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AlignCLIP: Align Multi Domains of Texts Input for CLIP models
with Object-IoU Loss
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ABSTRACT
Since the release of the CLIP model by OpenAI, it has received
widespread attention. However, categories in the real world often
exhibit a long-tail distribution, and existing CLIP models struggle
to effectively recognize rare, tail-end classes, such as an endangered
African bird. An intuitive idea is to generate visual descriptions for
these tail-end classes and use descriptions to create category pro-
totypes for classification. However, experiments reveal that visual
descriptions, image captions, and test prompt templates belong to
three distinct domains, leading to distribution shifts. In this paper,
we propose the use of caption object parsing to identify the objects
set contained within captions. During training, the object sets is
used to generate visual descriptions and test prompts, aligning these
three domains and enabling the text encoder to generate category
prototypes based on visual descriptions. Thanks to the acquired ob-
ject sets, our approach can construct many-to-many relationships
at a lower cost and derive soft labels, addressing the noise issues
associated with traditional one-to-one matching. Extensive experi-
mental results demonstrate that our method significantly surpasses
the CLIP baseline and exceeds existing methods, achieving a new
state-of-the-art (SOTA).

CCS CONCEPTS
• Computing methodologies→Matching.

KEYWORDS
Multimodal alignment; CLIP; Long-tail learning; Out-of-distribution
learning

1 INTRODUCTION
Since the inception of Contrastive Language-Image Pre-training [23]
(CLIP) by OpenAI, the field of large-scale vision-language pre-
training (VLP) has seen rapid advancements. A multitude of ap-
proaches [7, 9, 10, 17, 32] have been proposed, achieving remarkable
success across a variety of downstream tasks, thereby revolution-
izing our understanding and capabilities in bridging visual and
linguistic modalities.

Generally, CLIP models are trained using a contrastive learning
approach, where they learn to match images with their correspond-
ing text descriptions across a large dataset. This is achieved by
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(a) (b)

Images

Caption1: The brown
fox is quick and he is
jumping over the lazy
dog.

Caption2: A cat and a
dog lying together.

Caption3: A brown fox
looks off in solitude.

Captions
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Figure 1: (a): Zero-shot category-by-category accuracy on Im-
ageNet 1k with pre-training on CC3M. We can see a clear
long-tailed distribution with lower accuracy for rare classes
in the tail. (b): The distribution of test prompts, image cap-
tions and visual descriptions, with obvious distribution shifts
among them. (c): Object-IoU loss utilize the IoU of objects in
captions to calculate the soft labels. Compared with the use
of object detectors in previous methods, the cost is greatly
reduced.

embedding both images and texts into a common space and opti-
mizing the model to bring the embeddings of matching pairs closer,
while pushing non-matching pairs apart. During the testing phase,
models are usually tested on a variety of tasks such as zero-shot
classification, retrieval, linear probe, etc. For the zero-shot clas-
sification task, test prompt templates such as "an image of class
name" are used to generate prototypes for all categories, based on
which images are classified without direct training on those specific
categories.

Although the CLIP model has made great progress in recent
times, we observe that they are still sub-optimal:

First of all, the distribution of concepts worldwide follows a
long-tail distribution. The CLIP models have better zero-shot per-
formance for common concepts and categories. However, their
recognition capabilities are significantly weaker for categories that
are rare or absent in the training set as shown in Fig.1(a). Using
CC3M as pre-training, its recognition performance for many tail
categories on ImageNet 1K is very low, and even 295 categories
have an accuracy of 0. These categories with an accuracy of 0 are
because these categories have never appeared in the training set.
For example, the class “Airedale Terrier” in ImageNet 1K have a

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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accuracy of 0, which is the largest of the terrier breeds, i.e. a kind of
dog. However, this fine-grained dog does not appear in the training
set CC3M, resulting in its unrecognizability.

A simple and intuitive idea is to use LLM to generate visual de-
scriptions for categories that do not appear in the training set, and
use these visual descriptions to generate category prototypes [19,
29], i.e., classifier weights. However, we found that the visual de-
scription and the caption of the training set are in two different
domains, that is, they have a distribution shift, as shown in Fig.1(b).

Furthermore, from Fig.1(b), we can see the test prompt templates
“an image of class name” also distributed differently from training
captions. A classic solution is prompt learning [32, 33], that is,
learning a prompt template to reduce this domain gap. This can
be seen as making the prompts in the test phase align as much as
possible with the captions in the training phase. This will cause
additional testing overhead and is different from the traditional
alignment of the training phase to the testing phase.

In this paper, we solve the above problem in a unified and novel
framework, named AlignCLIP, that is, we align the image cap-
tions, test prompt templates and visual description in the training
stage, which enables higher performance during testing with one
of them as text input with zero additional overhead. To be specific,
during the training phase, we first mining the object items con-
tained in image caption with caption object parsing. The caption
object parsing operation takes a caption as input and output the
object items set in it. For example, the caption 𝑇𝑖 = “The brown fox
is quick and he is jumping over the lazy dog”, which contains two ob-
jects, namely fox and dog, so caption object parsing outputs the set
𝜋𝑖 = {𝑓 𝑜𝑥, 𝑑𝑜𝑔}. Then, we input the object set 𝜋𝑖 into two genera-
tion modules, namely the visual description generation and the test
prompts generation. Specifically, on one hand, we generate visual
descriptions for the tail concepts in the training set, so that the text
encoder can align the visual descriptions with image features and
have the ability to generate category prototypes based on the visual
descriptions. On the other hand, we randomly sample templates
from the test prompt templates pool to generate test prompts for
the set 𝜋𝑖 . Since the set 𝜋𝑖 may contain more than one object, the
features of multiple objects will be averaged and normalized, and
then aligned with the image features.

Currently, a popular improvement direction of CLIP is to change
the original one-to-one hard label to soft label [9, 10], where differ-
ent negative samples will be assigned different soft labels according
to their similarity, instead of 0 for all. However, existing works
all share a common shortcoming, i.e, they use an object detector
to detect objects in the image to calculate the similarity, which
significantly slows down training, such as SoftCLIP [9]. Thanks
to the parsed set 𝜋 , we can easily measure the similarity between
different negative samples and construct the many-to-many rela-
tionship with lower computational cost. According to the object
sets in a batch, the intersection over union (IoU) between different
sets can be used to measure the similarity between images, and fur-
ther normalized as soft labels. The loss based on the IoU of parsed
object sets is denoted as object-IoU loss.

In summary, our major contributions are as follows:

• We propose to utilize caption object parsing to mine the ob-
jects in an image, based on which the tail-classes is enhanced

and different domains of test prompts, image captions and
visual descriptions are aligned.

• Based the parsed object sets, the many-to-many relation-
ship is constructed with low cost in object-IoU loss, which
makes it easier to generate soft labels and reduce the noise
in traditional hard label training.

• We conducted a large number of experiments on multiple
open source datasets, and the experimental results proved
that our method surpassed existing methods with lower
computing consumption.

2 RELATEDWORK
Here, we show part of the related work. Please refer to the appendix
for the complete related work.

2.1 Vision-Language Pre-training
In the realm of Vision-Language Pre-training (VLP), the endeavor
to synergize visual and textual modalities has been operationalized
through extensive training on image-text pairs. Architecturally,
VLP models bifurcate into two predominant streams: single-stream
and dual-stream frameworks. Single-stream architectures integrate
image and text inputs early in the process, utilizing a unified trans-
former to process the amalgamated embeddings, typified by models
such as VisualBERT [14], OSCAR [16], UNITER [5], UNICODER [12],
UNIMO [15] and HAMMER [24]. This architecture facilitates direct
interaction between modalities within a shared semantic space.
Conversely, dual-stream architectures advocate for a modular ap-
proach, encoding images and texts through distinct pathways be-
fore convergence. Models like CLIP [23], ALIGN [13], DeCLIP [17],
SoftCLIP [9], PyramidCLIP [10] and LaCLIP [7] exemplify this ap-
proach, underscoring the advantage of discrete yet complementary
processing of modal information. Most of this work is to improve
certain shortcomings of CLIP. For example, DeCLIP [17] speeds up
training through self-supervision. PyramidCLIP [10] uses object
detectors for more fine-grained alignment. SoftCLIP [9] uses object
detectors to construct many-to-many relationships.

The proposed AlignCLIP belongs to the dual-stream architecture.
Differently, AlignCLIP sets out to solve the long-tail distribution
in CLIP and misalignment in multiple text domains. Furthermore,
we achieve soft label training at low cost based on caption objectf
parsing. Compared with previous methods, AlignCLIP training cost
is lower and its performance is better.

2.2 Long-tail Data Learning
The long-tail distribution [18], where few categories are common
and many are rare, presents a significant challenge in data mining
and machine learning. Addressing this, researchers have developed
three main strategies: re-sampling, re-weighting, and transfer learn-
ing. Re-sampling [2, 26, 28] methods adjust the dataset to balance
the distribution between common and rare classes, either by in-
creasing the presence of rare classes or reducing that of common
ones. Re-weighting [4, 22, 30] approaches alter the loss function to
prioritize rare classes during training, giving themmore importance.
Transfer learning [20, 21, 31] techniques use the knowledge gained
from common classes to improve the learning of rare classes, enrich-
ing their feature representation. These strategies, from adjusting
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data distribution to modifying training emphasis, offer pathways to
mitigate the long-tail problem, aiming for a more balanced learning
across classes.

However, in multi-modal pre-training, there are relatively few
solutions to the long-tail problem, which has been grossly ignored.
Although there are some works that use visual descriptions to
improve the performance [19, 29], however, they only generate
category attributes at the test stage, which leads to themulti-domain
misalignment, limiting model performance. We propose to use
visual descriptions while solving the distribution shift of multiple
domains during the training stage, achieving better results.

3 METHOD
In this section,We first introduce the framework of AlignCLIP. Then
we introduce the first step of AlignCLIP, which is caption object
parsing. After that, we introduce how to perform multi-domain
alignment on the basis of parsed object sets. Finally, we introduce
how to perform soft label training based on object-IoU loss.

3.1 Framework
The training of AlignCLIP is shown in Fig. 2, which is similar to
CLIP [23], that is, matching between image and text pairs is trained
through contrastive learning. For the convenience of presentation,
only a single image and text are shown in Fig. 2 as an example.

To begin with, an image caption 𝑇𝑖 is input into the caption
object parsing module to obtain the object items in the caption,
and the parsed objects set is denoted as 𝜋𝑖 . With set 𝜋𝑖 , on the
one hand, we generate the visual descriptions of objects in 𝜋𝑖 , if
any of objects in 𝜋𝑖 belongs to the statistical tail concepts. On
the other hand, for each object in the collection 𝜋𝑖„ we randomly
sample from the prompt templates pool during testing to generate a
simulated test prompt, which is used to solve the distribution shift
of training and testing. Since a captionmay contain multiple objects,
we average obtained multiple visual descriptions and then perform
the normalization operation, and the same was done for generated
test prompts. Meanwhile, the image 𝐼𝑖 is extracted feature with
image encoder, which will be aligned with the feature of caption
𝑇𝑖 , averaged visual description and test prompts at the same time.
Finally, we propose object-IoU loss to generate soft labels, which
utilize the similarity between object sets in a batch to construct
many-to-many relationships.

For model inference, its cost is similar to ordinary CLIP and does
not require additional calculations. During inference, the model can
support both visual description input and ordinary test prompts.
Users can choose which input form to use based on whether the
category is common and accuracy metrics.

3.2 Caption Object Parsing
In order to perform subsequent multi-domain alignment and object-
IoU loss, we first need to perform caption object parsing. Compared
with previous methods that perform object detection on input im-
age, obtaining object information from the caption is cheaper and
faster, and does not rely on a trained object detector.

Formally, for an image caption 𝑇𝑖 , the goal of caption object
parsing is to obtain all objects 𝜋𝑖 = {𝑜𝑖1, 𝑜

𝑖
2, ..𝑜

𝑖
𝑘𝑖
} contained in the

𝑇𝑖 , where 𝜋𝑖 is the objects set, 𝑜𝑖𝑗 is an object in 𝜋𝑖 and 𝑘𝑖 is the
number of items in 𝜋𝑖 .

There aremanyways to obtain objects in a sentence. In this paper,
we include two methods, namely part-of-speech tagging (POS) and
large language model (LLM).

The task of part-of-speech tagging is to mark the part-of-speech
of each word in a sentence, such as nouns, verbs, adjectives, adverbs,
etc. Usually, the objects in a caption are nouns. Therefore, we use
the part-of-speech tagging algorithm in NLTK [1] to get the nouns
in the caption and output it as the result 𝜋𝑖 .

For LLM, we design prompts to enable open source LLM to
output the objects in the caption. Due to the simplicity of the task,
even an extremely small-sized open source LLM can output very
high quality results. In the experiments, for the LLM scheme, we
use the Gemma-2B-Chat [27] model, and the specific prompts can
be found in the appendix.

3.3 Multi-Domain Alignment
As mentioned above, the original image caption, the test prompts
such as “an image of class name”, and the visual description belong
to three different domains, and there is a distribution shift between
them, which leads to a performance drop. Here, we align these
three with image features at the same time during training, so that
the model has the ability to use visual descriptions, test prompts,
and original captions to generate category prototypes without any
distribution shift.

3.3.1 Tail-class Description Generation. To align visual descrip-
tions and visual features, a simple approach is to generate visual
descriptions for all objects in the training set, and perform the
alignment training. However, this consumes a lot of time, since
the training set is large. Here, we adopt a more lightweight ap-
proach, which is to generate visual descriptions for only the rarest
𝛼 percent of the tail, where 𝛼 is a hyperparameter set to 30% in our
experiments.

Object frequency statistics: In order to distinguish which
objects in the training set are rare objects in the tail, our first step
is to count the frequency of occurrence of objects in the training
set and regard objects with less frequency as rare objects.

To be specific, we first generate a frequency table Θ that records
each object and the number of occurrence the object appears in the
training set. Specifically, Θ is formulated as follows:

Θ = {(𝑜 𝑗 , 𝑥 𝑗 )}𝑁1
𝑗=1, where 𝑥 𝑗 =

∑𝑁2
𝑖=1I(𝑜 𝑗 ∈ 𝜋𝑖 ) (1)

where 𝑥 𝑗 is the frequency of occurrence of object 𝑜 𝑗 , 𝑁1 is the
number of objects in total and 𝑁2 is the number of captions in
training set. Then, we sort the objects in Θ according to the number
of occurrences 𝑥 𝑗 , and retain the 𝛼 percentile objects with the least
occurrences, which is denoted as Θ𝛼 .

Description generation: Since the object set 𝜋𝑖 of a caption
may contain multiple objects, therefore, only a part of the objects
in the set 𝜋𝑖 may belong to the tail objects Θ𝛼 . In this case, our
approach is that as long as 𝜋𝑖 contains any tail object, other objects
also generate visual descriptions together. Specifically, for the set
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Figure 2: The training of AlignCLIP. Firstly, for an image caption 𝑇𝑖 , we perform caption object parsing to obtain the object set
𝜋𝑖 , as 𝜋𝑖 = {𝑑𝑜𝑔, 𝑓 𝑜𝑥} above. Based on the set 𝜋𝑖 , we perform multi-domain alignment, that is, align the distribution of original
captions, visual descriptions, and test prompts to image features. To achieve this, we need to generate visual descriptions of 𝜋𝑖
if any of objects in 𝜋𝑖 belongs to tail-classes , as well as test prompts. Since set 𝜋𝑖 may contain more than one objects, the mean
and normalization operation will be performed to obtain the global feature. Finally, the image feature is trained to align with
text features from origin caption, visual descriptions and test prompts under the supervision of object-IoU loss.

𝜋𝑖 of caption 𝑇𝑖 , its visual description setV𝑖 is formalized as:

V𝑖 =

{
{𝑣𝑖

𝑗
= J𝑣𝑖𝑠 (𝑜𝑖𝑗 ) |∀𝑜

𝑖
𝑗
∈ 𝜋𝑖 }, if ∃𝑜𝑖

𝑗
∈ Θ𝛼

∅, otherwise
(2)

where J𝑣𝑖𝑠 is a function that inputs an object 𝑜𝑖
𝑗
and outputs an

appearance description of the object. We implement J𝑣𝑖𝑠 with LLM,
which is Gemma-2B-Chat [27] and the prompt instruction is in the
appendix.

Then, the description features in V𝑖 will be averaged and nor-
malized to get the global feature that can be aligned with the whole
image feature:

Ṽ𝑖 =

{
𝜙
( 1
𝑘𝑖

∑
𝑣𝑖
𝑗
∈V𝑖

𝑓𝑡 (𝑣𝑖𝑗 )
)
, if ∃𝑜 𝑗 ∈ Θ𝛼

∅, otherwise
(3)

where 𝜙 (·) is the normalization operation. 𝑓𝑡 is the text encoder.
𝑘𝑖 is the number of objects in set 𝜋𝑖 . Here, we first input the fea-
tures of multiple descriptions into the text encoder separately, and
then average and normalize them to obtain a global descriptions
representation of multiple objects. Another simple method is to
concatenate multiple visual descriptions and then input to text
encoder. However, this method can easily causes text to exceed
window length because the visual descriptions are usually very
long.

3.3.2 Test prompt Generation. As mentioned above, we found that
the distribution of test prompts and training captions are in two
different domains, and there is a distribution shift between them.
Existing work attempts to utilize the prompt learning to learn a
better prompt template to splice in front of the category name, such
as CoOp [33] and CoCoOp [32]. This learned prompt can better
conform to the distribution of captions in the training set, thereby
improving performance. However, each test set must be learned
separately, which increases the cost of inference.

Here, we follow the idea of data augmentation and generate sim-
ulated test prompts based on the parsed object set 𝜋𝑖 , and perform
alignment during the training phase. Thus, the test prompts will be
aligned with image features, and the domain gap will be narrowed.

Since the zero-shot classification averages the features of mul-
tiple prompt templates to obtain the final category prototype in
CLIP, we also need to align multiple prompt templates here. We
denote the prompt template collection used in model inference as
P = {𝜌1, 𝜌2, ..., 𝜌𝑚}, where𝑚 is the number of templates. For each
object 𝑜𝑖

𝑗
in the set 𝜋𝑖 , we randomly sample a template 𝜌ℎ from the

collection P to generate a simulated test prompt as follows:

Q𝑖 = {𝑞𝑖𝑗 = 𝑔(𝜌ℎ, 𝑜𝑖𝑗 ) | ∀𝑜
𝑖
𝑗 ∈ 𝜋𝑖 , 𝜌ℎ ∼ Uniform(P)} (4)
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where 𝑔(·, ·) is a function that combines templates and objects
to format a simulated test prompt 𝑞𝑖

𝑗
. Then, the features of the test

prompt Q𝑖 will be extracted by encoder 𝑓𝑡 , and then averaged and
normalized to obtain global features Q̃𝑖 as follows:

Q̃𝑖 = 𝜙
( 1
𝑘𝑖

∑︁
𝑞𝑖
𝑗
∈Q𝑖

𝑓𝑡 (𝑞𝑖𝑗 )
)

(5)

In experiments, we take OpenAI 80 templates for ImageNet as
P.

3.4 Object-IoU Loss
In this section, we first present the CLIP preliminaries, then, we
introduce how to build a many-to-many relationship based on the
IoU of object sets and perform soft alignment.

3.4.1 CLIP Preliminaries. Given a batch of 𝑁𝐵 image-text pairs
{𝐼𝑖 ,𝑇𝑖 }𝑁𝐵

𝑖=1, CLIP first feeds the image 𝐼𝑖 and text 𝑇𝑖 and into the
image encoder 𝑓𝐼 and the text encoder 𝑓𝑡 respectively, together
with the normalization operation as follows:

�̃�𝑖 = 𝜙
(
𝑓𝐼 (𝐼𝑖 )

)
(6)

𝑇𝑖 = 𝜙
(
𝑓𝑡 (𝑇𝑖 )

)
(7)

Based on the obtained image embedding and text embedding
pairs {(�̃�𝑖 ,𝑇𝑖 )}𝑁𝐵

𝑖=1, CLIP uses contrasting learning with InfoNCE
for cross-modal alignment, which bring corresponding images and
text embedding closer, and pull those that don’t correspond farther
away.

With embedding pairs {(�̃�𝑖 ,𝑇𝑖 )}𝑁𝐵

𝑖=1, the image-to-text and text-
to-image similarity matrix can be calculated with:

𝑝𝑖 𝑗 (�̃�𝑖 ,𝑇𝑖 ) =
exp(𝑠𝑖𝑚(�̃�𝑖 ,𝑇𝑖 )/𝜏)∑𝑁𝐵

𝑗=1 exp(𝑠𝑖𝑚(�̃�𝑖 ,𝑇𝑗 )/𝜏)
(8)

𝑝𝑖 𝑗 (𝑇𝑖 , �̃�𝑖 ) =
exp(𝑠𝑖𝑚(𝑇𝑖 , �̃�𝑖 )/𝜏)∑𝑁𝐵

𝑗=1 exp(𝑠𝑖𝑚(𝑇𝑖 , �̃�𝑖 )/𝜏)
(9)

where 𝜏 is a learnable temperature parameter that controls the
concentration level of the distribution. the function 𝑠𝑖𝑚(·) measure
the similarity of embedding with dot product.

Then, the 𝑖𝑡ℎ image-to-text similarity vector is denoted as p𝑖 (𝐼 ,𝑇 ) =
{𝑝𝑖 𝑗 (𝐼 ,𝑇 )}𝑁𝐵

𝑗=1 and the text-to-image similarity vector is denoted as

p𝑖 (𝑇, 𝐼 ) = {𝑝𝑖 𝑗 (𝑇, 𝐼 )}𝑁𝐵

𝑗=1. Then, the hard label are used to calculate
InfoNCE loss as follows:

L𝐼2𝑇 =
1
𝑁𝐵

𝑁𝐵∑︁
𝑖=1

𝐻 (y𝑖 , p𝑖 (𝐼 ,𝑇 )) (10)

L𝑇 2𝐼 =
1
𝑁𝐵

𝑁𝐵∑︁
𝑖=1

𝐻 (y𝑖 , p𝑖 (𝑇, 𝐼 )) (11)

where y𝑖 = {𝑦𝑖 𝑗 }𝑁𝐵

𝑗=1 is one-hot label for 𝑖
𝑡ℎ pair with 𝑦𝑖𝑖 = 1 and

𝑦𝑖 𝑗 ( 𝑗≠𝑖 ) = 0. 𝐻 (·, ·) is the cross entropy loss function. The final
training loss of the original CLIP is calculated by averaging the
Eq.(10) and Eq.(11) as follows:

L𝐶𝐿𝐼𝑃 =
1
2
(L𝐼2𝑇 + L𝑇 2𝐼 ) (12)

3.4.2 Object-IoU. As mentioned above, the simple one-to-one as-
sumption does not hold in practice. Different negative samples also
have different similarities, and should not simply be assigned a label
of 0. PyramidCLIP [10] utilize label smoothing to soften the hard
label, which is naive and the improvement is limited. SoftCLIP [9]
model the many-to-many relationship with the assistance of object
detector, which is onerous and inefficient.

Here, we exploit the parsed object sets 𝜋𝑖 to cost-effectively
construct many-to-many relations. Specifically, for the object set
{𝜋𝑖 }𝑁𝐵

𝑖=1 parsed from multiple captions in a batch, the similarity
between 𝜋𝑖 and 𝜋 𝑗 can be measured as:

𝐼𝑜𝑈𝑖 𝑗 =
|𝜋𝑖 ∩ 𝜋 𝑗 |
|𝜋𝑖 ∪ 𝜋 𝑗 |

(13)

where | · | represents the size of the collection. Eq.(13) calculates
the similarity of two sets through the intersection of union (IoU) of
𝜋𝑖 and 𝜋 𝑗 . Generally speaking, the greater the IoU of two sets, the
greater the similarity.

3.4.3 Soft Alignment. Based on the target similarity matrix 𝐼𝑜𝑈𝑖 𝑗 ,
we align the image features with the original caption, visual de-
scription and test prompt respectively.

For 𝑖𝑡ℎ object set 𝜋𝑖 , the target similarity vector is denoted as
𝐼𝑜𝑈𝑖 = {𝐼𝑜𝑈𝑖 𝑗 }𝑁𝐵

𝑗=1. Following previous work [9], we utilize KL-
Divergence as loss function. The alignment of image caption 𝑇𝑖 ,
visual description Ṽ𝑖 and test prompt Q̃𝑖 with images feature �̃�𝑖 can
be expressed as follows:

L𝐼𝑜𝑈 −𝐼2T =
1
𝑁𝐵

∑
T∈{𝑇𝑖 ,Ṽ𝑖 ,Q̃𝑖 } I(T ≠ ∅)

𝑁𝐵∑︁
𝑖=1

KL(𝐼𝑜𝑈𝑖 | |p𝑖 (�̃�𝑖 ,T))

(14)

L𝐼𝑜𝑈 −T2𝐼 =
1
𝑁𝐵

∑
T∈{𝑇𝑖 ,Ṽ𝑖 ,Q̃𝑖 } I(T ≠ ∅)

𝑁𝐵∑︁
𝑖=1

KL(𝐼𝑜𝑈𝑖 | |p𝑖 (T , �̃�𝑖 ))

(15)
where T is variable and T ∈ {𝑇𝑖 , Ṽ𝑖 , Q̃𝑖 }. I(·) is indicator function,
which is used to skip the situation where the visual description is
∅.

Then, the object-IoU loss of the image and origin caption is the
average of the above two formulas:

L𝐼𝑜𝑈 =
1
2
(L𝐼𝑜𝑈 −T2𝐼 + L𝐼𝑜𝑈 −𝐼2T ) (16)

Finally, the model is trained by a mixture of original CLIP loss
L𝐶𝐿𝐼𝑃 in Eq.(12) and object-IoU loss in Eq.(16) as follows:

L𝐴𝑙𝑖𝑔𝑛𝐶𝐿𝐼𝑃 =
1
2
(L𝐼𝑜𝑈 + L𝐶𝐿𝐼𝑃 ) (17)

3.5 Model Inference
During model inference, the text encoder can accept test prompts,
visual descriptions, and captions at the same time, without any
distribution shift.

In the zero-shot classification experiments in this paper, we first
perform inference on all categories using the test prompt to gener-
ate category prototypes. Then, for classes with lowest 𝛽 percentile,
we generate visual descriptions for them and utilize visual descrip-
tions to generate category prototypes, where 𝛽 is a hyperparameter
set to 50% in our experiments.
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4 EXPERIMENTS
4.1 Pre-training Datasets and Architectures
Following previous works [9, 10], we have pre-trained on multiple
open source mainstream image-text datasets, including Conceptual
Captions 3M (CC3M) [25], Conceptual Captions 12M (CC12M) [3],
YFCC15M-V2 [17]. For the model architecture, we chose 3 different
image encoders, i.e. ResNet-50 [11], ViT-B/32 [6] and ViT-B/16 [6].
Meanwhile, all images are uniformly scaled to 224×224 before being
input to the image encoder. For the text encoder, we used the same
text encoder with Transformer architecture as CLIP [23], and the
maximum token length is set to 77.

4.2 Implementation Details
All models are trained in parallel with 8 V100 GPUs. The proportion
of tail classes in the training set and test set, i.e. 𝛼 and 𝛽 is set to
30% and 50%, respectively. We use the AdamW optimizer with
the learning rate set to 5e-4. The weight decay rate of AdamW
is set to 0.2. Following previous works [9], cosine learning rate
scheduler with a linear warm-up is used to adjust learning rate,
where the warm-up takes up about 10% of the total steps to increase
the learning rate from 0 to the peak value, and then decreases
with a cosine anneal strategy. Meanwhile, we use automatic mixed-
precision [8] to train the model to save GPU memory. For CC3M
and CC12M, we set the batch size to 1024. For YFCC15M-V2, we set
the batch size to 2048. For caption object parsing, we implement
it with LLM for comparison and detailed ablation studies can be
found in experiments. For more details, please refer to our code.

4.3 Evaluation Setup
We verified the effectiveness of AlignCLIP on 3 different down-
stream tasks, namely zero-shot image classification, linear probing
and zero-shot image-text retrieval. For zero-shot classification, we
utilize the identical prompt templates outlined in the CLIP [23]
paper, After the category name is combined with the prompt tem-
plate, the features will be extracted with the text encoder and used
as the category prototype. Images will be classified by calculating
similarity with these category prototypes. For linear probing, the
image encoder is freeze and a linear layer is added at the end of the
image encoder for fine-tuning. For zero-shot image-text retrieval,
caption and image features are extracted separately, and the search
result with the highest similarity is output.

4.4 Zero-shot Image Classification
In order to verify the performance of the proposed AlignCLIP, we
first compare the performance of zero-shot classification. Here, the
caption object parsing is implemented with Gemma.

We first present the zero-shot classification results on ImageNet
1K in Tab.1. As we can see, the performance of our AlignCLIP
has been greatly improved based on the original CLIP [23]. Our
AlignCLIP achieves the highest performance across all pre-training
datasets and different image encoder settings. Specifically, using
ResNet50 as image encoder, AlignCLIP exceeded the original CLIP
by 9.2, 11.4, and 7.1 points respectively when pre-trained with
CC3M, CC12M, and YFCC15M.Meanwhile, ourmethod also achieves
the highest performance using other image encoders. Not only that,

Table 1: Results of zero-shot classification on ImageNet 1K.

Pretrain
Dataset

Image
Encoder Method ImageNet

ZS Top1

CC3M

ResNet50
CLIP † 17.8
SoftCLIP 24.2

AlignCLIP 27.0

ViT-B/32
CLIP† 11.8

SoftCLIP 13.3
AlignCLIP 15.7

ViT-B/16

CLIP† 15.9
SoftCLIP 18.9
LaCLIP 21.5

AlignCLIP 23.6

CC12M

ResNet50
CLIP † 34.6
SoftCLIP 43.2

AlignCLIP 46.9

ViT-B/32
CLIP† 30.7

SoftCLIP 34.4
AlignCLIP 37.8

ViT-B/16

CLIP† 36.3
SoftCLIP 42.1
LaCLIP 48.4

AlignCLIP 49.1

YFCC15M-V2

ResNet50
CLIP † 38.6
SoftCLIP 43.7

AlignCLIP 43.8

ViT-B/32
CLIP† 32.4

SoftCLIP 35.0
AlignCLIP 36.6

ViT-B/16

CLIP† 38.9
SoftCLIP 42.4

AlignCLIP 44.3
† Our Implementation

AlignCLIP also has advantages compared with other pre-training
methods. Compared with SoftCLIP [9] and LaCLIP [7], AlignCLIP
has improved to varying degrees under different settings with less
computing resources. In particular, LaCLIP needs to generate mul-
tiple augmentation for each caption, while ours only needs to gen-
erate visual descriptions parts of them.

In addition, We show the zero-shot classification results of other
6 data sets, where PETS / DTD / F101 / FLOW / SUN / CAL are abbre-
viations for Pets / Describable Tex- tures / Food-101 / Flowers-102 /
SUN397 / Caltech-101 datasets. AVG represents average accuracy.
Following previous work [9], we report the results of model pre-
trained with YFCC15M-V2. The results are shown in Tab.2. From the
table, we can see that AlignCLIP achieves the highest performance
in most cases. With Resnet50 as the image encoder, the average
accuracy increased from 44.3 in the original CLIP to 50.0, and ex-
ceeded SoftCLIP by 0.8 points. Meanwhile, SOTA is also achieved
with ViT-B-16 as image encoder.

4.5 Linear Probing
We present the results of linear probing in Tab. 3. Experiments
were conducted on 7 datasets, namely Pets, Describable Tex-tures,
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Table 2: Zero-shot classification on 6 datasets. The model is
pretrained with YFCC15M-V2.

Method Image
Encoder PETS DTD F101 FLOW SUN CAL AVG

CLIP†
ResNet50

32.6 21.2 46.5 52.5 48.0 64.8 44.3
SoftCLIP 34.9 27.1 50.8 56.3 55.9 70.4 49.2

AlignCLIP 35.5 26.3 53.0 55.7 56.1 73.2 50.0

CLIP†
ViT-B/16

27.2 21.6 48.3 53.8 53.4 71.5 46.0
SoftCLIP 32.5 25.6 53.8 55.6 56.2 71.8 49.2

AlignCLIP 35.8 24.1 54.2 56.5 56.9 72.9 50.1
† Our Implementation

Table 3: Linear Probing results on 7 datasets.

Method Pretrain
Dataset PETSDTD F101 FLOWSUNCAL ImageNet

CLIP†
CC3M

69.1 62.9 62.3 89.8 58.1 81.8 54.0
LaCLIP 71.1 64.0 63.8 90.2 60.2 83.3 56.5

AlignCLIP 72.0 64.5 63.9 91.1 59.9 84.7 57.7

CLIP†
CC12M

85.9 75.1 80.9 95.1 71.5 91.5 69.9
LaCLIP 87.7 75.7 82.9 96.4 73.8 93.0 72.3

AlignCLIP 88.9 75.9 83.8 95.5 72.6 93.9 72.9
† Our Implementation

CC3M CC12M

Sorted Accuracy Sorted Accuracy

Figure 3: ImageNet 1K class-wise accuracy for comparison.

Food-101, Flowers-102, SUN397, Caltech-101 and ImageNet. From
the table, we can see that AlignCLIP achieves the highest perfor-
mance inmost situations. On themost convincing ImageNet dataset,
AlignCLIP exceeds the CLIP baseline by more than 3 points. At
the same time, it also exceeds LaCLIP [7] by about 1 point. It is
worth noting that only the image encoder is used in the linear
probing setting, while our method is an improvement on the text
side, which indicates that improvements on the text encoder can
also facilitate the training of image encoders. This is because the
improvements on the text input in AlignCLIP have brought richer
and more comprehensive supervision signals to the image encoder,
thereby improving the performance of the image encoder.

4.6 Zero-shot Image-text Retrieval
Here, we verify the effectiveness of our method on image and text
retrieval tasks. The experimental results are shown in Tab. 4. All
the models are pre-trained on YFCC15M-V2 dataset. As indicated
in the table, AlignCLIP achieves the highest performance under
identical conditions of pre-training data and image encoder. Partic-
ularly, under the ViT-B/16 image encoder, AlignCLIP significantly
surpass SoftCLIP and CLIP baseline, which demonstrates that our
pre-training method with multi-domain alignment and object-IoU
loss can develop a more robust encoder, thereby providing better
representations for enhanced retrieval performance.

4.7 Ablation Studies
Unless otherwise stated, all experiments are performed with CC3M
as pre-training, ResNet50 as image encoder.

4.7.1 Effects of Different Modules. Here, we analyze the role and
impact of each differentmodule. The specific implementation details
are: 1) For models without Object-IoU loss, we use the original CLIP
cross-entropy loss to optimize themodel. 2) All models have original
captions participating in the alignment. 3) For models without
visual descriptions, visual descriptions were removed during both
training and testing phases. The experimental results are shown
in Tab. 5, where the zero-shot classification results of ImageNet
1K is reported. It can be seen from the results that: 1) All modules
will bring different levels of improvement. 2) If only one module is
added separately, the visual description and object-IoU will bring
greater improvements, which improves top1 accuracy by 4.5 and
5.1 points respectively. The test prompt improvement is relatively
small, only improves accuracy by about 1 point. 3) The model will
all modules achieve highest performance, with 27.0 top1 accuracy.

4.7.2 Different Implementations of Caption Object Parsing. In this
section, we compare different implementations of caption object
parsing, including part-of-speech tagging (POS)and large language
models (LLM). We conducted experiments on CC3M and CC12M.
In addition to comparing the zero-shot classification performance
on imageNet 1K, we also compared the generation time. For LLM,
the visual description generation time is obtained under 32 V100s
in parallel. For POS, the generation time is obtained in parallel with
64 threads CPU. The experimental results are shown in Tab. 6. It
can be seen from the results that the POS solution can be faster, but
based on LLM, it can get higher accuracy. Even though the accuracy
of POS is relatively lower, it still surpasses SoftCLIP [9] on both
CC3M and CC12M, and achieves SOTA.

4.7.3 Visualization and Qualitative Analysis. To validate the im-
provement on tail classes, we visualize the category-by-category
accuracy on imagenet 1k trained with our AlignCLIP and CLIP base-
line. The results are shown in Fig.3. We conducted experiments on
CC3M and CC12M, respectively. As can be seen from Fig.3, Align-
CLIP can significantly improve the performance of the tail classes,
and the number of categories with an accuracy of 0 is greatly re-
duced. Meanwhile, due to the introduction of object-IoU loss, the
performance of head classes has also been improved.

Furthermore, we also visualized the distribution of image cap-
tions, test prompts, and visual descriptions after training with Align-
CLIP. The results are shown in Fig.4. As we can see, after training
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Table 4: The results of zero-shot image-text retrieval on Flicker30K and MS-COCO.

Method Image
Encoder

Flickr30K(1K) MS-COCO(5K)

Image-to-Text Text-to-Image Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP†

ResNet50

54.9 81.6 90.5 37.1 65.0 75.0 29.4 54.8 66.1 18.9 40.7 52.5
DECLIP 58.7 85.0 92.5 40.7 68.9 78.4 31.1 59.0 69.9 20.6 43.8 55.4
SoftCLIP 62.1 86.4 93.0 43.0 71.0 80.3 36.0 61.2 72.3 22.2 45.8 57.3

AlignCLIP 63.6 86.9 92.8 44.2 71.5 79.1 37.3 61.7 74.8 23.3 47.0 59.1

CLIP†
ViT-B/16

54.9 80.0 88.4 37.2 64.3 74.3 30.7 56.2 67.4 19.1 40.9 52.5
SoftCLIP 56.2 82.1 88.6 37.2 64.3 74.5 30.9 56.2 68.3 19.2 41.2 52.6

AlignCLIP 62.1 85.8 92.0 42.6 72.5 81.9 35.7 60.6 73.4 22.2 45.6 55.0
† Our Implementation

Table 5: Effects of different components. The zero-shot clas-
sification accuracy on ImageNet 1K is reported.

Visual Des Test Prompt Object-IoU ZS Top1 ZS Top5

17.8 35.9
✓ 22.3 43.5

✓ 19.1 38.7
✓ 22.9 45.6

✓ ✓ 23.0 45.8
✓ ✓ ✓ 27.0 52.2

Table 6: Different implementations of caption object parsing.

Methods
CC3M CC12M

ZS Top1 Time(h) ZS Top1 Time(h)

POS 24.7 1.9 44.1 7.6
LLM 27.0 13.3 46.9 52.5

CC3M CC12M

Figure 4: The t-SNE visualization of feature distribution with
AlignCLIP training.

with AlignCLIP, the distributions of the three have been better
aligned, and the distribution shift has been greatly alleviated.

4.7.4 Effects of Proportions in Visual Descriptions. Here, we inves-
tigate the impact of varying the proportion of visual descriptions
in the training and test sets. The experiment was pre-trained on
CC3M, and the zero-shot classification results of ImageNet 1K were

Table 7: Effects of 𝛼 and 𝛽 in visual descriptions generation.

Value of 𝛼 and 𝛽 Top 1 Top5

𝛼 = 0, 𝛽 = 0% 23.1 46.3
𝛼 = 0, 𝛽 = 30% 24.9 48.0
𝛼 = 0, 𝛽 = 50% 25.6 49.6
𝛼 = 0, 𝛽 = 100% 20.2 42.7
𝛼 = 10, 𝛽 = 30% 26.0 50.4
𝛼 = 10, 𝛽 = 50% 26.5 51.7
𝛼 = 10, 𝛽 = 70% 25.9 49.8
𝛼 = 30, 𝛽 = 50% 27.0 52.2

reported. The results are shown in Tab.7, where 𝛼 controls the
proportion of tail description during training, and 𝛽 controls the
proportion of tail during testing. As can be seen from the table: 1) If
the model is not aligned using visual descriptions during training,
i.e. 𝛼 = 0, the improvement is smaller. 2) Even if 10% of the visual
description is added to the training stage, the effect is greatly im-
proved, exceeding the situation without adding visual description.
3) However, it is not necessarily the case that a higher proportion
of visual descriptions leads to better performance. We observe a
sharp decline in performance when the visual descriptions in the
test set reach 100%.

5 CONCLUSION
In this paper, we introduce a novel image-text alignment train-
ing approach named AlignCLIP. To address the issue of CLIP’s
lower recognition performance for rare, tail-end classes, we pro-
pose utilizing visual descriptions to enhance these tail-end classes.
Additionally, we introduce multi-domain alignment to synchronize
the distributions of image captions, visual descriptions, and test
prompts. To achieve this, we first perform caption object parsing
on image captions to identify the object sets they contain, thereby
generating samples for alignment. Thanks to the parsed object
sets, our approach also implements object-IoU loss at a reduced
computational cost, facilitating the computation of soft labels. Our
method was pre-trained on multiple image-text datasets and evalu-
ated across various tasks. The results demonstrate that our approach
significantly outperforms the CLIP baseline and exceeds existing
methods, establishing a new SOTA.
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