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1 DETAILED RELATEDWORK
Here, we present detailed related work, including vision-language
pre-training, long-tail data learning and soft-label CLIP.

1.1 Vision-Language Pre-training
In the realm of Vision-Language Pre-training (VLP), the endeavor
to synergize visual and textual modalities has been operationalized
through extensive training on image-text pairs. Architecturally,
VLP models bifurcate into two predominant streams: single-stream
and dual-stream frameworks. Single-stream architectures integrate
image and text inputs early in the process, utilizing a unified trans-
former to process the amalgamated embeddings, typified by models
such as VisualBERT [10], OSCAR [12], UNITER [4], UNICODER [8],
UNIMO [11] and HAMMER [20]. This architecture facilitates direct
interaction between modalities within a shared semantic space.
Conversely, dual-stream architectures advocate for a modular ap-
proach, encoding images and texts through distinct pathways before
convergence. Models like CLIP [19], ALIGN [9], DeCLIP [13], Soft-
CLIP [6], PyramidCLIP [7] and LaCLIP [5] exemplify this approach,
underscoring the advantage of discrete yet complementary process-
ing of modal information. Most of this work is to improve certain
shortcomings of CLIP. For example, DeCLIP [13] speeds up training
through self-supervision. PyramidCLIP [7] uses object detectors
for more fine-grained alignment. SoftCLIP [6] uses object detectors
to construct many-to-many relationships.

The proposed AlignCLIP belongs to the dual-stream architecture.
Differently, AlignCLIP sets out to solve the long-tail distribution
in CLIP and misalignment in multiple text domains. Furthermore,
we achieve soft label training at low cost based on caption objectf
parsing. Compared with previous methods, AlignCLIP training cost
is lower and its performance is better.

1.2 Long-tail Data Learning
The long-tail distribution [14], where few categories are common
and many are rare, presents a significant challenge in data mining
and machine learning. Addressing this, researchers have developed
three main strategies: re-sampling, re-weighting, and transfer learn-
ing. Re-sampling [2, 21, 22] methods adjust the dataset to balance
the distribution between common and rare classes, either by in-
creasing the presence of rare classes or reducing that of common
ones. Re-weighting [3, 18, 24] approaches alter the loss function to
prioritize rare classes during training, giving themmore importance.
Transfer learning [16, 17, 25] techniques use the knowledge gained
from common classes to improve the learning of rare classes, enrich-
ing their feature representation. These strategies, from adjusting
data distribution to modifying training emphasis, offer pathways to
mitigate the long-tail problem, aiming for a more balanced learning
across classes.

However, in multi-modal pre-training, there are relatively few
solutions to the long-tail problem, which has been grossly ignored.

Although there are some works that use visual descriptions to
improve the performance [15, 23], however, they only generate
category attributes at the test stage, which leads to themulti-domain
misalignment, limiting model performance. We propose to use
visual descriptions while solving the distribution shift of multiple
domains during the training stage, achieving better results.

1.3 Soft-label CLIP
The original CLIP assumes that images and texts are strictly one-to-
one, that is, during training, the labels of matching image and text
are 1, and the unmatched ones are 0. However, this assumption does
not hold true in many cases, and there is some correlation between
different negative samples. Therefore, many works propose the use
of soft labels in CLIP training. One of the most intuitive ideas is to
use self-distillation, that is, using a trained teacher model to assign
soft labels to get a better student model, and continuously iterate,
as did in CLIP-PSD [1]. PyramidCLIP [7] proposes to use label
smoothing to alleviate strict one-to-one correspondence. However,
it gives the same weight to all negative samples, which brings
limited improvement. SoftCLIP [6] proposes to use a object detector
to obtain the object information contained in the image, so as to
obtain the similarity and relationship between negative samples.
However, this method brings a lot of additional overhead to training,
resulting in increased training costs.

Differently, we propose to use caption object parsing to obtain
the objects in the caption, thereby constructing a many-to-many re-
lationship to generate soft labels. It can achieve higher performance
with lower training costs.

2 DATASET STATISTICS
Here we display detailed statistical information of the datasets,
including the number of image-text pairs in the dataset, the total
number of parsed objects, and the number of tail objects.

Table 1: Dataset Statistics

Dataset Image-text Pairs Parsed Objects Tail Objects

CC3M 2,901,344 109,341 32,802
CC12M 10,841,279 276,123 82,836

YFCC15M 13,930,140 330,982 99,294

3 PROMPTS FOR LLMS
In our method, there are two places where LLM may be used:

1) The first one is caption object analysis. Our method includes
two solutions, namely part-of-speech tagging (POS)and large lan-
guage models (LLM). For LLM, the prompt for LLM is “The follow-
ing is a caption for an image. Please directly indicate the objects
contained in it, separated by commas.”
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2) The second place is the generation of appearance description.
Here, the prompt is “Please briefly introduce the appearance of
CLASS in ordinary language”.

4 ADDITIONAL ABLATION EXPERIMENTS
4.1 Object-IoU Loss v.s. Label Smoothing
Here, we compare the object-IoU loss in this paper with the ordinary
label smoothing [7] loss function. The experiments were pre-trained
onCC3M and evaluatedwith the zero-shot classification accuracy of
ImageNet 1K. For label smoothing, we follow the PyramidCLIP [7]
and take the smoothing parameter 0.2. For hard-label, we use the
original cross-entropy loss, leaving everything else unchanged.
The results are shown in Tab. 2. We can see that label smoothing
can bring a 1.5 points of improvement in Top-1 accuracy, and our
method can greatly exceed label smoothing.

Table 2: Object-IoU Loss v.s. Label Smoothing

Method Top-1 ACC Top-5 ACC

Hard Label 23.0 45.8
Label Smoothing 24.5 48.7
Object-IoU Loss 27.0 52.2
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