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ABSTRACT

The design space of discrete-space diffusion or flow generative models are signif-
icantly less well-understood than their continuous-space counterparts, with many
works focusing only on a simple masked construction. In this work, we aim to
take a holistic approach to the construction of discrete generative models based on
continuous-time Markov chains, and for the first time, allow the use of arbitrary
discrete probability paths, or colloquially, corruption processes. Through the lens
of optimizing the symmetric kinetic energy, we propose velocity formulas that can
be applied to any given probability path, completely decoupling the probability
and velocity, and giving the user the freedom to specify any desirable probability
path based on expert knowledge specific to the data domain. Furthermore, we find
that a special construction of mixture probability paths optimizes the symmetric
kinetic energy for the discrete case. We empirically validate the usefulness of this
new design space across multiple modalities: text generation, inorganic material
generation, and image generation. We find that we can outperform the mask con-
struction even in text with kinetic-optimal mixture paths, while we can make use
of domain-specific constructions of the probability path over the visual domain.

1 INTRODUCTION

Generative models over discrete spaces have not seen as much progress on the methodology side
compared to continuous-space counterparts. For the most part, applications such as large language
modeling rely solely on autoregressive models (Radford et al., 2019; Bommasani et al., 2021). The
simplicity of autoregressive modeling has also motivated people to use them for multimodal gen-
eration, where other modalities, such as images and videos, are tokenized and modeled within an
autoregressive framework (Van den Oord et al., 2016; Team, 2024; Sun et al., 2024). While obtain-
ing reasonable results, they have not yet reached the performance of continuous-space generative
models such as denoising diffusion (Ho et al., 2020; Song et al., 2021) and Flow Matching models
(Lipman et al., 2022; Albergo et al., 2023) for the visual-audio domains (Rombach et al., 2022; Dai
et al., 2023; Esser et al., 2024; Zhou et al., 2024), where it is believed that the ability to perform
iterative refinement brings significant gains (Saharia et al., 2022; Zhang et al., 2024).

A promising framework that brings iterative refinement to the discrete case is to consider the use
of Markov chains within a dynamical generative framework. Many discrete-space generative flow
and diffusion models have seen success in the generation of text (Austin et al., 2021; Lou et al.,
2024; Shi et al., 2024; Sahoo et al., 2024; Gat et al., 2024), proteins (Campbell et al., 2024), images
(Austin et al., 2021; Shi et al., 2024), and even executable code (Gat et al., 2024). However, the
design space of these models is currently rather limited, with many recent works instead focusing
solely on the case of masking as a corruption process (Shi et al., 2024; Sahoo et al., 2024). The
masked construction is an extension of masked pretraining (Devlin, 2018; Yang, 2019), but it does
not fully embody the concept of iterative refinement as it is equivalent to learning autoregressive
models for every ordering (Hoogeboom et al., 2021; Chang et al., 2022), and it has been noticed
that some of the recent reported progress was actually misleading due to low-precision sampling
(Zheng et al., 2024) rather than the explicit design choice of masking as a corruption process. In
spite of this, the masked construction has often been found to be the best performing choice out
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of the limited family of corruption processes previously considered tractable (Austin et al., 2021;
Campbell et al., 2024; Gat et al., 2024).

We instead take a holistic view on constructing discrete Flow Matching models, massively expand-
ing the design space to enable arbitrary probability paths, or colloquially, corruption processes,
grounded in the framework of continuous-time Markov chains (CTMC). We list our contributions:

1. Analogous to the continuous setting, we find that an infinite number of velocities can gen-
erate any given probability path. In order to reduce this search space, we consider a de-
composition into a probability-advancing velocity and a probability-preserving velocity.

2. To explore the space of probability-advancing velocities, we motivate a family of closed-
form velocities that be formulated as optimizing kinetic energy. In particular, we are the
first to formulate velocities that can work with any choice of probability path, completely
opening up the design space of probability paths, e.g., domain-specific constructions, while
recovering the velocities used by prior works for existing paths in the literature.

3. We also find that the probability path itself can also be optimized with the same kinetic
energy criterion. A closed-form solution surprisingly recovers the mixture paths considered
by Gat et al. (2024) but with novel source-dependent schedulers.

4. We derive the ELBO for discrete Flow Matching models in full generality. This leads to an
improved ELBO for training mixture probability paths that has not been used before, and
recovers the ELBO derived by Shi et al. (2024) for the masked construction. We find that
with this ELBO, our kinetic-optimal mixture paths outperform the masked construction.

2 BACKGROUND: DISCRETE FLOW MATCHING

We are interested in learning a generative model that approximates a data distribution q(x), where
x = (x1, x2, . . . , xD) ∈ S = T D with T = [K] ≜ {1, 2, . . . ,K} being a discrete set of possible
token values, and D ∈ N is number of discrete variables. For brevity and without loss of generality,
we consider all dimensions to have the same number of discrete values.

Probability paths. We denote by p(x) and q(x) the source and target, respectively, probability
mass functions (PMFs) over the state space S. We consider probability paths pt(x), t ∈ [0, 1], to be
time-dependent PMFs taking the form

pt(x) ≜
∑

x1∈S pt(x|x1)q(x1), where pt(x|x1) ≜
∏D

i=1 pt(x
i|xi

1), (1)

and pt(x
i|xi

1) is a conditional probability path which interpolates between a simple PMF at time
t = 0 and a delta PMF centered around xi

1 at t = 1. That is, we assume the boundary conditions
p0(x

i|xi
1) = p(xi) and p1(x

i|xi
1) = δxi

1
(xi). Hence we can interpret these probability paths pt(x) in

equation 1 as interpolating between a factorized source distribution p(x) ≜
∏D

i=1 p(x
i) and the data

distribution q(x). A common family of probability paths used in previous works is the collection of
mixture paths (Gat et al., 2024), with xi

1-dependent schedulers similar to Shi et al. (2024):

pt(x
i|xi

1) = (1− κt(x
i
1))p(x

i) + κt(x
i
1)δxi

1
(xi), (2)

where κ0(·) = 0 and κ1(·) = 1 to satisfy the boundary conditions. Specifically, with p(xi) =
δm(x

i) we recover the masked construction (Shi et al., 2024; Sahoo et al., 2024).

Probability velocities. As our generative process, we simulate a Continuous Time Markov Chain
(CTMC) (Xt)t∈[0,1] in S such that its time marginals follow a prescribed probability path,

Xt ∼ pt. (3)
In order to do so, we define the concept of a probability velocity, also known as a rate matrix. We
say that a probability velocity ut generates pt if ut characterizes a Markov process Xt with marginal
pt (equation 3) for all t ∈ [0, 1) in the following sense:

P(Xt+h = x | Xt = z) = δz(x) + hut(x, z) + o(h), (4)
where o(h) denotes a function which is asymptotically smaller than h, i.e., limh→0

o(h)/h = 0.
Intuitively, ut describes the Markov transition of Xt for small step sizes h > 0. We note that for
equation 4 to be a valid PMF, ut must at least satisfy the Rate Conditions:

ut(x, z) ≥ 0 for all x ̸= z and
∑

x ut(x, z) = 0 ▶ Rate Conditions (5)
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Single-variable-change probability velocities. It is natural to consider modeling a CTMC process
Xt over S by defining a ut(x, z) for all pairs x, z ∈ S . However, the state space is of size |T |D
so this is generally prohibitive for high dimensions. A remedy is to consider rates that only allow a
state to change in a single variable (Campbell et al., 2022), e.g., in the following example we only
change the variable at the i-th coordinate:

(z1, . . . , zi−1, zi, zi+1, . . . , zD)→ (z1, . . . , zi−1,xi, zi+1, . . . , zD). (6)

To model only such changes we restrict our attention to velocities of the form ui
t(x

i, z) that de-
scribe the probability rate between the state z and the state with the i-th coordinate replaced, i.e., as
described in the r.h.s. in equation 6. We can express the full velocity ut(x, z) via ui

t(x
i, z) as

ut(x, z) =

D∑
i=1

ui
t(x

i, z)
∏
j ̸=i

δzj (xj), (7)

which states the probability velocity between two states z → x is zero if they differ by more than
one variable and equal ui

t(x
i, z) if they differ by exactly one variable. Plugging this velocity into

equation 4, it can be shown that (Gat et al., 2024):

P(Xt+h = x | Xt = z) =
∏D

i=1

[
δzi(xi) + hui

t(x
i, z)

]
+ o(h) (8)

This implies we can sample each variable Xi
t+h independently from the distribution δzi(xi) +

hui
t(x

i, z), and only incur an error of o(h).

The marginal velocity. Previous works (Campbell et al., 2024; Gat et al., 2024) have shown that
constructing a generating velocity for pt(x) can be achieved by considering only the conditional
probability paths in equation 1. That is, assume we have conditional velocities ui

t(x
i, zi|xi

1), which
are velocities in the state space T , that generate the conditional paths pt(xi|xi

1) in equation 1. Then
a marginal velocity ui

t(x
i, z) that generates pt(x) takes the form:

ui
t(x

i, z) =
∑

xi
1∈T ui

t(x
i, zi|xi

1)p
i
1|t(x

i
1|z) (9)

where pi1|t(x
i
1|z) is the posterior probability of the i-th token taking the value xi

1, i.e.,

pi1|t(x
i|z) =

∑
x1∈S δxi

1
(xi)pt(z|x1)q(x1)

pt(z)
. (10)

Parameterizing the factorized posterior
∏D

i=1 p
i
1|t is an approach taken by prior works (Austin et al.,

2021; Campbell et al., 2022). To train, a simple option is the cross-entropy objective:

LCE(θ) = Et∼U [0,1],x1∼q(·),x∼pt(·|x1)

[
−
∑D

i=1 log p
θ,i
1|t(x

i
1|x)

]
. (11)

We use this training loss for general probability paths as it is generally applicable. However, for the
case of mixture paths (equation 2) it is possible to derive a tractable ELBO as the marginal ut can
be written in closed form without a summation as in equation 9. We cover this later in Section 6.

3 SAMPLE GENERATION THROUGH THE FACTORIZED POSTERIOR

The most direct approach to sample from this model is to use the marginal velocity ut(x
i, z), e.g.,

with a first-order sampling scheme defined by removing the o(h) term in equation 8, i.e., given Xt,
we advance time with step size h by sampling Xi

t+h according to

Xi
t+h ∼ δXi

t
(·) + hui

t(·, Xt), (12)

for each i ∈ [D], where ui
t is computed with equation 9. However, for general discrete paths this

sampling procedure is intractable for large discrete spaces T as computing ui
t(x

i, z) with equation 9
for all xi ∈ T has a computational complexity of |T |2.

Alternatively, we propose a more efficient sampling scheme by noticing that

δzi(xi) + hui
t(x

i, z)
(9)
=
∑

xi
1∈T

[
δzi(xi) + hui

t(x
i, zi|xi

1)
]
pi1|t(x

i
1, z), (13)

which leads to a sampling process that avoids computing the full marginal velocity: given the current
state Xt, sample X1 from the factorized posterior, then sample Xt+h. That is, for each i ∈ [D],
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1) Sample Xi
1 ∼ pi1|t(·|Xt); and

2) Sample Xi
t+h ∼ δXi

t
(·) + hui

t(·, Xi
t |Xi

1).

This sampling procedure still results in Xt with the same time marginals while avoiding the compu-
tational cost of the summation in equation 9. To enable the use of any step size h, we use a slightly
modified step 2; see Appendix A for more details and pseudocode in Algorithm 1.

4 KINETIC OPTIMAL VELOCITIES AND PROBABILITY PATHS

We first decouple the design space of probability paths and their generating velocities, providing
the means to effectively explore this large design space. This section covers two contributions: (i)
we propose a family of kinetic optimal (KO) velocities that generates any given probability path,
and (ii) we solve for kinetic optimal probability paths, recovering a special case of mixture paths.
The first contribution enables us to work with general discrete probability paths. The second con-
tribution justifies the choice of mixture probability paths used by Gat et al. (2024) but offers novel
xi
1-dependent schedulers. For both, we center our designs based on optimizing a discrete notion of

kinetic energy (Peyré et al., 2019).

Notation. As the discussion in this section applies to arbitrary probability paths and discrete state
spaces, we will use a simplified notation, where our state space is now T and for states we use
x, z ∈ T , abusing a bit the previous notation (where xi, zi ∈ T ). Furthermore, we will denote by
pt(x) and ut(x, z) an arbitrary probability path and velocity field in T , respectively.

Continuity Equation. Given a probability path pt(x), the entire collection of velocities ut(x, z)
generating pt(x) are the solutions to the Continuity Equation (a.k.a. the Kolmogorov forward equa-
tion) that also satisfy the Rate Conditions. It is useful to formulate the Continuity Equation through
the flux jt, that is

ṗt(x) + divx(jt) = 0, ∀x ∈ T , with jt(x, z) = ut(x, z)pt(z). (14)
Intuitively, the flux jt(x, z) quantifies the amount of probability mass per unit of time moving from
state z to state x. The divergence operator then measures the total outgoing flux minus the total
incoming flux, which in the discrete case takes the form

divx(jt) =
∑

z ̸=x jt(z, x)−
∑

z ̸=x jt(x, z). (15)

Velocity from flux. Given a flux jt satisfying the Continuity Equation (equation 14) we can get a
velocity from the flux by defining for x ̸= z,

ut(x, z) = jt(x, z)/pt(z) if pt(z) > 0, else ut(x, z) = 0, (16)

and the case x = z is uniquely set by the Rate Conditions (5), ut(z, z) = −
∑

x ̸=z ut(x, z). The
velocity defined in this way will satisfy the Continuity Equation and the Rate Conditions if the flux
satisfies the following conditions:

jt(x, z) ≥ 0, for x ̸= z ▶ Non-negativity (17)
pt(z) = 0 ⇒ jt(x, z) = 0 ▶ Safe Flux Condition (18)

Intuitively, the Safe Flux Condition ensures no flux is leaving a zero probability state z.
Proposition 4.1. Given a non-negative safe flux jt that satisfies the Continuity Equation, the velocity
defined in equation 16 satisfies the Rate Conditions and generates the pt probability path.

Kinetic optimality. Motivated by the approach employed in the continuous case of minimizing
the kinetic energy for the conditional velocities (Lipman et al., 2022; Shaul et al., 2023), we take a
similar approach for finding velocities for the discrete case. The standard convex formulation of the
kinetic energy adapted to the discrete case is (Peyré et al., 2019):

minpt,jt

∫ 1

0

∑
x ̸=z

wt(x,z)
pt(z)

jt(x, z)
2dt ▶ Kinetic Energy (19a)

s.t. divx(jt) = −ṗt(x), ∀x ∈ T ▶ Continuity Equation (19b)
jt(x, z) ≥ 0, ∀x ̸= z ∈ T ▶ Non-negative flux (19c)
p0 = p, p1 = q ▶ Boundary conditions (19d)
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where wt(x, z) > 0 is some problem-dependent weighting; a higher weight implies a smaller flux
from z → x, i.e., the higher this value the smaller the velocity ut(x, z). The optimality criterion
(equation 19a) is the kinetic energy, equivalently jt(x,z)

2

pt(z)
= ut(x, z)

2pt(z). The benefit of formulat-
ing in terms of the flux (instead of the velocity) is that the problem becomes convex in its unknowns
(pt, jt), and in particular the Continuity Equation constraint in (19b) is linear. Lastly, in case of
wt(x,z)
pt(z)

= ∞ the energy in equation 19a is defined to be 0 if jt(x, z) = 0, and∞ if jt(x, z) > 0.
Therefore, to ensures the solution j⋆t is safe (equation 18) we ask that wt satisfies:

pt(z) = 0⇒ wt(x,z)
pt(z)

=∞ ▶ Safe Weight Condition (20)

and that problem 19 is feasible, i.e., it has a finite energy solution. Although problem 19 is convex,
solving it for a general wt requires numerical approximation. Since we want to solve it for con-
ditional probability paths with different x1 ∈ T , i.e., q(x) = δx1

(x), this can be computationally
challenging. Instead, we will explore cases of wt where problem (19) is solvable in closed-form.
We start with assuming pt is known/given, and find the kinetic optimal velocity u⋆

t , then afterwards
we discuss optimizing the pt as well.

4.1 KINETIC OPTIMAL VELOCITY

Assuming pt > 0 is fixed in (19), our goal is to find the kinetic optimal solution j⋆t , and consequently
obtaining a velocity u⋆

t via (16). One observation we make is that (19) can be efficiently solved when
symmetric, i.e., when wt(x,z)

pt(z)
= wt(z,x)

pt(x)
. As we prove in Appendix B, (19) can be efficiently solved

via the following linear relaxation:∑
z

pt(z)
wt(x,z)

[ft(x)− ft(z)] = ṗt(x), ∀x ∈ T (21)

where ft : T → R is the unknown function over the state space. The linear equation in (21) is of
Laplacian form, and many properties (including closed-form solutions) are known in many cases
(Vishnoi, 2012). The solution ft to (21) is unique up to a global constant and using ft we construct
the kinetic optimal flux,

j⋆t (x, z) ≜
pt(z)

wt(x,z)
[ft(x)− ft(z)]+ , (22)

where [s]+ = max {s, 0} is the ReLU operator. This provides a solution to (19) with a fixed and
positive pt. Consequently, using (16) we get the kinetic optimal velocity. We have shown that a
certain family of kinetic optimal velocities can be computed by solving a linear system (21) for
arbitrary probability paths pt(x) over state-space T . Next we will further instantiate this family and
provide some closed form solution for j⋆t and u⋆

t .

Closed-form ut. We will consider the case where wt(x, z) = pt(z)
τt(x)τt(z)

, and τt : T → R≥0 is a
design choice of our method. To ensure wt is safe (20) we require that pt(z) = 0 implies τt(z) = 0.
The solution ft to (21)—which can be checked with substitution—is:

ft(x) =
1∑

s∈T τt(s)
ṗt(x)
τt(x)

. (23)

One choice is τt(x) = 1[pt(x)>0], that leads to the Kinetic Optimal flux

j⋆t (x, z) =
1

|T | [∂tpt(x)− ∂tpt(z)]+ , for x ̸= z (24)

which upon converting to velocity via (16) recovers the velocity proposed in Campbell et al. (2024)
for positive paths, pt > 0. Note however, that the above flux is not safe (does not satisfy equation 18)
and if pt(z) = ϵ the flux j⋆t (x, z) for some general x is not necessarily small, showing a potential
numerical issue. Campbell et al. (2024) formulate a limit case for general pt that also requires adding
an extra assumption on pt (that pt(x) = 0 ⇒ ṗt(x) = 0), which does not hold even for common
probability paths that are typically used, such as the masked mixture path with linear schedulers.

Alternatively, we propose a more numerically stable choice. Consider τt(x) = pt(x), i.e.,

wt(x, z) = 1/pt(x). (25)

This results in ft(x) = ṗt(x)/pt(x), and the kinetic optimal flux in this case is:
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j⋆t (x, z) = [pt(z)ṗt(x)− ṗt(z)pt(x)]+ , for x ̸= z (26)

Note that in contrast to before, this flux is safe (satisfies equation 18) and therefore works for general
pt. Furthermore, (26) exhibits stable limiting behavior for continuously differentiable pt: when
pt(z)→ 0, so too will j⋆(x, z)→ 0.

We note that for uniform and mask source distributions with the mixture path (2), the velocity
considered by Campbell et al. (2024) and our velocity resulting from (26) coincide. However, for
mixture paths (2) and general discrete paths, they generally do not coincide. Additionally, the choice
of velocity in (26) also recovers the velocities used by Gat et al. (2024) for mixture probability paths.
See Appendix C.1 for detailed derivations. Finally, we discuss a broader family of closed-form
velocities involving different choices of τt in Appendix C.3, which we find can significantly boost
performance at low-cost sampling regimes.

Metric-induced pt(x). The velocity resulting from (26) can be applied to any user-defined pt. We
propose metric-induced conditional probability paths of the form

pt(x|x1) = softmax (−βtd(x, x1)) , (27)

where β : [0, 1] → R≥0 is a monotonic scheduler with β0 = 0, β1 = ∞, and d : T × T → R≥0

such that d(x, x1) = 0 ⇔ x = x1 ,interpreted loosely as a metric over discrete values. If we apply
the flux in (26) for the paths in (27) and simplify, we obtain the velocity:

u⋆
t (x, z|x1) = pt(x|x1)[∂t log pt(x|x1)− ∂t log pt(z|x1)]+ (28)

= pt(x|x1)β̇t[d(z, x1)− d(x, x1)]+. (29)

This velocity has the property that we only move from state z to state x if x is closer than z to x1,
i.e., d(x, x1) < d(z, x1), hence resulting in a flow that only moves closer to x1.

4.2 KINETIC OPTIMAL PROBABILITY PATHS

Interestingly, for the weighting choice that we have motivated for the numerically stable velocity
(25), it is also possible to solve for the kinetic optimal probability path p⋆t . As we show in Ap-
pendix B, in this case, the problem (19) can be formulated equivalently as

minat

∫ 1

0

∑
x

ȧt(x)
2 dt ▶ Kinetic Energy (30a)

s.t.
∑

x at(x)
2 = 1, ∀t ∈ [0, 1] ▶ Hypersphere constraints (30b)

a0(x) =
√
p(x), a1(x) =

√
q(x) ▶ Boundary conditions (30c)

where at(x) =
√
pt(x). Problem (30) is the kinetic energy of a curve over the hypersphere connect-

ing
√
p and

√
q. The optimal solution thus corresponds to the geodesic curve on the hypersphere,

at(x) =
sin(1−t)Ω

sinΩ

√
p(x) + sin tΩ

sinΩ

√
q(x), where Ω = arccos

(∑
z

√
p(z)q(z)

)
, (31)

and consequently the optimal probability path and velocity for (30) are

p⋆t (x) = a2t (x), u⋆
t (x, z) = a2t (x)

[
∂t log a

2
t (x)− ∂t log a

2
t (z)

]
+

(32)

In the particular case of conditional probability paths q(x) = δx1
(x), we get that the optimal solution

recovers the mixture path (equation 2) with a specific x1-dependent scheduler:

κt(x1) = 1− sin2(1−t)Ω(x1)
sin2 Ω(x1)

, where Ω(x1) = arccos
√
p(x1). (33)

This justifies the mixture paths (2) as kinetic optimal, and furthermore, it naturally utilizes an x1-
dependent scheduler for general source distributions p when p(x1) > 0.
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5 PROBABILITY-PRESERVING VELOCITIES

While we have found a particular flux j⋆t , the space of fluxes for a given pt is much larger, and in
this section we show how to explore it further. We first observe that since the Continuity Equation
(14) is a linear equation, any flux jt satisfying this equation can be written as a sum of two fluxes:

jt = j⋆t + j⊥t , where divx(j
⊥
t ) = 0, (34)

where j⋆t is a particular solution to the Continuity Equation and j⊥t is a solution to the homogenous
version of the equation, i.e., divergence-free. We call the velocity resulting from j⊥t a probability-
preserving, or corrector, velocity as sampling with this velocity has pt as a steady-state. For simplic-
ity, we mainly consider the special case of symmetric flux. Symmetry is a sufficient condition for
being divergence-free as is evident from (15). A natural choice for a symmetric flux is to consider a
symmetrization of (22) taking the form

j⊥t (x, z) = pt(z)
wt(x,z)

|ft(x)− ft(z)| , and u⊥
t (x, z) = j⊥t (x, z)/pt(z), (35)

for any function ft. For convenience, we will simply re-use the same ft that comes from optimizing
the kinetic energy (19), e.g. the same as in (26). In contrast to the kinetic optimal velocity, which
results in a unidirectional flow in the sense that samples will only move from lower ft(·) to higher
ft(·), the symmetric flux in (35) results in a bidirectional flow that allows equal movement between
any two states with non-equal ft(·). Hence j⊥t acts as a corrector to redirect samples back to previous
states in a way that leaves pt invariant.

6 ELBO FOR DISCRETE FLOW MATCHING

We show in Appendix D that we can produce a continuous-time ELBO bound on the likelihood
log pθ1(x1) for any conditional probability path and conditional probability velocity in terms of the
marginal ui

t(x
i, z) and conditional ui

t(x
i, zi|xi

1) as follows

log p1(x1) ≥
∫ 1

0
Ext∼pt(·|x1)

∑D
i=1

[
ui
t(x

i
t, xt)− ui

t(x
i
t, x

i
t|xi

1)

+
∑

yi ̸=xi
t
ui
t(y

i, xi
t|xi

1) log
(

ui
t(y

i,xt)

ui
t(y

i,xi
t|xi

1)

)]
dt

(36)

Evaluating this ELBO is difficult for the same reason as sampling in Section 3, for large discrete
spaces T computing (9) for all xi ∈ T has a computational complexity of |T |2. However, for mix-
ture paths (2), our conditional velocity resulting from (26) is used to obtain a closed-form expression
for the marginal velocity (see Appendix C.2), yielding a tractable ELBO for mixture paths:

log pθ1(x1) ≥
∫ 1

0
Ext∼pt(·|x1)

∑D
i=1

[
λ(xi

t)p
θ
1|t(x

i
t|xt)−

∑
yi

λ(yi)pθ1|t(y
i|xt)+

+ (1− δxi
1
(xi

t))λ(x
i
1)
(
1 + log pθ1|t(x

i
1|xt)

)]
dt,

(37)

where λ(x) = κ̇t(x)
1−κt(x)

. This ELBO has not been used previously, e.g., Campbell et al. (2022) had
to resort to a doubly stochastic estimator. Specifically for the masked construction, we recover the
ELBO used by Zheng et al. (2024) for xi

1-independent schedulers and used by Shi et al. (2024) for
xi
1-dependent schedulers; see Appendix D.1.

7 RELATED WORK

Generative modeling through marginalization. Denoising diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., 2020; Song et al., 2021) construct generative models by reversing a nois-
ing process. The Flow Matching framework (Lipman et al., 2022; Albergo et al., 2023; Liu et al.,
2022) shares similar traits but instead constructs generative models through a marginalization of
conditional Markov processes, allowing a larger design space of probability paths. These types of
models can be trained at scale both efficiently and stably relative to other frameworks, and thus have
seen massive success in the large-scale generation of images (Rombach et al., 2022; Esser et al.,
2024), videos (Singer et al., 2022), and audio (Le et al., 2024; Vyas et al., 2023).
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Figure 1: Generative perplexity vs. ELBO of kinetic optimal (KO) and linear sched-
ulers of FineWeb-Edu models. The ELBO is evaluated: WikiText-103, LAMBADA, Penn
TreeBank,FineWeb-Edu, and OpenWebText. Bold highlights the Pareto front.

Table 1: Zero-shot unconditional perplexity bound as in equation 36 of Fineweb-Edu models, more
details are in Appendix E.1. ∗ denotes our reimplementation of the method.
METHOD LAMBADA↓ WIKITEXT2↓ PTB↓ WIKITEXT103↓ 1BW↓ OPENWEBTEXT↓ FINEWEB-EDU (TRAIN SET)↓
SEDD∗ (mask) (Lou et al., 2024) ≤58.57 ≤42.84 ≤ 136.99 ≤42.88 ≤114.17 ≤36.55 ≤19.41
MD4∗ (Shi et al., 2024) ≤61.27 ≤43.08 ≤157.00 ≤43.02 ≤127.55 ≤35.57 ≤18.69

DFM - Linear (β0 = 1024) ≤60.59 ≤44.17 ≤180.75 ≤44.29 ≤147.21 ≤36.33 ≤18.67
DFM - Kinetic Optimal (mask) ≤58.5 ≤41.80 ≤144.46 ≤41.83 ≤123.83 ≤35.57 ≤18.71
DFM - Kinetic Optimal (β0 = 1024) ≤58.41 ≤42.19 ≤147.09 ≤42.34 ≤115.51 ≤36.07 ≤18.63

Continuous-time Markov Chains. These aforementioned frameworks have been adapted to the
discrete domain by making use of Continuous-time Markov Chains (CTMC) as the choice of gener-
ative process (Campbell et al., 2022; 2024; Lou et al., 2024; Gat et al., 2024). Many works discuss
both a uniform noise and mask construction (Campbell et al., 2024; Lou et al., 2024); however, more
recent works have focused more and more on the simple masked construction where each discrete
variable is randomly replaced with a dummy or mask token (Sahoo et al., 2024; Shi et al., 2024)
as it often performs favorably compared to uniform noise. However, the simple masked construc-
tion leads to a generative model that is equivalent to any-order autoregressive modeling under mild
assumptions (Hoogeboom et al., 2021; Zheng et al., 2024).

Any-order autoregressive modeling. While autoregressive models prespecify a fixed ordering,
any-order autoregressive models learn conditional probabilities for every ordering. Training is often
carried out by randomly masking out parts of the data sample (Devlin, 2018; Yang, 2019). Some
works have focused on architectural choices: Germain et al. (2015) randomly masks out weights to
induce a randomized ordering, while Pannatier et al. (2024) uses a fixed causal attention architecture
but randomly permutes the input ordering, with the end goal of learning all combinations of condi-
tional distributions so that generation of the variables can be done in any order. The ordering itself is
often optimized further by the use of heuristic scoring functions (Chang et al., 2022; Ziv et al., 2024).

8 EXPERIMENTS

We evaluate Discrete Flow Matching (DFM) on multiple modalities: text, crystalline material, and
image generation. Our main goal is to show that Discrete Flow Matching can outperform autore-
gressive models, and within the class of Discrete Flow Matching, we explore new additions such
as the kinetic optimal and the metric-induced constructions. In text, we mainly explore the kinetic
optimal probability paths (equation 33) with different source distributions, as these have access to
the closed-form ELBO (37). In material generation, we find that enabling permutation invariance
for DFM easily outperforms autoregressive models at de novo generation, achieving state-of-the-art
results. Furthermore, in domains where a natural metric exists, we demonstrate our method’s abil-
ity to inject inductive bias into the velocity and probability path using equations 27 and 29. We
show that our large design space enables competitive results even with non-mask probability paths,
showcasing the capabilities of our expanded design space.

8.1 TEXT GENERATION

We explore our method on the task of text generation. We use the kinetic optimal probability path as
in equation 33, which only has one hyper-parameter, the source distribution p(x). For source distri-
bution, we compute the statistics of tokens appearances in the training data pstats(x

i) and construct a
single-parameter family of source distributions:

p(x) =
∏D

i=1 p(x
i), p(xi) = softmax(−β0 log pstats(x

i)), (38)
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Figure 2: (left) Increasing the design space of discrete probability paths and velocities allows us to
perform better than prior works, while significantly boosting performance at the low NFE regime.
(middle) We find that the choice of kinetic optimal u⋆

t significantly affects the low NFE regime
while adding the probability-preserving component u⊥

t stabilizes the high NFE regime. (right)
Comparison of FID values for discrete generative models.

Table 2: De novo material generation. Our primary metric, Stability Rate, is the fraction of materials
with energies below the convex hull formed by stable materials, following Miller et al. (2024).

Method NFE Validity (%) ↑ Coverage (%) ↑ Property ↓ Stability Rate (%) ↑
Structural Composition Recall Precision wdist (ρ) wdist (Nel)

CDVAE (Xie et al., 2021) 5000 100.00 86.70 99.15 99.49 0.688 0.278 1.57
DiffCSP (Jiao et al., 2023) 1000 100.00 83.25 99.71 99.76 0.350 0.125 5.06
FlowMM (Miller et al., 2024) 1000 96.85 83.19 99.49 99.58 0.239 0.083 4.65
CrystalLLM (70B) (Gruver et al., 2024) – 99.6 95.4 85.8 98.9 0.81 0.44 5.28

Autoregressive – 86.43 89.33 63.31 99.74 0.088 0.030 1.99
Perm. invariant DFM - Mask w/ Cubic 250 94.40 84.40 98.25 99.40 0.244 0.144 6.90
Perm. invariant DFM - Mask w/ Kinetic Optimal 250 95.79 88.50 90.11 99.29 0.542 0.154 7.02

where β0 = −1 recovers the data statistics, β0 = 0 yield a uniform distribution on all tokens. Also,
β0 →∞ yields a uniform distribution on the set of least probable tokens in the data, which behaves
similarly to a mask source distribution.

For this experiment, we used linear and kinetic optimal schedulers with mask, p(x) = δm(x), and
β0 ∈ {−0.5, 0.0, 0.5, 1, 2, 4, 64, 256, 1024} source distributions. The models are trained on the
FineWeb-Edu (Lozhkov et al., 2024) data set. Table 1 compares the evidence lower bound (ELBO),
as in equation 37, of our trained models with previous works. See Appendix E.1 for experimental
setup. We find that the kinetic optimal scheduler yields the best results on most of the evaluation sets.
Notably, to the best of our knowledge, this is the first time a non-mask source distribution obtains
comparable results and sometimes outperforms the mask source distribution. Figure 1 presents
a view of the generative perplexity (as measured by GPT2-large) vs. the ELBO of each model.
Generative perplexity represents the likelihood as determined by an external model, whereas the
ELBO indicates the likelihood as assessed by the evaluated model. We see that models trained using
the kinetic optimal scheduler achieve better tradeoffs than those trained with the linear scheduler, as
they more frequently appear on the Pareto front.

8.2 CRYSTALLINE MATERIAL GENERATION

To showcase the flexibility of our approach, we use discrete Flow Matching to generate crystals. We
train on inorganic materials from the MP-20 dataset, a subset of the Materials Project database (Jain
et al., 2013). Crystalline materials are represented using a combination of continuous and discrete
variables, which we tokenize using the same method as Gruver et al. (2024), which fine-tunes a 70B
LlaMa-2 autoregressive model (Touvron et al., 2023). In contrast, we are the first to perform crystal
generation with a purely discrete non-autoregressive model.

An important distinction is that since discrete Flow Matching directly predicts the factorized pos-
terior (10), we can easily impose permutation invariance of the atoms, which should significantly
reduce the complexity of the learning problem. This is as opposed to prior works on using au-
toregressive models for material generation (Flam-Shepherd & Aspuru-Guzik, 2023; Gruver et al.,
2024) which must impose an unnatural ordering on the variables. We show results in Table 2 where
we achieve state-of-the-art results using discrete Flow Matching, in particular, with a kinetic optimal
scheduler (33). We believe non-autoregressive generation is a key ingredient in performing well due
to the ability to impose structure such as permutation invariance. Compared to continuous-space
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Figure 3: Generated samples for ImageNet 256×256, with the same class label per column. (top)
Autoregressive LlamaGen model (Sun et al., 2024). (bottom) Discrete Flow Matching with metric-
induced probability path (27).

models such as FlowMM (Miller et al., 2024) and DiffCSP (Jiao et al., 2023), we see a large per-
formance gain in terms of our main metric, stability rate (≥ 38% relative improvement), from using
discrete generative models due to the discrete nature of crystal generation.

8.3 PIXEL SPACE IMAGE GENERATION

We first consider the case of image generation in pixel space. Here, T = {0, . . . , 255} and we
have access to a natural choice of metric, by embedding T on the interval [−1, 1] ⊂ R and using
the Euclidean distance d(x, y) = |x − y| in (27), as is typically done for continuous-space image
generative models. We use the CIFAR-10 dataset (Krizhevsky et al., 2009) for these experiments.
Results are shown in Figure 2, where we can improve upon the masked construction while also
retaining performance at low number of function evaluations (NFE). Generated samples are shown
in Figure 3 and in Appendix G. We find that optimizing the velocity after training can provide
significant gains: the choice of probability-advancing velocity (Appendix C.3) affects the low NFE
samples while the adding the probability-preserving component (Section 5) improves at high NFE.

8.4 DISCRETE LATENT IMAGE GENERATION Table 3: Face-blurred ImageNet-256 with the
Llama-B architecture (111M parameters).
∗ denotes our reimplementation.

Method NFE FID

LlamaGen (AR) (Sun et al., 2024) 256 5.46
LlamaGen (AR)∗ (Sun et al., 2024) 256 4.81
DFM - Mask∗ (Gat et al., 2024) 100 5.72
DFM - Metric (Ours) 100 4.50

We also explore the use of discrete Flow Match-
ing as a generative model within a discrete latent
space learned by a vector quantized variational au-
toencoder (VQVAE; Van Den Oord et al. (2017)).
We use images from face-blurred ImageNet (Deng
et al., 2009; Chrabaszcz et al., 2017) at 256×256
resolution. For training the VQVAE model, we
follow the setup in Sun et al. (2024) and use 16×
downsampling to produce a latent space of dimen-
sion 16×16 with a codebook size of |T | = 214 = 16384. As our choice of d(·, x1), we use the same
metric that was used to train the VQVAE model, which is d(x, y) = ∥x/∥x∥− y/∥y∥∥. We show
quantitative results in Table 3, where we find that discrete Flow Matching model with the metric
probability path outperforms the autoregressive approach, while the masked construction lags be-
hind. In addition, we show generated samples in Figure 3 and Figure 8, along with a visualization of
the metric probability path in Figure 4 and ablation studies on NFE and CFG scale in Appendix G.

9 CONCLUSION

We have opened up the design space of discrete Flow Matching models based on the the continuous-
time Markov chain generative process. In particular, we propose a kinetic optimal point of view for
constructing velocities given prescribed probability paths. This leads to, for the first time, allow-
ing arbitrary probability paths to be used. Furthermore, we justify mixture paths with particular
schedulers as being kinetic optimal solutions, and showcase for the first time, competitive results
for non-mask source distributions. Our method naturally encapsulates existing approaches, and we
showcase the flexibility of our approach to designing discrete Flow Matching models across multi-
ple application domains, ranging from text generation, to materials and image generation, where we
see significant gains over autoregressive models.
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A ALWAYS-VALID SAMPLING SCHEME

The second step of the sampling scheme defined in Section 3 requires the condition h ≤ 1

|ut(zi,zi,xi
1)|

to be a valid PMF, allowing only small step sizes. To avoid this constraint on h, we use an alternative
first-order sampling scheme. We replace step 2 from Section 3 with

2) Sample Xi
t+h ∼ e−hλ(Xi

t |X
i
1)δXi

t
(·) + (1− e−hλ(Xi

t |X
i
1))

ut(·,Xi
t |X

i
1)

λ(Xi
t |Xi

1)
(1− δXi

t
(·)),

where λ(Xi
t |Xi

1) =
∣∣ut(X

i
t , X

i
t |Xi

1)
∣∣.

Interpreting this expression, e−hλ(Xi
t |X

i
1) is the probability the state does not change. If we do

not change state, then we sample from δXi
t
(·). If we do change state, then we sample from

ut(·,Xi
t |X

i
1)

λ(Xi
t |Xi

1)
(1− δXi

t
(·)), which is a normalized distribution over all states not equal to Xi

t .

This is still a first-order sampling scheme, i.e. it is o(h) error from P(Xi
t+h | Xi

t). However, unlike
the simple Euler procedure, this alternative is always a valid PMF for any step size h.

Algorithm 1 Euler Solver

Require: model θ, x0, h
t← 0
Xt ← x0

while t < 1 do
for i=0,...,D {in parallel} do

Xi
1 ∼ pθ,i1|t(·|Xt)

λi ←
∣∣ui

t(X
i
t , X

i
t |Xi

1)
∣∣

Zi
jump ∼ U [0, 1]

if Zi
jump ≤ 1− e−hλi

then

Xi
t ∼

ui
t(·,X

i
t |X

i
1)

λi

(
1− δXi

t
(·)
)

end if
end for
t← t+ h

end while
return Xt

B SYMMETRIZED KINETIC OPTIMIZATION PROBLEM

What makes the optimization of the kinetic energy problem (19) hard for a general weighting wt is
the non-negative flux constraint (19c) which is non-linear. Nevertheless, for a symmetric weighting
defined as

wt(x, z)

pt(z)
=

wt(z, x)

pt(x)
, ∀ x, z ∈ T , (39)

we are able to overcome this constraint and obtain a close-form solution of the kinetic optimal flux
j⋆t . Specifically, we prove that for a symmetric weighting (39) and any probability path pt, the
optimization of the flux is reduced to the relaxed kinetic optimal problem,

minjt
∫ 1

0

∑
x ̸=z

wt(x,z)
pt(z)

jt(x, z)
2dt ▶ Kinetic Energy (40a)

s.t. divx(jt) = −ṗt(x), ∀x ∈ T ▶ Continuity Equation (40b)

which is similar to the original problem but without the non-negativity constraint (19c).
Lemma B.1. Consider a probability path pt > 0 and assume a symmetric weighting wt (39), then
if jt is a solution to the relaxed kinetic optimal problem (40) then

j⋆t (x, z) = [jt(x, z)− jt(z, x)]+ (41)

is a solution to the kinetic optimal problem (19).
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Proof of lemma B.1. Every flux jt can be written as the sum of a symmetric matrix and anti-
symmetric matrix,

jt(x, z) = jsym
t (x, z) + janti

t (x, z), (42)
where

jsym
t (x, z) =

jt(x, z) + jt(z, x)

2
, janti

t (x, z) =
jt(x, z)− jt(z, x)

2
. (43)

The divergence of any symmetric flux vanishes (15), i.e.,

divx(j
sym
t ) = 0. (44)

Hence writing the kinetic optimal problem (19) for the flux in terms of the symmetric and anti-
symmetric flux components gives,

minjsym
t ,janti

t

∫ 1

0

∑
x ̸=z

wt(x,z)
2pt(z)

[
jsym
t (x, z)2 + janti

t (x, z)2
]
dt ▶ Kinetic Energy (45a)

s.t. divx(j
anti
t ) = −ṗt(x), ∀x ∈ T ▶ Continuity Equation (45b)

jsym
t (x, z) ≥

∣∣janti
t (x, z)

∣∣ , ∀x ̸= z ∈ T ▶ Non-negative flux (45c)

Notice that for the symmetric term jsym
t we are left with optimization of a quadratic function that

is constrained only by equation 45c which bounds it below by a non-negative value. Hence for any
janti
t the optimal symmetric term is

jsym
t (x, z) =

∣∣janti
t (x, z)

∣∣ , ∀x, z ∈ T . (46)

So the solution for kinetic optimal problem is

j⋆t (x, z) = janti,⋆
t (x, z) +

∣∣∣janti,⋆
t (x, z)

∣∣∣ = [janti,⋆
t (x, z)− janti,⋆

t (z, x)
]
+
, (47)

where janti,⋆
t (x, z) is an optimal anti-symmetric term. Finally, notice that the optimization prob-

lem for the anti-symmetric term i.e., equations 45a and 45b, is exactly our relaxed kinetic optimal
problem (40).

The relaxed kinetic optimal problem (40) is actually easy to solver and can be reduced to a linear
system of equations, leading to our main proposition.
Proposition B.2 (Kinetic-optimal relaxation). Consider a probability path pt > 0 and assume a
symmetric weighting wt (39). Let ft be a solution to equation 21, which is unique up to a constant.
Then, j⋆t in equation 22 is the unique solution to the Kinetic Optimality problem in equation 19.

Proof of proposition B.2. By lemma B.1 the kinetic optimal flux is

j⋆t (x, z) =
[
jrelax
t (x, z)− jrelax

t (z, x)
]
+
, (48)

where jrelax
t is the solution to the relaxed kinetic optimal problem (40). Since the continuity equation

constraint (40b) is linear, we can solve the relaxed problem using Lagrange multipliers.

Denoting the Lagrange multipliers by λt(x), x ∈ T , the solution to the relaxed kinetic optimal
problem (40) is

jrelax
t (x, z) =

pt(z)

2wt(x, z)
(λt(z)− λt(x)) , (49)

where the Lagrange multipliers are determined by the linear system of equations,∑
y∈T

pt(z)

wt(x, z)
(λt(x)− λt(y)) = ṗt(x), ∀x ∈ T . (50)

Denoting the solution to this linear system of equation as ft(x), the optimal flux is,

j⋆t (x, z) =

[
pt(z)

2wt(x, z)
(ft(z)− ft(x))−

pt(x)

2wt(z, x)
(ft(x)− ft(z))

]
+

(51)

=
pt(z)

wt(x, z)
[ft(z)− ft(x)]+ , (52)

where we have used the symmetric weighting assumption in the second equality.

16



Published as a conference paper at ICLR 2025

Proposition B.3 (Kinetic Optimal paths.). For pt > 0 and the choice of wt(x, z) = 1
pt(x)

, the
solution to the Kinetic Optimality problem in equation 19 is equivalent to problem 30.

Proof. According to equation 22 the optimal flux in this case takes the form j∗t (x, z) =

pt(x)pt(x)
[
ṗt(x)
pt(x)

− ṗt(z)
pt(z)

]
+

. Plugging this in problem 19 we get the energy

∑
x,z

pt(x)pt(z)

(
ṗt(x)

pt(x)
− ṗt(z)

pt(z)

)2

+

=
1

2

∑
x,z

pt(x)pt(z)

(
ṗt(x)

pt(x)
− ṗt(z)

pt(z)

)2

=
∑
x

pt(x)

(
ṗt(x)

pt(x)

)2

−

(∑
x

pt(x)
ṗt(x)

pt(x)

)2

=
∑
x

(
ṗt(x)√
pt(x)

)2

= 2
∑
x

(
d

dt

√
pt(x)

)2

where in the previous to last equality we used the fact that
∑

x ṗt(x) =
d
dt

∑
x pt(x) = 0. We are

left with the following optimization problem:

minpt

∫ 1

0

∑
x

(
d
dt

√
p
t
(x)
)2

(53a)

pt(x) > 0 (53b)∑
x pt(x) = 1 (53c)

p0 = p, p1 = q (53d)

Making the change of variables at(x) =
√

pt(x), we get the form in equation 30, as desired.

The case of q = δx1 . Given that q = δx1 we get that the Kinetic Optimal solution equation 32
takes a form of a mixture path (equation 2) with the scheduler specified in equation 33. Specifically
we show that the probability path is

pt(x|x1) = a2t (x) =
sin2 (1− t)Ω

sin2 Ω
p(x) +

(
1− sin2 (1− t)Ω

sin2 Ω

)
δx1

(x), (54)

and the velocity is

ut(x, z|x1) =
2Ω

tan (1− t)Ω
(δx1(x)− δz(x)) . (55)

We start by substituting the q ≡ δx1 in equation 31,

at(x) =
sin(1− t)Ω

sinΩ

√
p(x) +

sin tΩ

sinΩ
δx1

(x). (56)
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Hence the probability path is

pt(x|x1) =

(
sin(1− t)Ω

sinΩ

√
p(x) +

sin tΩ

sinΩ
δx1(x)

)2

(57)

=
sin2(1− t)Ω

sin2 Ω
p(x) +

(
2
√
p(x1) sin(1− t)Ω sin tΩ

sin2 Ω
+

sin2 tΩ

sin2 Ω

)
δx1

(x) (58)

=
sin2(1− t)Ω

sin2 Ω
p(x) +

(
2 cosΩ sin(1− t)Ω sin tΩ

sin2 Ω
+

sin2 (Ω− (1− t)Ω)

sin2 Ω

)
δx1

(x)

(59)

=
sin2(1− t)Ω

sin2 Ω
p(x)+

(
2 cosΩ sin(1− t)Ω sin (Ω− (1− t)Ω)

sin2 Ω
(60)

+
(sinΩ cos(1− t)Ω− cosΩ sin(1− t)Ω)

2

sin2 Ω

)
δx1(x) (61)

=
sin2(1− t)Ω

sin2 Ω
p(x)+

(
− cos2 Ωsin2(1− t)Ω

sin2 Ω
+

sin2 Ωcos2(1− t)Ω

sin2 Ω

)
δx1

(x) (62)

=
sin2(1− t)Ω

sin2 Ω
p(x)+

(
−(1− sin2 Ω) sin2(1− t)Ω

sin2 Ω
(63)

+
sin2 Ω(1− sin2(1− t)Ω)

sin2 Ω

)
δx1

(x) (64)

=
sin2(1− t)Ω

sin2 Ω
p(x)+

(
1− sin2(1− t)Ω

sin2 Ω

)
δx1

(x), (65)

where in the third equality we used Ω = arccos
√

p(x1). Substituting

κt(x1) = 1− sin2(1− t)Ω

sin2 Ω
(66)

in equation 75 yields the desired velocity as in equation 55.

C CLOSED-FORM KINETIC OPTIMAL VELOCITIES

C.1 KINETIC OPTIMAL VELOCITIES FOR MIXTURE PATHS

We examine the velocities from the kinetic optimal fluxes given in (24) and (26) under mixture
paths (2). We show (24) and (26) produce the same velocity for the uniform mixture for which
p(x) = 1/|T |, and different velocities for non-uniform mixtures. We also demonstrate our kinetic
optimal velocity from (26) is the velocity proposed by Gat et al. (2024) for any mixture path.

Positive mixture paths using (24): For (24), we only consider mixture paths for which
pt(x|x1) > 0 for all x ∈ T , including uniform p(x) = 1/|T | as a special case. For these mix-
ture paths, where we recall that x ̸= z, we have

u⋆
t (x, z|x1) =

[∂tpt(x|x1)− ∂tpt(z|x1)]+
|T |pt(z|x1)

=
κ̇t(x1) [δx1

(x)− δx1
(z) + p(z)− p(x)]+

|T |pt(z|x1)
(67)

We now examine the uniform and arbitrary p(x) > 0 cases separately.

Uniform mixture using (24): For uniform, we have for x ̸= z

u⋆
t (x, z|x1) =

κ̇t(x1) [δx1
(x)− δx1

(z) + p(z)− p(x)]+
|T |pt(z|x1)

=
κ̇t(x1) [δx1(x)− δx1(z)]+

|T |pt(z|x1)
(68)
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This is only positive if x = x1 and z ̸= x1. In which case, we have

u⋆
t (x1, z ̸= x1|x1) =

κ̇t(x1) [1− 0]+
1− κt(x1)

=
κ̇t(x1)

1− κt(x1)
(69)

So in total we have

u∗
t (x, z|x1) =

κ̇t(x1)

1− κt(x1)
(δx1(x)− δz(x)) (70)

Arbitrary p(x) > 0 using (24): For a non-uniform positive p(x) we do not arrive at the same
velocity as the uniform mixture. Consider x ̸= z, x ̸= x1, and z ̸= x1, then

u⋆
t (x ̸= x1, z ̸= x1|x1) =

κ̇t(x1) [p(z)− p(x)]+
|T |pt(z|x1)

. (71)

This is not zero if p(z) > p(x) for any pair of z and x, proving this is a different velocity in general.

Arbitrary mixture paths using (26): Substituting in the mixture path, where we recall that x ̸= z
and pt(z|x1) > 0, we have

u⋆
t (x, z|x1) =

1

pt(z|x1)
[∂tpt(x|x1)pt(z|x1)− ∂tpt(z|x1)pt(x|x1)]+

= κ̇t(x1)

[
δx1

(x)− p(x)− pt(x|x1)

pt(z|x1)
(δx1

(z)− p(z))

]
+

(72)

We consider several cases. First, x ̸= x1 and z = x1, then the term in brackets is negative and hence
u∗
t = 0. Second if x ̸= x1 and z ̸= x1, we have

u⋆
t (x ̸= x1, z ̸= x1|x1) = κ̇t(x1)

[
−p(x) + pt(x|x1)p(z)

pt(z|x1)

]
+

= κ̇t(x1)

[
−p(x) + (1− κt(x1))p(x)p(z)

(1− κt(x1))p(z)

]
+

= 0. (73)

Our final case, x = x1 and z ̸= x1, gives

u⋆
t (x1, z ̸= x1|x1) = κ̇t(x1)

[
1− p(x1) +

((1− κt(x1))p(x1) + κt(x1)) p(z)

(1− κt(x1))p(z)

]
+

=
κ̇t(x1)

1− κt(x1)
[(1− κt(x1))(1− p(x1)) + (1− κt(x1))p(x1) + κt(x1)]+

=
κ̇t(x1)

1− κt(x1)
(74)

So in total for any mixture path we have

u∗
t (x, z|x1) =

κ̇t(x1)

1− κt(x1)
(δx1(x)− δz(x)), (75)

recovering the velocity proposed in Gat et al. (2024).

C.2 MARGINAL VELOCITY IN CLOSED-FORM FOR MIXTURE PATHS

As shown in Appendix C.1, the kinetic optimal flux given by (26) results in kinetic optimal velocity
(75) for mixture paths. To derive the marginal velocity, we insert (75) into (9) as follows
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ui
t(x

i, z) =
∑
xi
1∈T

ut(x
i, zi|xi

1)p
i
1|t(x

i
1|z)

=
∑
xi
1∈T

κ̇t(x
i
1)

1− κt(xi
1)
(δxi

1
(xi)− δzi(xi))pi1|t(x

i
1|z)

=
κ̇t(x

i)

1− κt(xi)
pi1|t(x

i|z)− δzi(xi)
∑
xi
1∈T

κ̇t(x
i
1)

1− κt(xi
1)
pi1|t(x

i
1|z). (76)

C.3 POWER∞ VELOCITY FOR GENERAL PATHS

We begin by defining a single parameter family of kinetic optimal velocities. For every α > 1 the
flux as in equation 22 for τt(x) = pαt (x) is

j⋆t (x, z) = pαt (x)p
α
t (z) [ft(x)− ft(z)]+ , ft(x) =

1∑
s∈T pαt (s)

ṗt(x)

pαt (x)
. (77)

Further simplifying j⋆t (x, z),

j⋆t (x, z) =

[
ṗt(x)

pαt (z)∑
s∈T pαt (s)

− ṗt(z)
pαt (x)∑
s∈T pαt (s)

]
+

. (78)

An interesting case of the flux above is taking the limit α→∞, where

pαt (x)∑
s∈T pαt (s)

−−−−→
α→∞

δargmaxs(pt(s))(x), (79)

and the flux is

j⋆t (x, z) =
[
ṗt(x)δargmaxs(pt(s))(z)− ṗt(z)δargmaxs(pt(s))(x)

]
+
. (80)

Indeed the above flux satisfy the Continuity Equation and the Rate Conditions as in Indeed the above
flux satisfy the Continuity Equation and the Rate Conditions as in equation 17. Note that it can also
be seen that

j⋆t (x, z) −−−−−→
pt(z)→0

0. (81)

D EVIDENCE LOWER BOUND (ELBO) FOR CTMC

Let 0 = t0 < t1 < · · · < tK = 1 be a uniform discretization of the interval [0, 1] with h =
tk+1− tk = 1

K . Also let qk+1|k(x
i|zi, xi

1) = δzi(xi)+hut(x
i, zi|xi

1) be the Euler discretization of
the variational process, and let pk+1|k(x

i|zi) = δzi(xi) + hui
t(x

i, z) be the Euler discretization of
the learned process, with both starting at the same source distribution q0(x

i|xi
1) = p(xi). We also

assume the model p(xi
1|xi

0:K) = δxi
K
(xi

1). The discrete-time ELBO is then

log pθ(x1) ≥ Ex0:K∼q0:K(·|x1) [log p(x1|x0:K) + log p0:K(x0:K)− log q0:K(x0:K |x1)] (82)

= Ex1:K∼q1:K(·|x1)

D∑
i=1

[
log δxi

K
(xi

1)−
K−1∑
k=0

DKL(qk+1|k(x
i
k+1|xk, x

i
1)∥pk+1|k(x

i
k+1|xk))

]
(83)

−
�����������D∑
i=1

DKL(q0(x
i|xi

1)∥p(xi)) (84)
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Each term in the summation:

DKL(qk+1|k(x
i|z, xi

1)∥pk+1|k(x
i|z)) (85)

=
∑
xi

qk+1|k(x
i|z, xi

1) log
qk+1|k(x

i|z, xi
1)

pk+1|k(xi|z)
(86)

=
∑
xi

[
δzi(xi) + hui

t(x
i, zi|xi

1)
]
log

δzi(xi) + hui
t(x

i, zi|x1)

δzi(xi) + hui
t(x

i, z)
(87)

=
[
1 + hut(z

i, zi|xi
1)
]
log

1 + hui
t(z

i, z|xi
1)

1 + hui
t(z

i, z)
+ h

∑
xi ̸=zi

[
ut(x

i, zi|xi
1)
]
log

ui
t(x

i, zi|xi
1)

ui
t(x

i, z)
(88)

Taylor series expansion around h = 0:

log(1 + hui
t) = hui

t + o(h) (89)

So we can simplify

DKL(qk+1|k(x
i|z, xi

1)∥pk+1|k(x
i|z)) (90)

=
[
1 + hui

t(z
i, zi|xi

1)
]
(hui

t(z
i, zi|xi

1)− hui
t(z

i, z)) + h
∑
xi ̸=zi

[
ui
t(x

i, zi|xi
1)
]
log

ui
t(x

i, zi|xi
1)

ui
t(x

i, z)
+ o(h)

(91)

= h

ui
t(z

i, zi|xi
1)− ui

t(z
i, z) +

∑
xi ̸=zi

[
ui
t(x

i, zi|xi
1)
]
log

ui
t(x

i, zi|xi
1)

ui
t(x

i, z)

+ o(h) (92)

Taking limit as K → ∞, hence h = 1
K → 0, and asserting that q(xi

K |xi
1) = δxi

1
(xi

K) in this
continuous-time limit, we obtain the ELBO:

log pθ(x1) ≥ (93)∫ 1

0

Ext∼pt(·|x1)

D∑
i=1

ui
t(x

i
t, xt)− ui

t(x
i
t, x

i
t|xi

1) +
∑
x ̸=xt

ui
t(x

i, xi
t|xi

1) log
ui
t(x

i, xt)

ut(xi, xi
t|xi

1)

dt

(94)

D.1 ELBO FOR MASKED MODELS

The masked probability path is as in equation 2 with source distribution pi(xi) = δm(x
i). Assuming

the model is such that pθ1|t(z
i|x) = δxi

1
(zi) if xi is unmasked (i.e. xi = xi

1), our ELBO as in
equation 37 further simplifies to

log pθ1(x1) ≥
∫ 1

0

Ext∼pt(·|x1)

D∑
i=1

δm(x
i
t)

[
−
∑
yi

κ̇t(y
i)

1− κt(yi)
pθ1|t(y

i|xt) (95)

+
κ̇t(x

i
1)

1− κt(xi
1)

(
1 + log pθ1|t(x

i
1|xt)

)]
dt. (96)

This simplified expression recovers the ELBO for masked mixture path as proposed by Shi et al.
(2024).
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E EXPERIMENTAL DETAILS

E.1 TEXT GENERATION

Data. Our model are on trained OpenWebText (Gokaslan & Cohen, 2019) and FineWeb-
Edu (Lozhkov et al., 2024). For evaluation we use the test split of five dataset Radford et al. (2019):
WikiText-103, WikiText-2 Merity et al. (2016), LAMBADA Paperno et al. (2016), PennTreebank
(PTB) Marcus et al. (1993), One Billion Words (1BW) Chelba et al. (2014). Additionally, we ex-
tract 512 samples of length 1024 tokens of GPT2 Tokenizer from FineWeb-Edu, we do not see on
training (our models do not complete an epoch in this dataset.

Models. All of our text generation models uses DiT transformers architecture Peebles & Xie
(2022) with 12 layers, 12 attention heads, and hidden dimension of 768 (150m parameters). For
optimization we use constant learning rate of 3e−4 with 2500 warmup steps, Adam optimizer with
β1 = 0.9 and β2 = 0.999, and weight decay of 0.03. We also use a dropout rate of 0.02, and we
train for 200k iterations with batch size of 512.

ELBO for training. All text model are trained using our ELBO for mixture path as in equation 37.
To avoid exploding terms in the loss, we sample t in [0, 1− 1e−3].

ELBO for evaluation. We want to evaluate the ELBO as in equation 37 for trained models with
the mixture path as in equation 2. We note that each choice of scheduler κt(x

i
1) will results in

a different conditional probability path and hence a different different ELBO. However for every
token independent scheduler κt(x

i
1) ≡ κt we can change the integration variable from t to κ,

log pθ1(x1) ≥
∫ 1

0

dtExt∼pt(·|x1)

N∑
i=1

[
κ̇t(x

i
t)

1− κt(xi
t)
pθ1|t(x

i
t|xt)−

∑
yi

κ̇t(y
i)

1− κt(yi)
pθ1|t(y

i|xt)+ (97)

+ (1− δxi
1
(xi

t))
κ̇t(x

i
1)

1−κt(xi
1)

(
1 + log pθ1|t(x

i
1|xt)

)]
(98)

=

∫ 1

0

dtExt∼pt(·|x1)
κ̇t

1− κt

N∑
i=1

[
pθ1|t(x

i
t|xt)−

∑
yi

pθ1|t(y
i|xt)+ (99)

+ (1− δxi
1
(xi

t))
(
1 + log pθ1|t(x

i
1|xt)

)]
(100)

=

∫ 1

0

dκ

1− κ
Ext∼ptκ (·|x1)

N∑
i=1

[
pθ1|tκ(x

i
t|xt)− δxi

1
(xi

t) (101)

+ (1− δxi
1
(xi

t))
(
log pθ1|tκ(x

i
1|xt)

)]
, (102)

where tκ is the inverse of κt. For token dependent schedulers we only use the Kinetic Optimal
scheduler as in equation 33,

κt(x
i
1) =

sin2(1− t)Ω(xi
1)

sin2 Ω(xi
1)

, where Ω(xi
1) = arccos

√
p(xi

1). (103)
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Note that Ω ∈
[
0, π

2

]
, depending on

√
p(xi

1), we take Ω = π
4 and evaluate the integral,

log pθ1(x1) ≥
∫ 1

0

dtExt∼pt(·|x1)

N∑
i=1

[
κ̇t(x

i
t)

1− κt(xi
t)
pθ1|t(x

i
t|xt)−

∑
yi

κ̇t(y
i)

1− κt(yi)
pθ1|t(y

i|xt)+ (104)

+ (1− δxi
1
(xi

t))
κ̇t(x

i
1)

1−κt(xi
1)

(
1 + log pθ1|t(x

i
1|xt)

)]
(105)∫ 1

0

dκ
(
Ω =

π

4

)
Ext∼pt(·|x1)

1

κ̇tκ

(
Ω = π

4

) N∑
i=1

[
κ̇t(x

i
t)

1− κt(xi
t)
pθ1|tκ(x

i
t|xt) (106)

−
∑
yi

κ̇t(y
i)

1− κt(yi)
pθ1|tκ(y

i|xt)+ (107)

+ (1− δxi
1
(xi

t))
κ̇t(x

i
1)

1−κt(xi
1)

(
1 + log pθ1|tκ(x

i
1|xt)

)]
, (108)

where κt

(
Ω = π

4

)
is the Kinetic Optimal scheduler with Ω = π

4 , and tκ is the inverse of
κt

(
Ω = π

4

)
. Now that we have a more fair estimator all the schedulers we us, for each x1 we

discretize κ ∈ [0, 1− 1e−4] to 1024 using

κj = (j + ϵ)
1− 1e−4

1024
, j = 0, ..., 1023, ϵ ∼ U [0, 1]. (109)

E.2 INORGANIC MATERIAL GENERATION

Material representation. A crystal is represented by a parallelepiped in 3D space with periodic
boundary conditions, as in previous works (Miller et al., 2024; Xie et al., 2021). The model input
is a variable-length sequences with length 6 + 4 · a, where a is the number of atoms in the unit
cell. The first 3 tokens represent the lengths of the sides of the parallelepiped, while the next 3
represent the angles between the sides. Every atom is comprised of 4 tokens: a discrete atom
type and 3 continuous numbers representing the atom position inside the parallelopiped in cartesian
coordinates. The coordinates are represented relative to the side lengths of the parallelopiped, and
are therefore restricted to the interval [0, 1] (known as fractional coordinates).

While lengths, angles, and fractional coordinates are all continuous quantities, we discretize them
uniformly to generate tokens, following the same tokenization method from Gruver et al. (2024) –
lengths (in Å) are truncated to one decimal place, angles (in degrees) are represented as integers,
and fractional coordinates are truncated to two decimal places. The token set for these attributes can
be created by the following python code:

tokens_lens = [f"{i/10:.1f}" for i in range(500)]
tokens_angles = [str(x) for x in range(180)]
tokens_frac = [f"0.{i:02d}" for i in range(100)] + ["1.00"]

Tokens for atoms are taken from Pymatgen (Ong et al., 2013) like so

from pymatgen.core.periodic_table import Element
tokens_atom = [Element.from_Z(z).name for z in range(1, 95)]

The overall vocabulary is composed of all previously mentioned sub-vocabularies, plus 3 special
tokens: beggining-of-sentence (BOS), masking, and padding, totalling 500+180+101+94+3 =
878.

Model implementation. All of our models listed in Table 2, namely, DFM, Kinetic Optimal DFM
(KO-DFM), and Autoregressive (AR), use a modified version of the Diffusion Transformer (DiT)
(Peebles & Xie, 2023) implementation from Lou et al. (2024).

Two sequences that differ only in a permutation of their atoms, along with their fractional coordi-
nates, represent the same crystal. For DFM and KO-DFM, we modified DiT to account for this
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invariance by transforming the input before applying the attention mechanism. We flatten each
quadruple of embeddings representing an atom (i.e., atom type plus 3 fractional coordinates) and
apply a linear layer with a SiLU (Elfwing et al., 2018) activation to create a single representation for
the atom. This brings the sequence length from 6 + 4 · a to 6 + a. Positional embeddings are then
added, where the same positional embedding is added to all a output embeddings of the previous
step, which establishes the invariance. After the attention mechanism, 4 independent linear layers
are applied to each of the a outputs, increasing the sequence length from 6 + a back to 6 + 4 · a,
before computing the logits.

For the AR model, we replaced rotary embeddings (Su et al., 2024) with sinusoidal positional encod-
ings. Note that permutation invariance cannot be enforced in the same way as DFM and KO-DFM,
as the model generates tokens auto-regressively. The AR model performs conditional generation by
generating an embedding for the number of atoms a ∈ {0, ..., amax − 1}, where amax = 20 for
the MP-20 dataset in Table 2. The embedding is then passed to the same conditioning mechanism
(adaLN) present in the original DiT architecture (Peebles & Xie, 2023).

Training and sampling. Hyperparameter values used during training are listed in Table 4. DFM
and KO-DFM use the same values.

Param. Hidden dim. Attn. Blocks Attn. Heads Dropout Batch Size Learn. rate

AR 288 16 16 0.1 1024 1e−3
DFM, KO-DFM 256 16 16 0.1 1024 1e−3

Table 4: Hyperparameters used to train the DiT models for material generation.

The hidden dimension of KO-DFM and DFM was lowered to roughly match the same number of
parameters as the AR model and FlowMM (Miller et al., 2024) (around 25 million), due to the
additional layers required to ensure permutation invariance. Models are trained to predict the next
token by minimizing the cross-entropy loss (equation 11).

During sampling, the softmax temperature was fixed to 0.7 for DFM and KO-DFM, and 1.0 for the
AR model. Both DFM and KO-DFM have noise distribution equal to a delta function on the all
masked sequence (as in Gat et al. (2024)). DFM uses the convex linear scheduler (κt = t), while
KO-DFM uses the proposed kinetic-optimal scheduler (33).

Evaluation metrics Our primary metric for material generation is based on thermodynamic sta-
bility, a key indicator of the synthesizability of materials. Thermodynamic stability is measured by
comparing the energy of a material to a database of previously known materials with the same ele-
ments. Formally, we define Energy above Hull (Ehull) as the distance in energy landscape between
the generated material and a convex hull of energies constructed from these reference database of
materials. Stable materials have Ehull < 0, that is the energy of the new material is below the
convex hull. Following Miller et al. (2024), we define our Stability Rate metric as the percentage of
generated materials that are stable, i.e. Ehull < 0 and n-ary ≥ 2, where n-ary of a material is the
number of unique elements in it.

To compute the energies, we follow the methodology from Miller et al. (2024): we first perform
structure relaxations using the CHGNet model (Deng et al., 2023), followed by density functional
theory (DFT) (Kohn & Sham, 1965) calculations. We generated 10,000 materials to compute the
stability rate.

Due to the high computational cost of performing these energy calculations, Xie et al. (2021) pro-
posed a number of proxy metrics, which we also include for completeness:

1. Structural Validity: Percentage of generated materials where all pairwise interatomic dis-
tances are greather than 0.5 Å.

2. Compositional Validity: Percentage of generated materials that are determined to be charge-
neutral using the SMACT heuristic system Davies et al. (2019).

3. Coverage Precision & Recall: Precision and Recall metrics computed by comparing 10000
generated structures to the MP-20 test set. Precision is the percentage of generated struc-
tures that are close to some test structure, while recall is the percentage of test structures
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which are close to some generated structure. Closeness is evaluated using structural and
compositional fingerprints (Zimmermann & Jain, 2020; Ward et al., 2016).

4. Wasserstein Distances of Property Distributions: Wasserstein distances between the dis-
tribution of computed properties between the test set and the generated materials. We
compute these distances for two properties: density (ρ), and number of unique atoms (Nel)

We emphasize that most of these proxy metrics have become saturated and are not very good at
distinguishing state-of-the-art models.

E.3 IMAGE GENERATION - CIFAR10

Models All our CIFAR10 models use the U-Net architecture as in Dhariwal & Nichol (2021),
with channels 96 , depth 5, channels multiple [3,4,4], heads channels 64, and attention resolution
16. Additionally, we make two changes to the architecture as done in Gat et al. (2024): (i) We
replace the first layer with an embedding table of size 256 × 96, and we stack the channel features
such that the input to the U-Net is of shape 288× 32× 32. (ii) We enlarge the size of the final layer
to output a tensor of shape 3× 32× 32× 256. Overall parameters count of 113M. For optimization
we use dropout rate of 0.3, and Adam optimizer with β1 = 0.9 and β2 = 0.999, a learning rate of
1e-4. We trained with an effective batch size pf 512 for approximately 300K iterations.

The conditional path. For our metric induced probability path (27) on pixel space we have a
natural choice of metric. We embed T = {0, ..., 255} in the interval [−1, 1] ⊂ R using the map
emb(x) = 2

255x− 1 and with the lp distance,

d(x, x1) = |emb(x)− emb(x1)|lp ,

where lp is a Hyper-parameter. For the βt scheduler we use,

βt = c

(
t

1− t

)a

,

where a and c are Hyper-parameters. We find that best results are achieved with lp = 3, a = 5, and
c = 1. For the other baselines in Figure 2 we follow (Gat et al., 2024).

E.4 IMAGE GENERATION - FACE-BLURRED IMAGENET256×256

Our ImageNet256 experiments are conducted on the face-blurred variant of the ImageNet bench-
mark dataset scaled to 256x256 pixels. We first train a tokenizer model (encoder, quantizer and
decoder) that maps the images to a discrete latent representation and back. Then, we train a latent
generative model to generate latent representations conditional on the image class.

Tokenizer details. The tokenizer is realized as a VQVAE. Our architecture matches that of VQ-
GAN (Esser et al., 2021). It applies a 16x downscaling to the image with a vocabulary size of 16384.
The VQVAE is trained with the VQGAN loss for 40 epochs with a batch size of 128. We optimize
using Adam with learning rate 1e − 4, β1 = 0.9, and β1 = 0.95. We apply an exponential moving
average to the VQVAE weights with decay rate of 0.999. After the training is complete, our VQ-
VAE model reached an rFID value of 2.20, which matches the rFID reported by Sun et al. (2024) on
non-face-blurred ImageNet256.

The baseline The baseline with a masked source distribution uses the cubic scheduler κt = t3.

The metric path. Our metric-induced probability path uses the euclidean distance of the token
VQVAE embeddings as the distance function with lp being a free parameter:

d(x, x1) = |emb(x)− emb(x1)|lp2 . (110)

Furthermore, we parameterize βt as
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βt = c

(
t

1− t

)a

, (111)

with c and a being free parameters.

These three parameters are costly to search, because each configuration requires a separate model
to train. We tune these parameters visually by plotting the samples along the conditional path and
looking for configurations that make use of the whole time interval [0,1]. We settled on a = 0.9,
c = 3 and lp = 4 (see Figure 4)

t = 0.0 t = 0.125 t = 0.25 t = 0.375 t = 0.5 t = 0.625 t = 0.75 t = 0.875 t = 1.0

Figure 4: The conditional path for a = 0.9, c = 3 and lp = 4. This path is advantageous because
the the path smoothly interpolates from noise to image while utilizing the whole interval t ∈ [0, 1].

Latent Generative model details. Our generative model uses the Llama architecture that is also
used by the LlamaGen model (Sun et al., 2024). Our comparisons are done on the Llama-B architec-
ture variant with 111M parameters. For training hyperparameters, we used the exact configuration
proposed in Sun et al. (2024): batch size of 256, learning rate of 1e-4 with 2500 warmup steps,
weight decay of 0.05, Adam optimizer with β1 = 0.9 and β2 = 0.95, gradient norm of 1.0 and class
drop probability of 0.1. We used the same ten-crop data augmentation for training that (Sun et al.,
2024) used.

Following the guidance of (Sun et al., 2024), the autoregressive and masked models were trained for
300 epochs. We found that the metric path model benefited from further training, so we trained this
variant for 600 epochs.

The DFM models required minor architecture adjustments:

• The masked configuration uses non-causal attention.
• The metric path configuration uses non-causal attention and we also prepend a time em-

bedding token (sinusoidal embedding) before the class label token to enable the model to
learn the time dependency.

Evaluation. We report the FID of 50,000 generated images w.r.t. the training set. Note that
our LlamaGen reproduction obtains a lower FID value then reported in Sun et al. (2024) (4.81 vs
5.46). This difference is due to us using the face-blurred variant of ImageNet. While Sun et al.
(2024) compares against the pre-computed statistics of non-face-blurred ImageNet, we compile the
statistics of face-blurred ImageNet, including training data augmentations.

Ablations. We show ablations for CFG scale (Table 5) and NFE (Table 6).

F RELATION TO SEDD (LOU ET AL., 2024)

In this section we explain the relation between our method and SEDD (Lou et al., 2024). We focus
on three main points:
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CFG scale 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5

LlamaGen, FID: – – – – – 5.77 5.18 4.91 4.81 5.02 5.26 5.63 6.11 6.56 7.12 7.70
DFM masked path, NFE=100, FID: 17.78 12.85 9.53 7.45 6.28 5.78 5.76 6.03 6.56 7.20 7.97 – – – – –
DFM metric path, NFE=100, FID: 8.58 5.99 4.87 4.50 4.82 5.47 – – – – – – – – – –

Table 5: Ablation of CFG scale for LlamaGen and DFM models. The missing cells were not evalu-
ated because they are far from the optima.

NFE 50 100 150 200 250

DFM masked path, CFG=1.6, FID: 5.73 5.72 5.74 5.71 5.82
DFM metric path, CFG=1.3, FID: 4.78 4.50 4.69 4.87 4.98

Table 6: Ablation of NFE for the DFM models.

1. Generality of probability paths. SEDD starting point is a diffusion matrix Qi
t(x

i, zi) and re-
quires a closed-form conditional probability pt(x

i|xi
1) path solving the Kolmogorov equa-

tion (linear ODE) with this rate matrix. This entails solving a (general) |T | dimensional
ODE which can be hard to do in closed form. Therefore SEDD resorts to rates of the form
Qi

t(x
i, zi) = σtQ

i(xi, zi). In contrast, our method offers a closed form generating rates
(velocity) for every conditional probability path, see equation 16 and 26.

2. Score-velocity conversion. The concrete score function is a particular way to parameterize
a probability velocity which is given by

ui
t(x

i, z) = Qi
t(x

i, zi)sit(x
i, z). (112)

3. Loss. The training loss of SEDD can be seen as instance of our ELBO (36) when using the
concrete score parameterization.

Probability velocity vs. concrete score. Using our notation, the noising process of SEDD taking
a distribution p1 at time t = 1, to a some simple distribution p0 at time t = 0 is defined by the
transition probability

P(Xt−h = x | Xt = z) = δz(x) + hQt(x, z) + o(h), (113)

where Qt ∈ R|S|×|S| is called diffusion matrix and it satisfies the rate conditions as in equation 5.
The reverse process, taking the distribution p0 at time t = 0 to the distribution p1 at t = 1 is given
by the diffusion matrix,

Q̄t(x, z) = Qt(z, x)
pt(x)

pt(z)
(114)

where the marginal pt is determined by the noising process (113) and p1 the distribution at the
boundary t = 1. The transition probability of the reverse process is

P(Xt+h = x | Xt = z) = δz(x) + hQ̄t(x, z) + o(h), (115)

To make the process tractable, the noising diffusion matrix that is chosen only allows transitions
from states z ∈ S to x ∈ S that differ by single token as in equation 6,

Qt(x, z) =

D∑
i=1

Qi
t(x

i, zi)
∏
j ̸=i

δzj (xj), (116)

where Qi ∈ R|T |×|T | and satisfy the rate conditions (5). In this case the diffusion matrix of the
reverse process is,

Q̄t(x, z) = Qt(z, x)
pt(x)

pt(z)
(117)

=

D∑
i=1

Qi
t(z

i, xi)
∏
j ̸=i

δxj (zj)
pt(x)

pt(z)
(118)

=

D∑
i=1

Qi
t(z

i, xi)sit(x
i, z)

∏
j ̸=i

δzj (xj), (119)
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where st(x
i, z) is called the concrete score function and it is defined as

sit(x
i, z) =

pt(z
1, ..., zi−1, xi, zi+1, ..., zD)

pt(z1, ..., zi−1, zi, zi+1, ..., zD)
. (120)

Considering the boundary condition at time t = 1 to be the data distribution, p1 ≡ q, since in our
notation the velocity of reverse process is ut(x, z) = Q̄t(x, z) we have that (comparing equation 119
and equation 7)

ui
t(x

i, z) = Qi
t(z

i, xi)sit(x
i, z). (121)

In the next paragraph we show that for the boundary condition p1 ≡ δx1 , the time marginal of the
noising process is factorized,

pt(x|x1) =

D∏
i=1

pt(x
i|xi

1). (122)

In this case the conversion from concrete score to the probability velocity is,

ut(x
i, zi|xi

1) = Qt(z
i, xi)

pt(x
i|xi

1)

pt(zi|xi
1)
. (123)

Considering equation 9, we see that the relation between the concrete score and the probability
velocity in equation 121 holds only if Qi

t(x
i, zi) is independent of x1.

The conditional probability path. The conditional probability path is the marginal of the nois-
ing process when taking p1 ≡ δx1 . Hence, the relation between the diffusion matrix Qt and the
conditional probability path is given by an ODE,

d

dt
p1−t(x|x1) =

∑
z∈S

Q1−t(x, z)p1−t(z|x1) (124)

=
∑
z∈S

D∑
i=1

Qi
1−t(x

i, zi)
∏
j ̸=i

δzj (xj)p1−t(x1). (125)

One can check that indeed the factorized conditional probability path, i.e., pt(x|x1) =∏D
i=1 pt(x

i|xi
1), is the (unique) solution to the above ODE in case that

d

dt
p1−t(x

i|xi
1) =

∑
zi∈T

Qi
1−t(x

i, zi)p1−t(z
i|xi

1). (126)

The ODE in equation 126 is still too hard to solve in the general case, and some extra assumptions
are in order if we hope to solve this equation in analytically. SEDD suggests the standard extra
assumption that

Qi
t(x

i, zi) = σtQ
i(xi, zi), (127)

where σ : [0, 1]→ R, and Qi is constant in time. In this case the solution to equation 126 is

p1−t(x
i|xi

1) = exp

[(∫ t

0

σsds

)
Qi

]
(xi, xi

1). (128)

The assumption in (127) significantly restricts the space of conditional probability paths.

In contrast, our point of view is arguably simpler: We start with an arbitrary conditional pt(xi|xi
1)

and develop a closed-form expression for its generating velocity using equations (16) and (26).

For example, the generating process using our metric path as in equation 27 should be comparable
to the reverse process given by some diffusion matrix,

Qi
t(z

i, xi)
pt(x

i|xi
1)

pt(zi|xi
1)

= Q̄i
t(x

i, zi|xi
1) = ui

t(x
i, zi|xi

1) = pt(x
i|xi

1)β̇t[d(zi, xi
1)− d(xi, xi

1)]+,

(129)

assuming the diffusion matrix Qt(x
i, zi) is restricted to Equation (127) we have that

Qi(zi, xi) =
pt(z

i|xi
1)

σt
β̇t[d(zi, xi

1)− d(xi, xi
1)]+ (130)

on leading to a contradiction since the L.H.S is constant in time.
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SEDD training loss. We derive the ELBO train loss for concrete score function as suggested in
Lou et al. (2024) from our ELBO (36). To instantiate our ELBO we need to consider two reverse
processes. The first correspond to the noising process (113) with the boundary condition p1 ≡ δx1

,

ut(x
i, zi|xi

1) = σtQ
i(zi, xi)

pt(x
i|xi

1)

pt(zi|xi
1)
. (131)

The second correspond to the noising process (113) with the boundary condition p1 ≡ q (i.e., data
distribution),

ui
t(x

i, z) = σtQ
i(zi, xi)sit(x

i, z). (132)
Now we substitute the velocities in the ELBO (36),

log p1(x1) ≥
∫ 1

0

Ext∼pt(·|x1)

D∑
i=1

∑
yi ̸=xi

t

[
ui
t(y

i, xi
t|xi

1)− ui
t(y

i, xt) (133)

+ ui
t(y

i, xi
t|xi

1) log

(
ui
t(y

i, xt)

ui
t(y

i, xi
t|xi

1)

)]
dt (134)

=

∫ 1

0

Ext∼pt(·|x1)

D∑
i=1

∑
yi ̸=xi

t

σtQ
i(xi

t, y
i)

[
pt(y

i|xi
1)

pt(xi
t|xi

1)
− sit(y

i|xt) (135)

+
pt(y

i|xi
1)

pt(xi
t|xi

1)
log

(
pt(x

i
t|xi

1)

pt(yi|xi
1)
sit(y

i|xt)

)]
dt (136)

=

∫ 1

0

Ext∼pt(·|x1)

D∑
i=1

∑
yi ̸=xi

t

σtQ
i(xi

t, y
i)

[
− sit(y

i|xt) (137)

+
pt(y

i|xi
1)

pt(xi
t|xi

1)
log
(
sit(y

i|xt)
)
− g

(
pt(y

i|xi
1)

pt(xi
t|xi

1)

)]
dt,

(138)

where g(s) = s(log(s)− 1).
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Figure 5: CIFAR10 Samples for 64 and 128 NFE, default velocities vs. optimized velocities. The
default velocity we use is the velocity resulting from (26). The optimized velocity searches over
(26) or (80), and also searches over the probability-preserving velocity (35) with varying weights.
For each 8× 8 table, same seed was used to generate the images.
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Figure 6: CIFAR10 Samples for 256 and 512 NFE, default velocities vs. optimized velocities. The
default velocity we use is the velocity resulting from (26). The optimized velocity searches over
(26) or (80), and also searches over the probability-preserving velocity (35) with varying weights.
For each 8× 8 table, same seed was used to generate the images.
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Figure 7: CIFAR10 samples generated from our model using the velocity from Campbell et al.
(2024), which does not work for general probability paths such as our metric-induced paths. This is
the same p1|t model as was used to generate samples for Figure 5 and Figure 6.
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Figure 8: Non-curated generated samples for ImageNet256×256.
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