS ACTIONS:
{previous_actions}

REASONING:

H.2 FLAT FEW-SHOT PROMPT

Listing 5: Flat Few-shot Prompt
You are an AI assistant performing tasks in a web browser on behalf of a human agent. To do

this, you will be given specific information and allowed one action at a time that get
you closest to achieving your objective.

You are given:
1. CONTEXT: The goal you need to achieve, either explicitly stated or implied from a

conversation between a customer (CUS) and agent (REP).
2. CURRENT BROWSER CONTENT: A simplified text description of the current browser content,

without formatting elements.
3. CURRENT URL: The current webpage URL.
4. PREVIOUS ACTIONS: A list of your past actions.

You can only interact with web elements like links, inputs, and buttons in the browser content
. You can issue any one of these actions:

- CLICK <id> - Click on the specified element.
- TYPE <id> "TEXT" - Type "TEXT" into the input element.
- DONE - Once you finish issuing all actions.

Example: CLICK 7, TYPE 11 "New York"

Before selecting an action, provide reasoning.

Here are some examples:

Example 1:
==
CONTEXT:
Book the shortest one-way flight from: LEB to: RDG on 12/26/2016.

CURRENT BROWSER CONTENT:
<body id=1 val= />
<div id=2 val=wrap />
<div id=3 val=area />
<div id=4 val=menu />
<h2 id=5 val=Book Your One-Way Flight />

32

<div id=6 val= />
<input_text id=7 val=flight-from />
<div id=8 val= />
<input_text id=9 val=flight-to />
<div id=10 val= />

CURRENT URL:
https://

PREVIOUS ACTIONS:

REASONING:
I have no previous actions.
I have to first type "LEB" in the field flight-from corresponding to id 7
YOUR ACTION:
TYPE 7 flight-from "LEB"
==

Example 2:
==
CONTEXT:
Book the shortest one-way flight from: LEB to: RDG on 12/26/2016.

CURRENT BROWSER CONTENT:
<body id=1 val= />
<div id=2 val=wrap />
<div id=3 val=area />
<div id=4 val=menu />
<h2 id=5 val=Book Your One-Way Flight />
<div id=6 val= />
<input_text id=7 val=flight-from />
<div id=8 val= />
<div id=14 val= />
<button id=15 val=Search />
<ul id=18 val=ui-id-1 />
<li id=19 val= />
<div id=20 val=Hanover, NH (HNV) />
<li id=21 val= />
<div id=22 val=Lebanon, NH (LEB) />
<li id=23 val= />
<div id=24 val=White River, VT (WHR) />
<div id=16 val= />
<div id=25 val=3 results are available, use up and down arrow keys to navigate. />
<div id=17 val= />

CURRENT URL:
https://

PREVIOUS ACTIONS:
TYPE 7 flight-from "LEB"

REASONING:
I have already typed in "LEB" in the field "flight-from"
There is a corresponding dropdown text in "Lebanon, NH (LEB)" in id 22
I have to click on id 22 Lebanon, NH (LEB)
YOUR ACTION:
CLICK 22 Lebanon, NH (LEB)
==

Example 3:
==
CONTEXT:
Book the shortest one-way flight from: LEB to: MOT on 12/26/2016.

CURRENT BROWSER CONTENT:
<body id=1 val= />
<div id=2 val=wrap />
<div id=3 val=area />
<div id=4 val=menu />
<h2 id=5 val=Book Your One-Way Flight />
<div id=6 val= />
<input_text id=7 val=flight-from />
<div id=8 val= />
<input_text id=9 val=flight-to />
<div id=10 val= />
<div id=11 val=Departure Date />
<div id=12 val= />
<input_text id=13 val=datepicker />

CURRENT URL:
https://

33

PREVIOUS ACTIONS:
TYPE 7 flight-from "LEB"
CLICK 22 Lebanon, NH (LEB)
TYPE 9 flight-to "MOT"
CLICK 22 Montana, MOT

REASONING:
I have already typed in "LEB" in the field "flight-from"
I have already clicked on id 22 Lebanon, NH (LEB)
I have already typed in "MOT" in the field "flight-to"
I have already clicked on id 22 Montana, MOT
I have to now choose a date by clicking on the datepicker
YOUR ACTION:
CLICK 13 datepicker
==

Example 4:
==
CONTEXT:
Book the shortest one-way flight from: LEB to: MOT on 12/26/2016.

CURRENT BROWSER CONTENT:

CURRENT URL:
https://

PREVIOUS ACTIONS:
TYPE 7 flight-from "LEB"
CLICK 22 Lebanon, NH (LEB)
TYPE 9 flight-to "MOT"
CLICK 22 Montana, MOT
CLICK 13 datepicker

REASONING:
I have already typed in "LEB" in the field "flight-from"
I have already clicked on id 22 Lebanon, NH (LEB)
I have already typed in "MOT" in the field "flight-to"
I have already clicked on id 22 Montana, MOT
I have already clicked on a datepicker
I have to now choose the correct date 12/26/2016.
YOUR ACTION:
CLICK 57 12/26/2016
==

The current context, url, and browser content follow. Reply with your reasoning and next
action to the browser.

==
CONTEXT:
{context}

CURRENT BROWSER CONTENT:
{browser_content}

CURRENT URL:
{url}

PREVIOUS ACTIONS:
{previous_actions}

REASONING:

H.3 FLAT ZERO-SHOT PROMPT

Listing 6: Flat Zero-shot Prompt

34

You are an AI assistant performing tasks in a web browser on behalf of a human agent. To do
this, you will be given specific information and allowed one action at a time that get
you closest to achieving your objective.

You are given:
1. CONTEXT: The goal you need to achieve, either explicitly stated or implied from a

conversation between a customer (CUS) and agent (REP).
2. CURRENT BROWSER CONTENT: A simplified text description of the current browser content,

without formatting elements.
3. CURRENT URL: The current webpage URL.
4. PREVIOUS ACTIONS: A list of your past actions.

You can only interact with web elements like links, inputs, and buttons in the browser content
. You can issue any one of these actions:

- CLICK <id> - Click on the specified element.
- TYPE <id> "TEXT" - Type "TEXT" into the input element.
- DONE - Once you finish issuing all actions.

Example: CLICK 7, TYPE 11 "New York"

Before selecting an action, provide reasoning.

Here is the template:

==
CONTEXT:
(The instruction)

CURRENT BROWSER CONTENT:
(A list of web ids and links)

CURRENT URL:
(The current url)

PREVIOUS ACTIONS:
(A list of previous actions)

REASONING:
(A rationale for selecting the action below)
YOUR ACTION:
(A single action, e.g.)
CLICK <id>
==

The current context, url, and browser content follow. Reply with your reasoning and next
action to the browser.

==
CONTEXT:
{context}

CURRENT BROWSER CONTENT:
{browser_content}

CURRENT URL:
{url}

PREVIOUS ACTIONS:
{previous_actions}

REASONING:

H.4 HEAP ZERO-SHOT PROMPT

Listing 7: HeaP Zero-shot Task Prompt
You are an AI assistant performing tasks in a web browser on behalf of a human agent. To do

this, you will be given specific information and allowed to issue certain actions that
will get you closest to achieving your objective.

You are given:
1. CONTEXT: The goal you need to achieve, either explicitly stated or implied from a

conversation between a customer (CUS) and agent (REP).
2. CURRENT BROWSER CONTENT: A simplified text description of the current browser content,

without formatting elements.
3. CURRENT URL: The current webpage URL.
4. PREVIOUS ACTIONS: A list of your past actions.

35

You can only interact with web elements like links, inputs, and buttons in the browser content
. You can issue these actions:

- CLICK <id>: Click on the specified element.
- FILL_TEXT <id> "TEXT": Fill a text box with the given text.
- CHOOSE_DATE <id> "DATE": Select a date value from a datepicker.
- FIND_AND_CLICK_SEARCH_LINK "LINK_NUMBER": Find and click a link the LINK_NUMBER from search

results.
- FIND_AND_CLICK_TAB_LINK "LINK": Find and click a link "LINK" by switching between tabs.
- DONE: Once you finish issuing all actions.

Example: CLICK 7, FILL_TEXT 11 "New York"

Before selecting an action, provide reasoning.

Here is a template:

==
CONTEXT:
(Some instruction or conversations)

CURRENT BROWSER CONTENT:
(A list of web ids and links)

CURRENT URL:
(The current url)

PREVIOUS ACTIONS:
(A list of previous actions)

REASONING:
(A rationale for selecting the actions blow()
YOUR ACTION:
(A list of actions to do in this webpage, one action per line, e.g.)
CLICK <id>
FILL_TEXT <id> "TEXT"
DONE
==

The current context, url, and browser content follow. Reply with your reasoning and next
action to the browser.

==
CONTEXT:
{context}

CURRENT BROWSER CONTENT:
{browser_content}

CURRENT URL:
{url}

PREVIOUS ACTIONS:
{previous_actions}

REASONING:

Listing 8: HeaP Zero-shot FILL_TEXT() Policy Prompt
You are an AI assistant performing tasks in a web browser on behalf of a human agent. Your

goal is to fill a text box.

You are given:
1. CONTEXT: An instruction like FILL_TEXT <id> <text>, where <id> corresponds to a web element

and <text> corresponds to text to fill.
2. CURRENT BROWSER CONTENT: A simplified text description of the current browser content,

without formatting elements.
3. CURRENT URL: The current webpage URL.
4. PREVIOUS ACTIONS: A list of your past actions.

You can only interact with web elements like links, inputs, and buttons in the browser content
. You can issue these actions:

- TYPE <id> "TEXT" - Type "TEXT" into the input element.
- CLICK <id> - Click on the specified element.
- DONE - Once you finish issuing all actions.

Before selecting an action, provide reasoning.

Here is the template:

==

36

CONTEXT:
(The instruction)

CURRENT BROWSER CONTENT:
(A list of web ids and links)

CURRENT URL:
(The current url)

PREVIOUS ACTIONS:
(A list of previous actions)

REASONING:
(A rationale for selecting the action blow()
YOUR ACTION:
(A single action)
==

The current context, url, and browser content follow. Reply with your reasoning and next
action to the browser.

==
CONTEXT:
{context}

CURRENT BROWSER CONTENT:
{browser_content}

CURRENT URL:
{url}

PREVIOUS ACTIONS:
{previous_actions}

REASONING:

Listing 9: HeaP Zero-shot CHOOSE_DATE() Policy Prompt
You are an AI assistant performing tasks in a web browser on behalf of a human agent. Your

goal is to choose a date from a datepicker by navigating to the right month.

You are given:
1. CONTEXT: An instruction like CHOOSE_DATE <element> <date>, where <element> corresponds to a

web element and <date> corresponds to date to choose.
2. CURRENT BROWSER CONTENT: A simplified text description of the current browser content,

without formatting elements.
3. CURRENT URL: The current webpage URL.
4. PREVIOUS ACTIONS: A list of your past actions.

You can only interact with web elements like links, inputs, and buttons in the browser content
. You can issue these actions:

- CLICK <element> - Click on the specified element.
- DONE - Once you finish issuing all actions.

In the <element> field above, you may find either an <id>, a <value>, or both. These are used
to identify the specific web element in the browser content.

Before selecting an action, provide reasoning.

Here is the template:

==
CONTEXT:
(The instruction)

CURRENT BROWSER CONTENT:
(A list of web ids and links)

CURRENT URL:
(The current url)

PREVIOUS ACTIONS:
(A list of previous actions)

REASONING:
(A rationale for selecting the action blow()
YOUR ACTION:
(A single action)
==

37

The current context, url, and browser content follow. Reply with your reasoning and next
action to the browser.

==
CONTEXT:
{context}

CURRENT BROWSER CONTENT:
{browser_content}

CURRENT URL:
{url}

PREVIOUS ACTIONS:
{previous_actions}

REASONING:

H.5 AUTO-LABELING PROMPT

Listing 10: Autolabel Prompt
You are an AI assistant labeling web actions as one of several skills.

You are given:
- a CONTEXT that contains the objective you are trying to achieve. The objective may be

explicitly stated or be implicit in a conversation between a customer (CUS) and agent (
REP).

- A simplified text description of the browser content and the current webpage URL. The
browser content is highly simplified with all formatting elements removed.

- The current web action being performed
- The previous label that was assigned

You can only assign labels from the following types
- FILL_TEXT "desription" "TEXT" - fill a text box
- CHOOSE_DATE "desription" "DATE" - choose a date from a date grid
- CLICK "desription" - click a button

==
CONTEXT:
Book a flight from Boston to Chicago departing on Dec 1, 2023 and returning on Dec 12, 2023

CURRENT BROWSER CONTENT:
<text id=10>JetBlue Home</text>
<text id=11>Where on Earth are you headed?</text>
<button id=12>Flights</button>
<button id=13>Flights + Hotel</button>
<button id=14>Flights + Cruise</button>
<button id=15>Cars</button>
<button id=16>Stays</button>
<button id=17>Roundtrip</button>
<button id=18 title="Travelers">1 Adult</button>
<text id=19>Use TrueBlue points</text>
<text id=20>From</text>
<input id=21 text>Washington D.C. area (WAS)</input>
<button id=22>Reverse origin and destination city or airport</button>
<text id=23>To</text>
<input id=24 text/>
<text id=25>Depart</text>
<input id=26 Depart Press DOWN ARROW key to select available dates/>
<text id=27>Return</text>
<input id=28 Return Press DOWN ARROW key to select available dates/>
<button id=29>Search flights</button>

CURRENT ACTION:
TYPE 21 Boston
PREVIOUS LABEL:
CURRENT LABEL:
FILL_TEXT From "Boston"
==

==
CONTEXT:
Book a flight from Boston to Chicago departing on Dec 1, 2023 and returning on Dec 12, 2023

CURRENT BROWSER CONTENT:
<text id=20>From</text>
<input id=21 text>Boston</input>

38

<text id=22>Boston</text>
<text id=23>area</text>
<text id=24>Boston</text>
<text id=25>, MA (BOS)</text>
<text id=26>Providence, RI (PVD)</text>
<text id=27>Worcester, MA (ORH)</text>
<text id=28>Browse by regions</text>
<text id=29>Browse by regions</text>
<text id=30>Mint Service</text>
<text id=31>Partner Airline</text>
<button id=32>Reverse origin and destination city or airport</button>
<text id=33>To</text>
<input id=34 text/>
<text id=35>Depart</text>
<input id=36 Depart Press DOWN ARROW key to select available dates/>
<text id=37>Return</text>
<input id=38 Return Press DOWN ARROW key to select available dates/>
<button id=39>Search flights</button>

CURRENT ACTION:
CLICK 24
PREVIOUS LABEL:
FILL_TEXT From "Boston"
CURRENT LABEL:
FILL_TEXT From "Boston"
==

==
CONTEXT:
Book a flight from Boston to Chicago departing on Dec 1, 2023 and returning on Dec 12, 2023

CURRENT BROWSER CONTENT:
<button id=13>Flights + Hotel</button>
<button id=14>Flights + Cruise</button>
<button id=15>Cars</button>
<button id=16>Stays</button>
<button id=17>Roundtrip</button>
<button id=18 title="Travelers">1 Adult</button>
<text id=19>Use TrueBlue points</text>
<text id=20>From</text>
<input id=21 text>Boston, MA (BOS)</input>
<button id=22>Reverse origin and destination city or airport</button>
<text id=23>To</text>
<input id=24 text/>
<text id=25>Browse by regions</text>
<text id=26>Mint Service</text>
<text id=27>Partner Airline</text>
<text id=28>Depart</text>
<input id=29 Depart Press DOWN ARROW key to select available dates/>
<text id=30>Return</text>
<input id=31 Return Press DOWN ARROW key to select available dates/>
<button id=32>Search flights</button>

CURRENT ACTION:
TYPE 24 Chicago
PREVIOUS LABEL:
FILL_TEXT From "Boston"
CURRENT LABEL:
FILL_TEXT To "Chicago"
==

==
CONTEXT:
Book a flight from Boston to Chicago departing on Dec 1, 2023 and returning on Dec 12, 2023

CURRENT BROWSER CONTENT:
<text id=20>From</text>
<input id=21 text>Boston, MA (BOS)</input>
<button id=22>Reverse origin and destination city or airport</button>
<text id=23>To</text>
<input id=24 text>Chicago</input>
<text id=25>Chicago</text>
<text id=26>, IL (ORD)</text>
<text id=27>Browse by regions</text>
<text id=28>Browse by regions</text>
<text id=29>Mint Service</text>
<text id=30>Partner Airline</text>
<text id=31>Depart</text>
<input id=32 Depart Press DOWN ARROW key to select available dates/>
<text id=33>Return</text>
<input id=34 Return Press DOWN ARROW key to select available dates/>

39

<button id=35>Search flights</button>

CURRENT ACTION:
CLICK 25
PREVIOUS LABEL:
FILL_TEXT To "Chicago"
CURRENT LABEL:
FILL_TEXT To "Chicago"
==

==
CONTEXT:
Book a flight from Boston to Chicago departing on Dec 1, 2023 and returning on Dec 12, 2023

CURRENT BROWSER CONTENT:
<button id=17>Roundtrip</button>
<button id=18 title="Travelers">1 Adult</button>
<text id=19>Use TrueBlue points</text>
<text id=20>From</text>
<input id=21 text>Boston, MA (BOS)</input>
<button id=22>Reverse origin and destination city or airport</button>
<text id=23>To</text>
<input id=24 text>Chicago, IL (ORD)</input>
<text id=25>Depart</text>
<input id=26 Depart Press DOWN ARROW key to select available dates/>
<text id=27>Return</text>
<input id=28 Return Press DOWN ARROW key to select available dates/>
<button id=29 aria-label="Previous Month"/>
<text id=30>April 2023</text>
<text id=31>S</text>
<text id=32>M</text>
<text id=33>T</text>
<text id=34>W</text>
<text id=35>T</text>
<text id=36>F</text>
<text id=37>S</text>
<button id=38 aria-label="depart Saturday, April 1, 2023">1</button>
<button id=39 aria-label="depart Sunday, April 2, 2023">2</button>
<button id=40 aria-label="depart Monday, April 3, 2023">3</button>
<button id=41 aria-label="depart Tuesday, April 4, 2023">4</button>
<button id=42 aria-label="depart Wednesday, April 5, 2023">5</button>
<button id=43 aria-label="depart Thursday, April 6, 2023">6</button>
<button id=44 aria-label="depart Friday, April 7, 2023">7</button>

CURRENT ACTION:
TYPE 26 12/01/2023
PREVIOUS LABEL:
FILL_TEXT To "Chicago"
CURRENT LABEL:
CHOOSE_DATE Depart 12/01/2023
==

==
CONTEXT:
Book a flight from Boston to Chicago departing on Dec 1, 2023 and returning on Dec 12, 2023

CURRENT BROWSER CONTENT:
<button id=18 title="Travelers">1 Adult</button>
<text id=19>Use TrueBlue points</text>
<text id=20>From</text>
<input id=21 text>Boston, MA (BOS)</input>
<button id=22>Reverse origin and destination city or airport</button>
<text id=23>To</text>
<input id=24 text>Chicago, IL (ORD)</input>
<text id=25>Depart</text>
<input id=26 Depart Press DOWN ARROW key to select available dates>12/01/2023</input>
<text id=27>Return</text>
<input id=28 Return Press DOWN ARROW key to select available dates/>
<button id=29 aria-label="Previous Month"/>
<text id=30>April 2023</text>
<text id=31>S</text>
<text id=32>M</text>
<text id=33>T</text>
<text id=34>W</text>
<text id=35>T</text>
<text id=36>F</text>
<text id=37>S</text>
<button id=38 aria-label="depart Saturday, April 1, 2023">1</button>
<button id=39 aria-label="depart Sunday, April 2, 2023">2</button>

CURRENT ACTION:

40

TYPE 28 12/12/2023
PREVIOUS LABEL:
CHOOSE_DATE Depart 12/01/2023
CURRENT LABEL:
CHOOSE_DATE Return 12/12/2023
==

==
CONTEXT:
Book a flight from Boston to Chicago departing on Dec 1, 2023 and returning on Dec 12, 2023

CURRENT BROWSER CONTENT:
<link id=4>Book</link>
<link id=5>Manage Trips</link>
<link id=6>Check In</link>
<link id=7>Travel Info</link>
<link id=8>TrueBlue</link>
<link id=9 aria-label="Shopping cart (Empty)"/>
<text id=108>Flights available for sale through Mar 19, 2024.</text>
<button id=109>Done</button>
<button id=110>Search flights</button>

CURRENT ACTION:
CLICK 110
PREVIOUS LABEL:
CHOOSE_DATE Return 12/12/2023
CURRENT LABEL:
CLICK Search flights
==

The current context, browser content, action, previous label are below. Reply with your
current label.

==
CONTEXT:
{context}

CURRENT BROWSER CONTENT:
{browser_content}

CURRENT ACTION:
{current_action}

PREVIOUS LABEL:
{previous_label}

CURRENT LABEL:

H.6 REASONING PROMPT

Listing 11: Reasoning Prompt
You are an AI assistant whose goal is to generate reasoning as to why a particular web action

was taken. You are given:
1. CONTEXT: An instruction stating the overall goal you need to achieve
2. CURRENT BROWSER CONTENT: A simplified text description of the current browser content,

without formatting elements.
3. CURRENT URL: The current webpage URL
4. PREVIOUS ACTIONS: A list of your past actions.
5. YOUR ACTION: The current action that you took

Provide reasoning (after REASONING:) for why the current action (YOUR ACTION:) was taken.

Here are some examples:

Example 1:
==
CONTEXT:
CHOOSE_DATE Depart "12/03/2023"

CURRENT BROWSER CONTENT:
<button id=18 title="Travelers">1 Adult</button>
<text id=19>Use TrueBlue points</text>
<text id=20>From</text>
<input id=21 text>New York City area (NYC)</input>
<button id=22>Reverse origin and destination city or airport</button>
<text id=23>To</text>
<input id=24 text>Boston area</input>

41

<text id=25>Depart</text>
<input id=26 Depart Press DOWN ARROW key to select available dates/>
<text id=27>Return</text>
<input id=28 Return Press DOWN ARROW key to select available dates/>
<button id=29 aria-label="Previous Month"/>
<text id=30>April 2023</text>
<text id=31>S</text>
<text id=32>M</text>
<text id=33>T</text>
<text id=34>W</text>
<text id=35>T</text>
<text id=36>F</text>
<text id=37>S</text>
<button id=38 aria-label="depart Saturday, April 1, 2023">1</button>
<button id=39 aria-label="depart Sunday, April 2, 2023">2</button>
<button id=40 aria-label="depart Monday, April 3, 2023">3</button>
<button id=41 aria-label="depart Tuesday, April 4, 2023">4</button>
<button id=42 aria-label="depart Wednesday, April 5, 2023">5</button>
<button id=63 aria-label="depart Wednesday, April 26, 2023">26</button>
<button id=64 aria-label="depart Thursday, April 27, 2023">27</button>
<button id=65 aria-label="depart Friday, April 28, 2023">28</button>
<button id=66 aria-label="depart Saturday, April 29, 2023">29</button>
<button id=67 aria-label="depart Sunday, April 30, 2023">30</button>

CURRENT URL:
https://www.jetblue.com/

PREVIOUS ACTIONS:

YOUR ACTION:
TYPE 26 Depart Press DOWN ARROW key to select available dates "12/03/2023"
REASONING:
I have no previous actions.
I have to first type "12/03/2023" in the field Depart which corresponds to input id 26
==

Example 2:
==
CONTEXT:
FILL_TEXT From "Seattle"

<button id=16>Stays</button>
<button id=17>Roundtrip</button>
<button id=18 title="Travelers">1 Adult</button>
<text id=19>Use TrueBlue points</text>
<text id=20>From</text>
<input id=21 text>Seattle</input>
<text id=22>Seattle</text>
<text id=23>, WA (SEA)</text>
<text id=24>Seattle</text>
<text id=25>/King Country, WA (BFI)</text>
<text id=26>Browse by regions</text>
<text id=27>Browse by regions</text>
<text id=28>Mint Service</text>
<text id=29>Partner Airline</text>
<button id=30>Reverse origin and destination city or airport</button>

CURRENT URL:
https://www.jetblue.com/

PREVIOUS ACTIONS:
TYPE 21 "Seattle"

YOUR ACTION:
CLICK 22 Seattle
REASONING:
I have already typed in "Seattle" in id 21
I should next check if there is a dropdown text below id 21
Yes, there is a corresponding dropdown text "Seattle" in id 22
I have to click on id 22
==

CONTEXT:
{context}

CURRENT BROWSER CONTENT:
{browser_content}

CURRENT URL:
{url}

42

PREVIOUS ACTIONS:
{previous_actions}

YOUR ACTION: {current_action}
REASONING:

43

	
	Introduction
	Related Work
	Problem Formulation
	Approach
	Inference time: Compose policies to solve the task
	Generate task and policy prompts from demonstrations

	Experiments
	Experimental Setup-0.1em
	Results and Analysis

	Discussion and Limitations
	Appendix

	 Appendix
	Broader Impacts
	Ablations
	Effect of Chain-of-Thought Reasoning
	Model Scaling
	Task-wise Performance on MiniWoB++

	Experimental Details
	HeaP Planner Policy Code Architecture
	Hyper-parameters

	Autolabeling and Prompt Generation
	Collect and Autolabel demonstrations
	Autogenerate prompts from labeled demonstrations
	Augmenting prompts with chain-of-thought reasoning
	Autolabeling Examples

	Airline CRM Environment
	Live Websites Dataset
	Collecting Human Task Demos
	Parsing Browser Content
	Augmenting with Conversations

	Evaluation with Llama2 model
	Library of Prompts
	HeaP Few-shot Prompt
	Flat Few-shot Prompt
	Flat Zero-shot Prompt
	HeaP Zero-shot Prompt
	Auto-labeling Prompt
	Reasoning Prompt

