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Supplementary Material

Organization of the Appendix

The supplementary material contains the following information.

* Appendix A provides additional examples of graph learning models from the optimization perspec-
tive.

* Appendix B presents the pseudocode of FATE.

* Appendix C offers the detailed parameter settings regarding the reproducibility of this paper.

* Appendix D provides additional experimental results on using FairGNN [11] and evaluating under
macro F1 score and AUC score.

* Appendix E provides additional experimental results on using InFORM-GNN [20] and evaluating
under macro F1 score and AUC score.

» Appendix F shows the transferability of using FATE to attack the statistical parity and individual
fairness of the non-convolutional aggregation-based graph attention network with linear GCN as
the surrogate model.

* Appendix G discusses the relationship between fairness attacks and the impossibility theorem as
well as Metattack [50].

Code can be found at the following repository:

https://anonymous.4open.science/r/FATE-BC55/README . md.

A Graph Learning Models from the Optimization Perspective

Here, we discuss four additional non-parameterized graph learning models from the optimization
perspective, including PageRank, spectral clustering, matrix factorization-based completion and
first-order LINE.

Model #1: PageRank. It is one of the most successful random walk based ranking algorithm to
measure node importance. Mathematically, PageRank solves the linear system

r=cPr+(1-c)e (11)

where c is the damping factor, P is the propagation matrix and e is the teleportation vector. In
PageRank, the propagation matrix P is often defined as the row-normalized adjacency matrix of a
graph G and the teleportation vector is a uniform distribution %Ll with 1 being a vector filled with 1.
Equivalently, given a damping factor c and a teleportation vector e, the PageRank vector Y = r can
be learned by minimizing the following loss function

min  er’(I—P)r + (1 —¢)|r — e|3 (12)

where ¢ (r” (I — P)r) is a smoothness term and (1 — ¢) ||r — e||3 is a query-specific term. To attack
the fairness of PageRank with FATE, the attacker could attack a surrogate PageRank with different
choices of damping factor ¢ and/or teleportation vector e.

Model #2: Spectral clustering. It aims to identify clusters of nodes such that the intra-cluster
connectivity are maximized while inter-cluster connectivity are minimized. To find & clusters of
nodes, spectral clustering finds a soft cluster membership matrix Y = C with orthonormal columns
by minimizing the following loss function

ngn Tr (CTLC) (13)
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where L is the (normalized) graph Laplacian of the input graph G. It is worth noting that the columns
of learning result C is equivalent to the eigenvectors of L associated with smallest k eigenvalues. To
attack the fairness of spectral clustering with FATE, the attacker might attack a surrogate spectral
clustering with different number of clusters k.

Model #3: Matrix factorization-based completion. Suppose we have a bipartite graph G with n;
users, no items and m interactions between users and items. Matrix factorization-based completion
aims to learn two low-rank matrices an n; X z matrix U and an ny X z matrix V such that the
following loss function will be minimized

min [ projg (R = UVT) [ + M [UlEAe + [ VI (14)

0,, R
R” o0,
{(%,4)|(%,4) is observed} is the set of observed interaction between any user ¢ and any item j,
projq (Z) [z, 7] equals to Z[i, 5] if (i,7) € € and 0 otherwise, A\; and Ao are two hyperparameters
for regularization. To attack the fairness of matrix factorization-based completion with FATE, the
attacker could attack a surrogate model with different number of latent factors z.

Model #4: First-order LINE. It is a skip-gram based node embedding model. The key idea of
first-order LINE is to map each node into a h-dimensional space such that the dot product of the
embeddings of any two connected nodes will be small. To achieve this goal, first-order LINE
essentially optimizes the following loss function

where A = > with 0,, being an n; X n; square matrix filled with 0, Q =

max > Ali. j] (log g (H[j, JH[i, |7) + kEjrp, logg (-H[', JH[,IT)])  A5)

i=1 j=1

where H is the embedding matrix with H[i, :] being the h-dimensional embedding of node 4, g(x) =
1/(1 + e™*) is the sigmoid function, & is the number of negative samples and P, is the distribution
for negative sampling such that the sampling probability for node ¢ is proportional to its degree
deg;. For a victim first-order LINE, the attacker could attack a surrogate LINE (1st) with different
dimension h in the embedding space and/or a different number of negative samples g.

Remarks. Note that, for a non-parameterized graph learning model (e.g., PageRank, spectral
clustering, matrix completion, first-order LINE), we have ® = {Y} which is the set of learning
results. For example, we have © = {r} for PageRank, © = {C} for spectral clustering, © = {U, V}
and © = {H} for LINE (Ist). For parameterized graph learning models (e.g., GCN), © refers to the

set of learnable weights, e.g., © = {W® ... W)} for an L-layer GCN.

B Pseudocode of FATE

Algorithm 1 summarizes the detailed steps on fairness attack with FATE. To be specific, after
initialization (line 1), we pre-train the surrogate graph learning model (lines 4 — 6) and get the
pre-trained surrogate model (™) as well as learning results Y (7) (line 7). After that, we compute the
meta gradient of the bias function (lines 8 — 11) and perform either discretized attack or continuous
attack based on the interest of attacker (i.e., discretized poisoning attack in lines 12 — 15 or continuous
poisoning attack in lines 16 — 18).

C Experimental Settings

In this section, we provide detailed information about the experimental settings. These include
the hardware and software specifications, dataset descriptions, descriptions of baseline methods,
evaluation metrics as well as detailed parameter settings.

C.1 Hardware and Software Specifications

All codes are programmed in Python 3.8.13 and PyTorch 1.12.1. All experiments are performed on a
Linux server with 96 Intel Xeon Gold 6240R CPUs and 4 Nvidia Tesla V100 SXM2 GPUs with 32
GB memory.
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Algorithm 1: FATE
Given :an undirected graph G = {A, X}, the set of training nodes Vi, fairness-related
auxiliary information matrix F', total budget B, budget in step 4 ¢;, the bias function b,
number of pre-training epochs T’
Find :the poisoned graph G
poisoned graph G + G, cumulative budget A « 0, step counter i < 0;
while A < B do
ng <+~ 0;
fort =1t T do
| update ©®) to ©(*+1) with a gradient-based optimizer (e.g., Adam);
end
get Y(T) and ©(T);
compute meta-gradient Vgb + Vg b (Y,0) F) - Vg0,
if attack the adjacency matrix then
compute the derivative Vb + Vb + (ng)T — diag (Vzb);
end
if discretized poisoning attack then
compute the poisoning preference matrix V z by Eq. (7);
select the edges to poison in V ; with budget d; by Eq. (8);

update the corresponding entries in G;
else
‘ update G by Eq. (6) with budget d;;
end
A— A+ 51';
141+ 1;

end
return G;

C.2 Dataset Descriptions

We use three widely-used benchmark datasets for fair graph learning: Pokec-z, Pokec-n and Bail.
For each dataset, we use a fixed random seed to split the dataset into training, validation and test sets
with the split ratio being 50%, 25%, and 25%, respectively. The statistics of the datasets, including
the number of nodes (# Nodes), the number of edges (# Edges), the number of features (# Features),
the sensitive attribute (Sensitive Attr.) and the label (Label), are summarized in Table 3.

* Pokec-z and Pokec-n are two datasets collected from the Slovakian social network Pokec, each of
which represents a sub-network of a province. Each node in these datasets is a user belonging to
two major regions of the corresponding provinces, and each edge is the friendship relationship
between two users. The sensitive attribute is the user region, and the label is the working field of a
user.

* Bail is a similarity graph of criminal defendants during 1990 — 2009. Each node is a defendant
during this time period. Two nodes are connected if they share similar past criminal records and
demographics. The sensitive attribute is the race of the defendant, and the label is whether the
defendant is on bail or not.

Table 3: Statistics of the datasets.

Dataset Pokec-z Pokec-n Bail
# Nodes 7,659 6,185 18,876
# Edges 20, 550 15,321 311,870
# Features 276 265 17
Sensitive Attr. Region Region Race
Label Working field Working field Bail decision
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C.3 Descriptions of Baseline Methods

We compare the proposed FATE with baseline methods, including Random, DICE [44] and FA-
GNN [19]. Descriptions of the baseline methods are as follows.

* Random is a heuristic approach that randomly inserts edges to the input graph.

* DICE [44] attacks the utility of a graph learning algorithm by randomly deleting edges within a
community and inserting edges across different communities. Similar to [49, 19], the community
is defined as the group of nodes with the same class label.

* FA-GNN [19] aims to attack the fairness of a graph neural network by adversarially inserting
edges that connect nodes in consideration of their class labels and sensitive attribute values.

C.4 Evaluation Metrics

In our experiments, we aim to evaluate how effective FATE is in (1) attacking the fairness and (2)
maintaining the utility of node classification.

To evaluate the performance of FATE in attacking the group fairness, we evaluate the effectiveness
using Agp, which is defined as follows.

Asp=|P(y=1]|s=1)-Py=1]s=0)] (16)

where s is the sensitive attribute value of a node and 7 is the ground-truth and predicted class labels of
a node. While to evaluate the performance of FATE in attacking the individual fairness, we evaluate
the effectiveness using the InFORM bias (Bias) measure [20], which is defined as follows.

Bias= > Sli.jllIY[i,] - Y[l (a7

ievtest J Evtest

where V;est 1 the set of test nodes and S is the oracle pairwise node similarity matrix. The intuition of
Eq. (17) is to measure the squared difference between the learning results of two test nodes, weighted
by their pairwise similarity.

To evaluate the performance of FATE in maintaining the utility, we use micro F1 score (Micro F1),
macro F1 score (Macro F1) and AUC score.

C.5 Detailed Parameter Settings

Poisoning the input graph. During poisoning attacks, we set a fixed random seed to control the
randomness. The random seed used for each dataset in attacking group/individual fairness are
summarized in Table 4.

* Surrogate model training. We run all methods with a perturbation rate from 0.05 to 0.25 with
a step size of 0.05. For FA-GNN [19], we follow its official implementation and use the same
surrogate 2-layer GCN [26] with 16 hidden dimensions for poisoning attack.*. The surrogate GCN
in FA-GNN is trained for 500 epochs with a learning rate 1e — 2, weight decay 5e — 4, and dropout
rate 0.5. For FATE, we use a 2-layer linear GCN [45] with 16 hidden dimensions for poisoning
attacks. And the surrogate linear GCN in FATE is trained for 500 epochs with a learning rate
le — 2, weight decay 5e — 4, and dropout rate 0.5.

* Graph topology manipulation. For Random and DICE, we use the implementations provided in
the deeprobust package with the default parameters to add the adversarial edges.’. For FA-GNN,
we add adversarial edges that connect two nodes with different class labels and different sensitive
attributes, which provides the most promising performance as shown in [19]. For FATE, suppose
we poison the input graph in p (p > 1) attacking steps. Then the per-iteration attacking budget in

Algorithm 1 is setas 61 = 1 and §; = T;_lzl, Vi € {2,...,p}, where r is the perturbation rate
and |&| is the number of edges. Detailed choices of p for each dataset in attacking group/individual

fairness are summarized in Table 4.

“https://github. com/mengcao327/attack-gnn-fairness
*https://deeprobust.readthedocs.io/
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Table 4: Parameter settings on the random seed for all baseline methods in poisoning attacks (Random
Seed) and the number of steps for poisoning attacks in FATE (Attacking Steps).

Dataset | Fairness Definition | Attacking Steps Random Seed
Pokec-n Stgti.stical pgrity 3 25
Individual fairness 3 45
Statistical parity 3 25
Pokec-Z | 11 dividual fairness 5 15
Bail Statistical parity 3 25
Individual fairness 3 5

Training the victim model. We use a fixed list of random seed ([0, 1, 2, 42, 100]) to train each victim
model 5 times and report the mean and standard deviation. Regarding the victim models in group
fairness attacks, we train a 2-layer GCN [26] for 400 epochs and a 2-layer FairGNN [11] for 2000
epochs to evaluate the efficacy of fairness attacks. The hidden dimension, learning rate, weight
decay and dropout rate of GCN and FairGNN are set to 128, 1le — 3, 1e — 5 and 0.5, respectively.
The regularization parameters in FairGNN, namely « and 3, are set to 100 and 1 for all datasets,
respectively. Regarding the victim models in individual fairness attacks, we train a 2-layer GCN [26]
and 2-layer InFoORM-GNN [20, 13] for 400 epochs. The hidden dimension, learning rate, weight
decay and dropout rate of GCN and InFORM-GNN are set to 128, 1e — 3, 1e — 5 and 0.5, respectively.
The regularization parameter in InNFORM-GNN is set to 0.1 for all datasets.

D Additional Experimental Results: Attacking Statistical Parity on Graph
Neural Networks

A — FATE with FairGNN as the victim model. Here, we study how robust FairGNN is in fairness
attacks against statistical parity with linear GCN as the surrogate model. Note that FairGNN is a
fairness-aware graph neural network that leverages adversarial learning to ensure statistical parity.

Main results. Similar to Section 6.1, for FATE, we conduct fairness attacks via both edge flipping
(FATE-flip in Table 5 and edge addition (FATE-add in Table 5). For all other baseline methods,
edges are only added. From Table 5, we have the following key observations: (1) Even though the
surrogate model is linear GCN without fairness consideration, FairGNN, which ensures statistical
parity on graph neural networks, cannot mitigate the bias caused by fairness attacks and is vulnerable
to fairness attack. (2) FATE-flip and FATE-add are effective and the most deceptive method in fairness
attacks. (3) FATE-flip and FATE-add are the only methods that consistently succeed in fairness attacks,
while all other baseline methods might fail in some cases (indicated by the underlined Agp in both
tables). In short, even when the victim model is FairGNN (a fair graph neural network), our proposed
FATE framework are effective in fairness attacks while being the most deceptive (i.e., highest micro
F1 score).

Effect of the perturbation rate. From Table 5, we can find out that: (1) Agp tends to increase when
the perturbation rate increases, indicating the effectiveness of FATE-flip and FATE-add for attacking
fairness. (2) There is no clear correlation between the perturbation rate and the micro F1 scores of
FATE-flip and FATE-add, meaning that they are deceptive in maintaining the utility. As a consequence,
FATE is effective and deceptive in attacking fairness of FairGNN across different perturbation rates.

B - Performance evaluation under different utility metrics. Here we provide additional evaluation
results of utility using macro F1 score and AUC score. From Tables 6 and 7, we can see that macro F1
scores and AUC scores are less impacted by different perturbation rates. Thus, it provide additional
evidence that our proposed FATE framework can achieve deceptive fairness attacks by achieving
comparable or even better utility on the semi-supervised node classification.
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Table 5: Effectiveness of attacking group fairness on FairGNN. FATE poisons the graph via both edge
flipping (FATE-flip) and edge addition (FATE-add) while all other baselines poison the graph via edge
addition. Higher is better (1) for micro F1 score (Micro F1) and Agp. Bold font indicates the success
of fairness attack (i.e., bias is increased after attack) with the highest micro F1 score. Underlined cell

indicates the failure of fairness attack (i.e., Asp is decreased after attack).

Dataset | Ptb Random DICE FA-GNN FATE-flip FATE-add
" [ MicroFI(T)  Agp () | MicroFI1(T)  Asp () | MicroFI(T)  Agp () [ MicroFI(T)  Agp () | MicroFI(T) — Agp (T)
0.00 | 682%£04 67+20 | 682+04 67+£20] 682+£04 67+20 | 682+04  6.7+£20 682+£04  6.7£20
0.05| 674+08 82425 | 662+06 99+1.7| 667+1.2 28+13 | 684+02 89+1.8 | 684+02 89+18
Pokecn | 010 | 675£05 8315 | 663+04 9521 | 66.6£05 5913 | 68504 95+1d4 | 685+04 95=14
0.15 | 659406 104423 | 654406 92+26| 648+1.6 90+33 | 685+08 105+2.6| 685+08 10.5+2.6
020 | 654405 100+15| 65.0+£04 44425 | 652402 11.6+26| 683+03 107+23| 683+03 10.7+23
025 | 658411 75+19 | 638+03 54+18| 648+08 142+23| 685+03 91+36 | 685+03 91+36
0.00 | 687+£03 7.0%09 | 687+03 7.0+09 | 687+03 7.0%£09 | 687£03 7.0+09 687+03 7.0%09
0.05| 673406 87428 | 67.5+04 85+13| 671410 1.7+13 | 687+04 80+09 | 68.7+04 80+09
Pokecz | 010 | 671£0.2  8.6£27 | 661+£03 7.0£29 | 659408 (8L£L7 | 685+05 9.0+18 | 68505 90+18
0.15| 66.8+08 89+22 | 652405 66+14| 64.9+09 100+1.7| 687+05 95+22 | 68.7+05 95+22
020 | 668407 86+30 | 63706 66£29 | 64.6+08 142+3.1| 68.8+02 104+1.6| 688+02 104+1.6
025 | 664404 79428 | 634404 60+28| 640+1.1 14.0+2.0| 685+03 103+2.1 | 685+03 103+2.1
0.00 | 939+£01 84£02 | 939+01 84+02] 939+£01 84+02 | 93.9+01 84£02 93.9£0.1 S4£02
0.05| 906+12 83+02 | 8.1+1.2 83+03| 89.1+20 108+11| 936+01 92+02 | 93.6+01 9.1+0.2
Bail | 010 | 00.1£20 85x06 | 881+18 82x03| 87322 122+12| 93401 93+02 | 934+01 9.3%02
0.15 | 900420 81405 | 86.9+20 81+05| 87.8+20 109+21| 933+01 92+03 | 93.3+01 92403
020 | 892+24 84+07 | 85.3+£27 82404 | 86.04+27 11.7+24| 931+02 93+03 | 93.0+0.1 9.4+0.2
025 | 888423 82407 | 83+33 79+£05]| 870419 85+26 | 93.0+01 92+04 | 93.0+£02 93+03

Table 6: Macro F1 score and AUC score of attacking group fairness on GCN. FATE poisons the graph
via both edge flipping (FATE-flip) and edge addition (FATE-add) while all other baselines poison the
graph via edge addition. Higher is better (1) for macro F1 score (Macro F1) and AUC score (AUC).

ro F1 score or AUC score.

Bold font indicates the highest mac

Dataset | Pth DICE FA-GNN FATE-flip FATE-add
- [Macro F1(1) _AUC(]) | MacroF1()) AUC(D) | MacroF1()) AUC(D) | Macro F1(1) _ AUC()) | Macro F1()) _ AUC (1)
0.00 | 653%03 G69.9E05 | 653103 699%05| 653103 69905 | 65303 69905 | 653+£03 69.9%05
0.05| 657+03 704+04 | 649+02 69.8+03| 649+02 704+0.2| 66.0+03 703+06 | 66.0£03 70.3+06
Pokeen | 010 | 64604 696+03 | 634406 67.7£03 | 641403  70.0£0.1 | 661406 704+06 | 66.1+06 70.4+06
015 | 651+04  69.6+0.1 | 628+07 67.3+£04| 643+06 69.1+05 | 661402 70.6+06| 66.1+02 70.6+0.6
0.20 | 645+05 691401 | 609+02 646+£02| 635+02 68.0+02 | 66.4+03 70.7+04 | 664+03 70.7+04
025 | 645+06 688+0.1 | 597406 63.6+06| 650402 695403 | 66.3+03 70.6+0.6 | 663+03 70.6+06
0.00 | 682+04 751203 | 682+04 751£03| 682+104 751203 | 682£04 751+03 | 682+£04 751%03
0.05| 685+£04 745404 | 67.2+£05 742+£03| 679403 T45+02 | 68.6+04 752404 | 68.6+04 752+04
Pokec | 010 | 68503  7T48+0.3 | 663+02 729401 | 67.5+£05 738403 | 686+£06 752+03| 686406 752+03
0.15| 678403 744403 | 653+£10 70.0£08| 66.1+£06 727+02 | 689+07 753+02| 68.9+07 753+0.2
020 | 682+04 T45+06 | 62.6+06 68009 | 66.1+02 719401 | 684+05 751+03 | 684+05 751+03
025 | 680+£04 740404 | 634404 686+06| 65306 71.2+03 | 684+11 744+14| 684+11 744+14
0.00 | 923%£02 974%£01 | 923+02 974£01| 923+02 974%£01 | 923£02 974%£01 | 923£02 974%0.1
0.05| 920£02 953402 | 90.6+£03 93.8+£02| 90801 944+02 | 91.8+£01 97.1+01 | 91.7+£01 97.1+0.2
Bail | 010 | 914402 947403 | 892401 922403 | 895401 935+0.1 | 916402 96.9+0.1 | 91.6+£02 96.9+01
015 | 91.1£02 942402 | 87.8402 91.1£02| 887203 925+02 | 91.4+£02 969+01| 91.5+01 96.9+0.1
020 | 907402 941401 | 869401 902402 | 884401 922401 | 91.3+0.2 96.8+01| 914402 96.8+0.1
0.25| 904402 934403 | 862401 892403 | 885+£02  920+0.1 | 912401 968+01| 91.3+02 96.8+0.1

Table 7: Macro F1 score and AUC score of attacking group fairness on FairGNN. FATE poisons
the graph via both edge flipping (FATE-flip) and edge addition (FATE-add) while all other baselines
poison the graph via edge addition. Higher is better (1) for macro F1 score (Macro F1) and AUC

he highest macro F1 score or AUC score.

score (AUC). Bold font indicates t

Dataset | Pth DICE FA-GNN FATE-flip FATE-add
* [MacroF1(T) AUC(T) | MacroFI(T) AUC(]) | MacroF1(T) AUC(T) | MacroFI(7) AUC(7) | MacroFI(7) AUC ()
0.00 65.6 £0.3 70.4+£0.5 65.6+0.3 70.4+0.5 65.6 £0.3 70.4+£0.5 65.6 £0.3 70.4+0.5 65.6 0.3 70.4+£0.5
0.05 64.3 £0.6 68.3+1.1 64.2+0.8 68.4+1.4 63.6 £0.7 68.2+0.5 65.8 £0.5 70.7+04 65.8+0.5 70.7+04
Pokec-n 0.10 63.8+0.2 67.3+1.1 63.4+0.8 67.4+0.6 63.9+0.4 68.3+0.2 66.0 0.7 70.8+0.5 66.0 +£0.7 70.8+0.5
0.15 63.5+0.2 67.8+0.4 60.7+0.7 65.2+1.2 63.1+0.6 67.2+0.5 65.8+1.0 70.8+0.5 65.8+1.0 70.8+0.5
0.20 63.1+£0.6 67.8+1.1 60.2+ 1.0 63.7+£1.1 62.3 +£0.6 66.7+0.9 65.7+0.7 70.4+0.5 65.7+0.7 70.4+0.5
0.25 62.4 +0.3 66.8 +0.8 57.3+04 61.8+0.7 62.4+14 67.6+1.3 65.1+1.2 70.1+0.5 65.1+1.2 70.1+0.5
0.00 68.4+0.4 75.1+0.3 68.4+0.4 75.1+0.3 68.4+0.4 75.14+0.3 68.4+0.4 75.1+0.3 68.4+0.4 75.1+0.3
0.05 66.3 £0.9 73.5+£0.9 66.4+0.8 72.8+1.2 66.5+ 1.4 726 +14 68.4+04 74.7+0.9 68.4+04 74.7+09
Pokec-z 0.10 66.0 £0.7 729+1.1 64.9+0.8 71.4+£04 65.2+£0.9 71.3+£1.7 68.2+0.8 75.3+0.8 68.2+0.8 75.3+0.8
0.15 66.0 +0.8 71.8+2.1 63.9+0.8 68.5+ 1.5 63.4+1.5 70.0+1.8 68.3+0.5 75.2+0.6 68.3+0.5 75.2+0.6
0.20 65.6 £0.9 719+14 62.1+1.1 67.9+1.8 63.7+0.9 68.9+1.6 68.3+0.3 75.5+0.3 68.3+0.3 75.5+0.3
0.25 65.0 £0.7 71.2+£1.7 61.9+04 66.7 1.1 62.8 £1.8 69.4+1.5 68.0 0.5 75.3+0.3 68.0+0.5 75.3+0.3
0.00 93.3+£0.2 97.4+0.1 93.3£0.2 97.4+0.1 93.3+0.2 974+0.1 93.3+£0.2 97.4+0.1 93.3+£0.2 974+0.1
0.05 89.5+ 1.5 92.8 £1.8 878+ 1.3 909+ 1.5 87.8+£2.2 91.2+1.8 93.0+0.1 97.3+0.1 93.0+0.1 97.3+0.1
Bail 0.10 89.1 £2.2 92.7 £ 2 5 86.7+2.0 90.1£1.0 85.6 £2.7 90.5+ 1.7 92.7+0.1 97.1+0.1 92.7+0.1 97.1+0.1
0.15 88.8 +£2.2 92.4+25 85.2+2.3 88.0£2.8 86.1+24 90.3+2.2 926+0.1 97.0+0.1 92.6+0.1 97.0+0.1
0.20 87.8 +£2.8 91.6 £2.5 83.2+3.1 86.5 + 3.6 84.1+3.0 89.0+1.5 92.5+0.2 97.0+0.1 92.3+0.1 97.0+0.1
0.25 87.5 £2.6 91.5 £2.6 83.3+3.9 87.3£3.7 85.1 £2.3 89.6+1.3 92.3+0.1 97.0+0.1 92.3+0.2 97.0+0.1
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E Additional Experimental Results: Attacking Individual Fairness on Graph
Neural Networks

A — FATE with InFoORM-GNN as the victim model. InFORM-GNN is an individually fair graph
neural network that ensures individual fairness through regularizing the individual bias measure
defined in Section 5. Here, we study how robust InNFORM-GNN is in fairness attacks against individual
fairness with linear GCN as the surrogate model.

Main results. We attack individual fairness using FATE via both edge flipping (FATE-flip in Table 8
and edge addition (FATE-add in Table 8), whereas edges are only added for all other baseline methods.
From Table 8, we can see that: (1) for Pokec-n and Pokec-z, FATE-flip and FATE-add are effective: they
are the only methods that could consistently attack individual fairness across different perturbation
rates; FATE-flip and FATE-add are deceptive by achieving comparable or higher micro F1 scores
compared with the micro F1 score on the benign graph (when perturbation rate is 0.00). (2) For
Bail, almost all methods fail the fairness attacks. A possible reason is that the adjacency matrix A of
Bail is essentially a similarity graph, which causes pairwise node similarity matrix S being close to
the adjacency matrix A. Even though FATE (and other baseline methods) add adversarial edges to
attack individual fairness, regularizing the individual bias defined by S (a) not only helps to ensure
individual fairness (b) but also provide useful supervision signal in learning a representative node
representation due to the closeness between S and A. (3) Compared with the results in Table 2 where
GCN is the victim model, InFORM-GNN is more robust against fairness attacks against individual
fairness due to smaller individual bias in Table 8.

Effect of the perturbation rate. From Table 8, we can see that FATE can always achieve comparable
or even better micro F1 scores across different perturbation rates. In the meanwhile, the correlation
between the perturbation rate and the individual bias is relatively weak. One possible reason is that
the individual bias is computed using the pairwise node similarity matrix, which is not impacted by
poisoning the adjacency matrix. Though poisoning the adjacency matrix could affect the learning
results, the goal of achieving deceptive fairness attacks (i.e., the lower-level optimization problem
in FATE) may not cause the learning results obtained by training on the benign graph to deviate
much from the learning results obtained by training on the poisoned graph. Consequently, a higher
perturbation rate may have less impact on the computation of individual bias.

Table 8: Effectiveness of attacking individual fairness on InFORM-GNN. FATE poisons the graph
via both edge flipping (FATE-flip) and edge addition (FATE-add) while all other baselines poison the
graph via edge addition. Higher is better (1) for micro F1 score (Micro F1) and InFoRM bias (Bias).
Bold font indicates the success of fairness attack (i.e., bias is increased after attack) with the highest
micro F1 score. Underlined cell indicates the failure of fairness attack (i.e., Agp is decreased after
attack).
Dataset | Ptb.

Rand DICE FA-GNN FATE-flip FATE-add
Micro F1(T) Bias (f) | Micro F1(f) Bias(f) | Micro F1(T) Bias(T) | Micro F1(T) Bias(f) | Micro F1(T)  Bias ()
0.00 68.0+0.4 0.5+0.1 68.0£0.4 0.5+0.1 68.0+0.4 0.5+0.1 68.0+0.4 0.5+0.1 68.0+0.4 0.5+0.1
0.05 67.3+0.5 0.54+0.0 67.0£0.2 0.5+0.0 68.3+0.2 0.5+ 0.0 684+04 06+0.1 68.3+0.4 0.5+0.1
0.10 67.0+0.2 0.54+0.1 65.5 £+ 0.6 0.5+0.1 67.24+0.2 0.4+0.0 68.3+0.6 0.5+0.1 68.4+0.5 06+0.1

Pokeen | 15| 667205 05+01| 638£03 04:00| 661E£02 0400 | 683+06 06+01| 68107 0.6+0.1
020 | 669403 04201 | 63.7£02 03£00| 665+02 04£00 | 679408 05+01 | 681+07 0.6=0.1
025 | 6664205 05200 | 622205 02£01| 651+£02 04+00 | 687+£03 06+00| 685+08 0601
000 634105 05+00| 684105 05+00] 684+05 05500 | 654505 05500 | 684505 05%£00
0.05| 689402 0601 | 67.0£06 0.6£01| 681407 05+01 | 68.7+07 07+01 | 689+05 0.6=0.0
Pokecg | 010 | 679402 06201 | 663+£04 05£0.1| 68.0£06 05200 | 689406 06+£0.0 | 6883+06 06+00

0.15| 67.6+0.3 0.6=+0.1 65.34+04 04+£0.1 66.8+0.3 0.5£0.1 69.1+05 06+00 | 69.0+0.7 0.6 +£0.1
020 | 67.7+05 0.6=£0.1 63.94+06 03+00| 664+£0.6 04+£0.1 69.1+0.2 06+00 | 69.3+03 0.6+0.0
025 | 66.84+04 0.5£0.1 6454+03 02400 ]| 653+£04 04+£0.0 68.9+0.7 06+00 | 69.44+04 0.6+00
0.00 [ 92.8+0.1 1.7£0.1 92.8+0.1 1.7+£0.1 92.8+£0.1 1.7+£0.1 92.8+0.1 1.7+£0.1 92.8+0.1 1.7+£0.1
0.05| 91.94+0.1 04400 | 91.54+0.1 1.6+00 | 91.3+£0.1 1.5+£0.1 92.84+0.3 1.7£0.1 92.7+0.1 1.6£0.1
0.10 | 91.740.1 03+0.0 | 90.440.1 14+£0.1 90.44+0.2 1.5£0.1 92.84+0.1 1.6+0.0 92.84+0.1 1.6+0.0

Bail

0.15| 91.5+0.1 03+£0.0 | 89.7+0.1 1.44+£0.0 | 90.0+0.1 1.7£0.1 92.84+0.0 1.6£0.1 92.84+0.1 1.6 +£0.0
020 | 91.5+0.1 03+0.0 | 88.6+0.2 1.3+£0.1 | 89.1+£0.1 1.7+0.1 92.84+0.1 1.6+0.0 92.74+0.1 1.5+0.1
025| 91.14+£02 03£00] 87.6+£02 1.3+0.1 | 88.9+0.1 1.8+0.1 92.6+0.1 1.6+0.1 92.74+£0.0 1.6+0.1

B — Performance evaluation under different utility metrics. Similar to Appendix D, we provide
additional results on evaluating the utility of FATE in attacking individual fairness with macro F1
score and AUC score. From Tables 9 and 10, we can draw a conclusion that FATE can achieve
comparable or even better macro F1 scores and AUC scores for both GCN and InFORM-GNN across
different perturbation rates. It further proves the ability of FATE on deceptive fairness attacks in the
task of semi-supervised node classification.
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Table 9: Macro F1 score and AUC score of attacking individual fairness on GCN. FATE poisons
the graph via both edge flipping (FATE-flip) and edge addition (FATE-add) while all other baselines
poison the graph via edge addition. Higher is better (1) for macro F1 score (Macro F1) and AUC

score (AUC). Bold font indicates the highest macro F1 score or AUC score.

Dataset | Ptb. Random DICE FA-GNN FATE-flip FATE-add
* [Macro FI (f) AUC () | Macro FI (7)) AUC(7) | Macro FI(T) AUC(T) | MacroF1(}) AUC(]) | MacroFI(T)  AUC (T)
0.00 65.3+£0.3 69.9+0.5 65.3+0.3 69.9+0.5 65.3+0.3 69.9+0.5 65.3 £0.3 69.9 £ 0.5 65.3+£0.3 69.9 £0.5
0.05 65.2+0.3 70.1+£0.2 64.4+0.4 69.5+0.2 65.6 + 0.6 71.1+0.2 65.7+0.4 70.1+0.6 65.5+0.3 70.2+0.8
Pokec-n 0.10 65.2+0.3 69.6 +0.5 62.5+0.3 66.9+0.2 65.4+0.6 70.2+0.3 65.5+£0.3 70.2+0.7 65.8+0.5 70.7+0.6
0.15 65.4+£0.2 69.4+0.3 60.9+0.5 64.8+0.4 64.6 £ 0.2 69.4+0.1 65.6 £ 0.4 70.0+0.5 65.4+0.1 69.8£0.7
0.20 64.9+0.2 69.6 £0.3 61.3+£0.2 65.5+0.2 63.7+0.5 69.0£0.1 65.2+£0.3 69.7 £ 0.6 65.6 £ 0.6 70.2+0.7
0.25 64.7+0.1 69.4+0.2 60.0+0.3 63.5+0.4 63.3+0.5 68.4+0.3 65.4 + 0.6 69.7+0.7 65.6 +£ 0.8 69.8+0.8
0.00 68.2+0.4 75.1+0.3 68.2+0.4 75.1+0.3 68.2+0.4 75.1+0.3 68.2+0.4 75.1+0.3 68.2+0.4 75.1+0.3
0.05 68.7+0.4 75.0+£0.4 67.0+£0.5 73.8+0.5 68.0+0.4 75.1+£0.5 68.5+£0.5 75.4+0.2 68.5+0.3 75.24+0.4
Pokec-z 0.10 68.5+£0.1 75.1+£0.5 66.0+0.5 72.5+0.3 67.9+0.6 74.4+£0.5 68.8 0.5 75.5+0.3 68.8 +0.4 75.6 £0.2
0.15 67.5+0.4 744403 65.1+0.4 71.0+£0.5 66.8+0.4 72.6 £0.2 68.4+0.5 75.5+0.4 68.8+0.7 75.6 £0.3
0.20 67.5+0.4 747+£04 63.9+0.3 69.4+0.4 66.1+0.1 71.8+£0.2 68.7+£0.5 75.5+0.3 69.0 £ 0.4 75.6 £0.3
0.25 67.2+0.3 74.1+0.3 63.5+0.4 68.5+0.3 64.8+0.4 70.5+0.4 68.9+0.3 75.6 +0.2 69.1+0.3 75.7+0.3
0.00 92.3+£0.2 97.4+£0.1 92.3+£0.2 97.4+£0.1 92.3+0.2 97.4+£0.1 92.3 £0.2 97.4+£0.1 92.3+£0.2 97.4+£0.1
0.05 91.2+0.3 94.8+0.2 90.9+0.1 94.0+£0.2 90.3+£0.2 94.1+£0.2 923+04 97.3+0.1 92.1+£0.3 97.3+0.1
Bail 0.10 90.6 £0.1 942+0.3 89.0+0.1 91.9+0.2 89.1+0.1 92.9+0.3 923+0.1 97.3+04 92.2+0.2 97.3+0.1
0.15 90.3+0.1 94.1+0.2 88.0+ 0.0 90.9+0.2 88.6 +0.2 92.4+0.3 924+0.1 97.3+0.0 92.3+0.2 97.3+0.1
0.20 90.2 £ 0.0 93.9+0.1 87.1+£0.2 90.44+0.2 87.9+0.2 91.8+0.2 92.4+0.1 97.3+0.0 924+0.2 97.3+0.1
0.25 90.9 + 0.1 93.5+0.2 85.9+ 0.3 89.6 + 0.3 87.6 £0.1 91.6 +0.2 92.2+0.2 97.2+£0.1 92.2+0.2 97.3+0.1

Table 10: Macro F1 score and AUC score of attacking individual fairness on InNFORM-GNN. FATE poi-
sons the graph via both edge flipping (FATE-flip) and edge addition (FATE-add) while all other
baselines poison the graph via edge addition. Higher is better (1) for macro F1 score (Macro F1) and
AUC score (AUC). Bold font indicates the highest macro F1 score or AUC score.

Dataset | Pth Random DICE FA-GNN FATE-flip FATE-add
" [Macro FI()) _AUC(D) | Macro FI(T) AUC() | MacroFI()) AUC() | MacroFI (1) AUC(D) | Macro F1(D) _ AUC ()

000 | 654204 705%£08 | 654204 705+08| 654204 705%08 | 65404 705208 | 654204  70.5=0.8

0.05| 651403 69.9+0.2 | 645+04 693+02| 656+03 70.8+0.1| 659+04 707+08 | 658+05  70.5+0.9

Pokeen | 010 | 64902 69.6405 | 627404  6T0£0.2 | 648+04  698+03 | 658+05 70.3+10 | 66.0£04 709411
015 | 648404 696404 | 60.7+02 648+02| 644+01 692403 | 65.7+06 70.3+0.7 | 658+04 70.3+09

020 | 651402 695403 | 61.0£0.1 654403 | 634404 69.0+£02 | 655+£08 702409 | 65.6+06 70.5+0.7

025 | 646403 696402 | 59.8+03 634+02| 636403 686+02 | 660405 70.8+03| 659+05 70.4+0.8

000 | 683204 752102 | 683+£04 752+02| 633%£04 752+02 | 683+£04 752+£02 | 683104 752502

0.05| 686402 751403 | 66.9+05 734404 | 678+0.6 750+03 | 686+07 751406 | 687+04 754+0.3

Pokecg | 010 | 676402 743404 | 66104 721408 | 677406 739406 | 686406 756+03 | 686406 755403
015 | 672403 741404 | 649+05 712403 | 66.7+03 723+01 | 68.9+04 754+04 | 689+06 754+04

020 | 673+£0.6 744404 | 63.9+£06 694+£05| 66.0£05 7LT£02 | 69.0£02 755+0.2 | 692404 754+04

025 | 663+04 739404 | 639406 689+04| 650+05 708402 | 688+07 756403 | 69.3+04 758+0.1

000 | 919£01 972400 | 9L.9E£01 972400 | O9L9E01 97.2£00 | 9L.9E£01 972200 | 9L9£01  97.2£0.0

0.05| 91.0+£01 942402 | 90.5+0.1 939401 | 904+01 942401 | 920+£00 97.1+0.1 | 91.9+02  97.0+0.2

Bail | 010 | 907£02 939403 | 893401 924+03 | $94+02 93301 | 920£01 970400 | 919401  97.0+0.0
015 | 905+0.1 938403 | 884+0.1 914403 | 8.8+02 924+01 | 920+01 97.0+0.0 | 91.9+0.2 97.0+0.1

020 | 905402 937402 | 87.3+£02 905+03| 878401 91.8+£0.1 | 920+£01 969+00 | 91.9+01  96.8+0.1

025 | 901402 934403 | 859402 89.1+05| 874+01 914401 | 91.8+01 968401 | 91.9+01 96.9+0.0
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F Tranferability of Fairness Attacks by FATE

For the evaluation results shown in Sections 6.1 and 6.2 as well as Appendices D and E, both
the surrogate model (linear GCN) and the victim models (i.e., GCN, FairGNN, InFoRM-GNN)
are convolutional aggregation-based graph neural networks. In this section, we aim to test the
transferability of FATE by generating poisoned graphs on the convolutional aggregation-based
surrogate model (i.e., linear GCN) and testing on graph attention network (GAT), which is a non-
convolutional aggregation-based graph neural network.

More specifically, we train a graph attention network (GAT) with 8 attention heads for 400 epochs.
The hidden dimension, learning rate, weight decay and dropout rate of GAT are set to 64, le — 3,
le — 5 and 0.5, respectively.

The results on attacking statistical parity and individual fairness with GAT as the victim model
are shown in Table 11. Even though the surrogate model used by the attacker is a convolutional
aggregation-based linear GCN, from the table, it is clear that FATE can consistently succeed in (1)
effective fairness attack by increasing Agp and the individual bias (Bias) and (2) deceptive attack
by offering comparable or even better micro F1 score (Micro F1) when the victim model is not a
convolutional aggregation-based model. Thus, it shows that the adversarial edges flipped/added by
FATE is able to transfer to graph neural networks with different type of aggregation function.

Table 11: Transferability of attacking statical parity and individual fairness with FATE on GAT.
FATE poisons the graph via both edge flipping (FATE-flip) and edge addition (FATE-add). Higher is
better (1) for micro F1 score (Micro F1) Agp and InFORM bias (Bias).
Attacking Statistical Parity

Dataset | Pth Pokec-n Pokec-z Bail |

* | Micro F1 () Bias (1) | Micro F1 (1) Agp (1) Micro F1 (1) Agsp ()
0.00 63.8£5.3 4.0+ 3.2 68.2 £ 0.5 8.6+1.1 89.7+£4.2 7.5£0.6
0.05 63.9+£5.5 6.4+5.1 68.3+£0.4 10.5+1.3 90.1+£3.8 8.1+0.6
0.10 63.6 £5.3 7.9+6.7 67.8+£0.4 11.2+1.7 90.3£3.2 8.5+0.6

FATEAlip | o0 | 637253 75461 | 682+06 112+15| 902+27 88+03
020 | 641456 7.7+63| 678406 111409 | 90.0+£27 87+0.6
025 | 63.6+52 85+70| 680404 11.5+12| 89.9+43.0 88+0.5
000 | 638%53 40E32| 682%F05 S6F11 | 89.7f42 75%00
005 | 639+55 64+51| 683404 105+1.3| 902437 81+0.7
Fatb.add | 010 | 636+53  794E67 | 678404 112417 | 90.3432 85406

0.15 63.7£5.3 7.5+6.1 68.2 £ 0.6 11.2+£1.5 90.3 £ 2.6 8.8£0.3
0.20 64.1 £5.6 7.7+6.3 67.8£0.6 11.1£0.9 90.1 £2.6 8.8+0.5
0.25 63.6 £5.2 85£7.0 68.0£0.4 11.5+1.2 89.9+£29 8.8+0.5

Attacking Individual Fairness
Dataset | Pth Pokec-n Pokec-z Bail |
* | Micro F1 (1) Bias () | Micro F1 (T) Bias (1) Micro F1 (1) Bias (1)
0.00 63.8+5.3 0.4+0.2 68.2 + 0.5 0.5+£0.1 89.7+4.2 2.5+1.2
0.05 63.6 £5.3 0.5+0.2 68.2+0.8 0.6£0.1 90.0 +4.2 2.7+1.1
0.10 63.7£5.3 0.5+0.2 67.8 +0.5 0.6 £0.1 90.0 +4.0 28+1.3
0.15 63.7+54 0.5+0.2 68.2 + 0.5 0.6 +0.2 90.2 + 3.6 2.8+ 14
0.20 63.5+ 5.1 0.54+0.2 68.5 £ 0.5 0.6 £0.2 90.2+ 3.4 2.8+1.2
0.25 63.5+5.1 0.5+0.2 68.0 = 0.6 0.6 £0.1 90.2 + 3.1 2.7+1.2
0.00 63.8+5.3 0.4+0.2 68.2 + 0.5 0.5+0.1 89.7+4.2 2.5+1.2
0.05 63.9+54 0.5+0.2 68.2+0.7 0.6 +0.1 90.0 + 4.6 2.7+14
FATE-add 0.10 63.8+54 0.5+0.2 68.2 + 0.5 0.6 £0.2 90.1 +4.0 2.8+1.2
0.15 63.8+54 0.5+0.2 68.3 +0.2 0.6 £0.2 90.1 +3.9 2.8+1.2
0.20 63.7+5.3 0.5+0.2 68.44+0.3 0.6 £0.1 90.3 +3.2 2.8+1.3
0.25 63.7+£5.3 0.5+0.2 68.44+0.3 0.6 £0.1 90.2 + 3.1 2.8+1.2

FATE-flip
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G Further Discussions about FATE

A - Relationship between fairness attacks and the impossibility theorem of fairness. The
impossibility theorems show that some fairness definitions may not be satisfied at the same time.°
However, this may not always be regarded as fairness attacks. To our best knowledge, the impossibility
theorems prove that two fairness definitions (e.g., statistical parity and predictive parity) cannot be
fully satisfied at the same time, i.e., biases for two fairness definitions are both zero). However, there
is no formal theoretical guarantees that ensuring one fairness definition will always amplify the bias
of another fairness definition. Such formal guarantees might be nontrivial and beyond the scope of
our paper. As we pointed out in the abstract, the main goal of this paper is to provide insights into the
adversarial robustness of fair graph learning and can shed light for designing robust and fair graph
learning in future studies.

B — Relationship between FATE and Metattack. FATE bears subtle differences with Metattack [50],
which also utilize meta learning for adversarial attacks. Note that Metattack aims to degrade the
utility of a graph neural network by maximizing the task-specific utility loss (e.g., cross entropy for
node classification) in the upper-level optimization problem. Different from Metattack, FATE aims to
attack the fairness instead of utility by setting the upper-level optimization problem as maximizing a
bias function rather than a task-specific utility loss.

Shttps://machinesgonewrong.com/fairness/
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