
Supplementary Material

Organization of the Appendix522

The supplementary material contains the following information.523

• Appendix A provides additional examples of graph learning models from the optimization perspec-524

tive.525

• Appendix B presents the pseudocode of FATE.526

• Appendix C offers the detailed parameter settings regarding the reproducibility of this paper.527

• Appendix D provides additional experimental results on using FairGNN [11] and evaluating under528

macro F1 score and AUC score.529

• Appendix E provides additional experimental results on using InFoRM-GNN [20] and evaluating530

under macro F1 score and AUC score.531

• Appendix F shows the transferability of using FATE to attack the statistical parity and individual532

fairness of the non-convolutional aggregation-based graph attention network with linear GCN as533

the surrogate model.534

• Appendix G discusses the relationship between fairness attacks and the impossibility theorem as535

well as Metattack [50].536

Code can be found at the following repository:537

https://anonymous.4open.science/r/FATE-BC55/README.md.538

A Graph Learning Models from the Optimization Perspective539

Here, we discuss four additional non-parameterized graph learning models from the optimization540

perspective, including PageRank, spectral clustering, matrix factorization-based completion and541

first-order LINE.542

Model #1: PageRank. It is one of the most successful random walk based ranking algorithm to543

measure node importance. Mathematically, PageRank solves the linear system544

r = cPr+ (1− c)e (11)

where c is the damping factor, P is the propagation matrix and e is the teleportation vector. In545

PageRank, the propagation matrix P is often defined as the row-normalized adjacency matrix of a546

graph G and the teleportation vector is a uniform distribution 1
n1 with 1 being a vector filled with 1.547

Equivalently, given a damping factor c and a teleportation vector e, the PageRank vector Y = r can548

be learned by minimizing the following loss function549

min
r

crT (I−P)r+ (1− c)∥r− e∥22 (12)

where c
(
rT (I−P) r

)
is a smoothness term and (1− c) ∥r− e∥22 is a query-specific term. To attack550

the fairness of PageRank with FATE, the attacker could attack a surrogate PageRank with different551

choices of damping factor c and/or teleportation vector e.552

Model #2: Spectral clustering. It aims to identify clusters of nodes such that the intra-cluster553

connectivity are maximized while inter-cluster connectivity are minimized. To find k clusters of554

nodes, spectral clustering finds a soft cluster membership matrix Y = C with orthonormal columns555

by minimizing the following loss function556

min
C

Tr
(
CTLC

)
(13)
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where L is the (normalized) graph Laplacian of the input graph G. It is worth noting that the columns557

of learning result C is equivalent to the eigenvectors of L associated with smallest k eigenvalues. To558

attack the fairness of spectral clustering with FATE, the attacker might attack a surrogate spectral559

clustering with different number of clusters k.560

Model #3: Matrix factorization-based completion. Suppose we have a bipartite graph G with n1561

users, n2 items and m interactions between users and items. Matrix factorization-based completion562

aims to learn two low-rank matrices an n1 × z matrix U and an n2 × z matrix V such that the563

following loss function will be minimized564

min
U,V

∥ projΩ
(
R−UVT

)
∥2F + λ1∥U∥2Fλ2 + ∥V∥2F (14)

where A =

(
0n1

R
RT 0n2

)
with 0n1

being an n1 × n1 square matrix filled with 0, Ω =565

{(i, j)|(i, j) is observed} is the set of observed interaction between any user i and any item j,566

projΩ (Z) [i, j] equals to Z[i, j] if (i, j) ∈ Ω and 0 otherwise, λ1 and λ2 are two hyperparameters567

for regularization. To attack the fairness of matrix factorization-based completion with FATE, the568

attacker could attack a surrogate model with different number of latent factors z.569

Model #4: First-order LINE. It is a skip-gram based node embedding model. The key idea of570

first-order LINE is to map each node into a h-dimensional space such that the dot product of the571

embeddings of any two connected nodes will be small. To achieve this goal, first-order LINE572

essentially optimizes the following loss function573

max
H

n∑
i=1

n∑
j=1

A[i, j]
(
log g

(
H[j, :]H[i, :]T

)
+ kEj′∼Pn [log g

(
−H[j′, :]H[i, :]T

)
]
)

(15)

where H is the embedding matrix with H[i, :] being the h-dimensional embedding of node i, g(x) =574

1/(1 + e−x) is the sigmoid function, k is the number of negative samples and Pn is the distribution575

for negative sampling such that the sampling probability for node i is proportional to its degree576

degi. For a victim first-order LINE, the attacker could attack a surrogate LINE (1st) with different577

dimension h in the embedding space and/or a different number of negative samples g.578

Remarks. Note that, for a non-parameterized graph learning model (e.g., PageRank, spectral579

clustering, matrix completion, first-order LINE), we have Θ = {Y} which is the set of learning580

results. For example, we have Θ = {r} for PageRank, Θ = {C} for spectral clustering, Θ = {U,V}581

and Θ = {H} for LINE (1st). For parameterized graph learning models (e.g., GCN), Θ refers to the582

set of learnable weights, e.g., Θ = {W(1), . . . ,W(L)} for an L-layer GCN.583

B Pseudocode of FATE584

Algorithm 1 summarizes the detailed steps on fairness attack with FATE. To be specific, after585

initialization (line 1), we pre-train the surrogate graph learning model (lines 4 – 6) and get the586

pre-trained surrogate model Θ(T ) as well as learning results Y(T ) (line 7). After that, we compute the587

meta gradient of the bias function (lines 8 – 11) and perform either discretized attack or continuous588

attack based on the interest of attacker (i.e., discretized poisoning attack in lines 12 – 15 or continuous589

poisoning attack in lines 16 – 18).590

C Experimental Settings591

In this section, we provide detailed information about the experimental settings. These include592

the hardware and software specifications, dataset descriptions, descriptions of baseline methods,593

evaluation metrics as well as detailed parameter settings.594

C.1 Hardware and Software Specifications595

All codes are programmed in Python 3.8.13 and PyTorch 1.12.1. All experiments are performed on a596

Linux server with 96 Intel Xeon Gold 6240R CPUs and 4 Nvidia Tesla V100 SXM2 GPUs with 32597

GB memory.598
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Algorithm 1: FATE

Given :an undirected graph G = {A,X}, the set of training nodes Vtrain, fairness-related
auxiliary information matrix F, total budget B, budget in step i δi, the bias function b,
number of pre-training epochs T ;

Find : the poisoned graph G̃;
1 poisoned graph G̃ ← G, cumulative budget ∆← 0, step counter i← 0;
2 while ∆ < B do
3 ∇G̃b← 0;
4 for t = 1 to T do
5 update Θ(t) to Θ(t+1) with a gradient-based optimizer (e.g., Adam);
6 end
7 get Y(T ) and Θ(T );
8 compute meta-gradient ∇Gb← ∇Θ(T )b

(
Y,Θ(T ),F

)
· ∇GΘ

(T );
9 if attack the adjacency matrix then

10 compute the derivative∇Ãb← ∇Ãb+
(
∇Ãb

)T − diag
(
∇Ãb

)
;

11 end
12 if discretized poisoning attack then
13 compute the poisoning preference matrix∇Ã by Eq. (7);
14 select the edges to poison in∇Ã with budget δi by Eq. (8);
15 update the corresponding entries in G̃;
16 else
17 update G̃ by Eq. (6) with budget δi;
18 end
19 ∆← ∆+ δi;
20 i← i+ 1;
21 end
22 return G̃;

C.2 Dataset Descriptions599

We use three widely-used benchmark datasets for fair graph learning: Pokec-z, Pokec-n and Bail.600

For each dataset, we use a fixed random seed to split the dataset into training, validation and test sets601

with the split ratio being 50%, 25%, and 25%, respectively. The statistics of the datasets, including602

the number of nodes (# Nodes), the number of edges (# Edges), the number of features (# Features),603

the sensitive attribute (Sensitive Attr.) and the label (Label), are summarized in Table 3.604

• Pokec-z and Pokec-n are two datasets collected from the Slovakian social network Pokec, each of605

which represents a sub-network of a province. Each node in these datasets is a user belonging to606

two major regions of the corresponding provinces, and each edge is the friendship relationship607

between two users. The sensitive attribute is the user region, and the label is the working field of a608

user.609

• Bail is a similarity graph of criminal defendants during 1990 – 2009. Each node is a defendant610

during this time period. Two nodes are connected if they share similar past criminal records and611

demographics. The sensitive attribute is the race of the defendant, and the label is whether the612

defendant is on bail or not.613

Table 3: Statistics of the datasets.
Dataset Pokec-z Pokec-n Bail
# Nodes 7, 659 6, 185 18, 876
# Edges 20, 550 15, 321 311, 870

# Features 276 265 17
Sensitive Attr. Region Region Race

Label Working field Working field Bail decision
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C.3 Descriptions of Baseline Methods614

We compare the proposed FATE with baseline methods, including Random, DICE [44] and FA-615

GNN [19]. Descriptions of the baseline methods are as follows.616

• Random is a heuristic approach that randomly inserts edges to the input graph.617

• DICE [44] attacks the utility of a graph learning algorithm by randomly deleting edges within a618

community and inserting edges across different communities. Similar to [49, 19], the community619

is defined as the group of nodes with the same class label.620

• FA-GNN [19] aims to attack the fairness of a graph neural network by adversarially inserting621

edges that connect nodes in consideration of their class labels and sensitive attribute values.622

C.4 Evaluation Metrics623

In our experiments, we aim to evaluate how effective FATE is in (1) attacking the fairness and (2)624

maintaining the utility of node classification.625

To evaluate the performance of FATE in attacking the group fairness, we evaluate the effectiveness626

using ∆SP, which is defined as follows.627

∆SP = |P (ŷ = 1 | s = 1)− P (ŷ = 1 | s = 0)| (16)

where s is the sensitive attribute value of a node and ŷ is the ground-truth and predicted class labels of628

a node. While to evaluate the performance of FATE in attacking the individual fairness, we evaluate629

the effectiveness using the InFoRM bias (Bias) measure [20], which is defined as follows.630

Bias =
∑

i∈Vtest

∑
j∈Vtest

S[i, j]∥Y[i, :]−Y[j, :]∥2F (17)

where Vtest is the set of test nodes and S is the oracle pairwise node similarity matrix. The intuition of631

Eq. (17) is to measure the squared difference between the learning results of two test nodes, weighted632

by their pairwise similarity.633

To evaluate the performance of FATE in maintaining the utility, we use micro F1 score (Micro F1),634

macro F1 score (Macro F1) and AUC score.635

C.5 Detailed Parameter Settings636

Poisoning the input graph. During poisoning attacks, we set a fixed random seed to control the637

randomness. The random seed used for each dataset in attacking group/individual fairness are638

summarized in Table 4.639

• Surrogate model training. We run all methods with a perturbation rate from 0.05 to 0.25 with640

a step size of 0.05. For FA-GNN [19], we follow its official implementation and use the same641

surrogate 2-layer GCN [26] with 16 hidden dimensions for poisoning attack.4. The surrogate GCN642

in FA-GNN is trained for 500 epochs with a learning rate 1e− 2, weight decay 5e− 4, and dropout643

rate 0.5. For FATE, we use a 2-layer linear GCN [45] with 16 hidden dimensions for poisoning644

attacks. And the surrogate linear GCN in FATE is trained for 500 epochs with a learning rate645

1e− 2, weight decay 5e− 4, and dropout rate 0.5.646

• Graph topology manipulation. For Random and DICE, we use the implementations provided in647

the deeprobust package with the default parameters to add the adversarial edges.5. For FA-GNN,648

we add adversarial edges that connect two nodes with different class labels and different sensitive649

attributes, which provides the most promising performance as shown in [19]. For FATE, suppose650

we poison the input graph in p (p > 1) attacking steps. Then the per-iteration attacking budget in651

Algorithm 1 is set as δ1 = 1 and δi =
r|E|−1
p−1 , ∀i ∈ {2, . . . , p}, where r is the perturbation rate652

and |E| is the number of edges. Detailed choices of p for each dataset in attacking group/individual653

fairness are summarized in Table 4.654

4https://github.com/mengcao327/attack-gnn-fairness
5https://deeprobust.readthedocs.io/
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Table 4: Parameter settings on the random seed for all baseline methods in poisoning attacks (Random
Seed) and the number of steps for poisoning attacks in FATE (Attacking Steps).

Dataset Fairness Definition Attacking Steps Random Seed

Pokec-n Statistical parity 3 25
Individual fairness 3 45

Pokec-z Statistical parity 3 25
Individual fairness 5 15

Bail Statistical parity 3 25
Individual fairness 3 5

Training the victim model. We use a fixed list of random seed ([0, 1, 2, 42, 100]) to train each victim655

model 5 times and report the mean and standard deviation. Regarding the victim models in group656

fairness attacks, we train a 2-layer GCN [26] for 400 epochs and a 2-layer FairGNN [11] for 2000657

epochs to evaluate the efficacy of fairness attacks. The hidden dimension, learning rate, weight658

decay and dropout rate of GCN and FairGNN are set to 128, 1e − 3, 1e − 5 and 0.5, respectively.659

The regularization parameters in FairGNN, namely α and β, are set to 100 and 1 for all datasets,660

respectively. Regarding the victim models in individual fairness attacks, we train a 2-layer GCN [26]661

and 2-layer InFoRM-GNN [20, 13] for 400 epochs. The hidden dimension, learning rate, weight662

decay and dropout rate of GCN and InFoRM-GNN are set to 128, 1e−3, 1e−5 and 0.5, respectively.663

The regularization parameter in InFoRM-GNN is set to 0.1 for all datasets.664

D Additional Experimental Results: Attacking Statistical Parity on Graph665

Neural Networks666

A – FATE with FairGNN as the victim model. Here, we study how robust FairGNN is in fairness667

attacks against statistical parity with linear GCN as the surrogate model. Note that FairGNN is a668

fairness-aware graph neural network that leverages adversarial learning to ensure statistical parity.669

Main results. Similar to Section 6.1, for FATE, we conduct fairness attacks via both edge flipping670

(FATE-flip in Table 5 and edge addition (FATE-add in Table 5). For all other baseline methods,671

edges are only added. From Table 5, we have the following key observations: (1) Even though the672

surrogate model is linear GCN without fairness consideration, FairGNN, which ensures statistical673

parity on graph neural networks, cannot mitigate the bias caused by fairness attacks and is vulnerable674

to fairness attack. (2) FATE-flip and FATE-add are effective and the most deceptive method in fairness675

attacks. (3) FATE-flip and FATE-add are the only methods that consistently succeed in fairness attacks,676

while all other baseline methods might fail in some cases (indicated by the underlined ∆SP in both677

tables). In short, even when the victim model is FairGNN (a fair graph neural network), our proposed678

FATE framework are effective in fairness attacks while being the most deceptive (i.e., highest micro679

F1 score).680

Effect of the perturbation rate. From Table 5, we can find out that: (1) ∆SP tends to increase when681

the perturbation rate increases, indicating the effectiveness of FATE-flip and FATE-add for attacking682

fairness. (2) There is no clear correlation between the perturbation rate and the micro F1 scores of683

FATE-flip and FATE-add, meaning that they are deceptive in maintaining the utility. As a consequence,684

FATE is effective and deceptive in attacking fairness of FairGNN across different perturbation rates.685

B – Performance evaluation under different utility metrics. Here we provide additional evaluation686

results of utility using macro F1 score and AUC score. From Tables 6 and 7, we can see that macro F1687

scores and AUC scores are less impacted by different perturbation rates. Thus, it provide additional688

evidence that our proposed FATE framework can achieve deceptive fairness attacks by achieving689

comparable or even better utility on the semi-supervised node classification.690

17



Table 5: Effectiveness of attacking group fairness on FairGNN. FATE poisons the graph via both edge
flipping (FATE-flip) and edge addition (FATE-add) while all other baselines poison the graph via edge
addition. Higher is better (↑) for micro F1 score (Micro F1) and ∆SP. Bold font indicates the success
of fairness attack (i.e., bias is increased after attack) with the highest micro F1 score. Underlined cell
indicates the failure of fairness attack (i.e., ∆SP is decreased after attack).

Dataset Ptb. Random DICE FA-GNN FATE-flip FATE-add
Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑)

Pokec-n

0.00 68.2± 0.4 6.7± 2.0 68.2± 0.4 6.7± 2.0 68.2± 0.4 6.7± 2.0 68.2± 0.4 6.7± 2.0 68.2± 0.4 6.7± 2.0
0.05 67.4± 0.8 8.2± 2.5 66.2± 0.6 9.9± 1.7 66.7± 1.2 2.8± 1.3 68.4± 0.2 8.9± 1.8 68.4± 0.2 8.9± 1.8
0.10 67.5± 0.5 8.3± 1.5 66.3± 0.4 9.5± 2.1 66.6± 0.5 5.9± 1.3 68.5± 0.4 9.5± 1.4 68.5± 0.4 9.5± 1.4
0.15 65.9± 0.6 10.4± 2.3 65.4± 0.6 9.2± 2.6 64.8± 1.6 9.0± 3.3 68.5± 0.8 10.5± 2.6 68.5± 0.8 10.5± 2.6
0.20 65.4± 0.5 10.0± 1.5 65.0± 0.4 4.4± 2.5 65.2± 0.2 11.6± 2.6 68.3± 0.3 10.7± 2.3 68.3± 0.3 10.7± 2.3
0.25 65.8± 1.1 7.5± 1.9 63.8± 0.3 5.4± 1.8 64.8± 0.8 14.2± 2.3 68.5± 0.3 9.1± 3.6 68.5± 0.3 9.1± 3.6

Pokec-z

0.00 68.7± 0.3 7.0± 0.9 68.7± 0.3 7.0± 0.9 68.7± 0.3 7.0± 0.9 68.7± 0.3 7.0± 0.9 68.7± 0.3 7.0± 0.9
0.05 67.3± 0.6 8.7± 2.8 67.5± 0.4 8.5± 1.3 67.1± 1.0 1.7± 1.3 68.7± 0.4 8.0± 0.9 68.7± 0.4 8.0± 0.9
0.10 67.1± 0.2 8.6± 2.7 66.1± 0.3 7.0± 2.9 65.9± 0.8 6.8± 1.7 68.5± 0.5 9.0± 1.8 68.5± 0.5 9.0± 1.8
0.15 66.8± 0.8 8.9± 2.2 65.2± 0.5 6.6± 1.4 64.9± 0.9 10.0± 1.7 68.7± 0.5 9.5± 2.2 68.7± 0.5 9.5± 2.2
0.20 66.8± 0.7 8.6± 3.0 63.7± 0.6 6.6± 2.9 64.6± 0.8 14.2± 3.1 68.8± 0.2 10.4± 1.6 68.8± 0.2 10.4± 1.6
0.25 66.4± 0.4 7.9± 2.8 63.4± 0.4 6.0± 2.8 64.0± 1.1 14.0± 2.0 68.5± 0.3 10.3± 2.1 68.5± 0.3 10.3± 2.1

Bail

0.00 93.9± 0.1 8.4± 0.2 93.9± 0.1 8.4± 0.2 93.9± 0.1 8.4± 0.2 93.9± 0.1 8.4± 0.2 93.9± 0.1 8.4± 0.2
0.05 90.6± 1.2 8.3± 0.2 89.1± 1.2 8.3± 0.3 89.1± 2.0 10.8± 1.1 93.6± 0.1 9.2± 0.2 93.6± 0.1 9.1± 0.2
0.10 90.1± 2.0 8.5± 0.6 88.1± 1.8 8.2± 0.3 87.3± 2.2 12.2± 1.2 93.4± 0.1 9.3± 0.2 93.4± 0.1 9.3± 0.2
0.15 90.0± 2.0 8.1± 0.5 86.9± 2.0 8.1± 0.5 87.8± 2.0 10.9± 2.1 93.3± 0.1 9.2± 0.3 93.3± 0.1 9.2± 0.3
0.20 89.2± 2.4 8.4± 0.7 85.3± 2.7 8.2± 0.4 86.0± 2.7 11.7± 2.4 93.1± 0.2 9.3± 0.3 93.0± 0.1 9.4± 0.2
0.25 88.8± 2.3 8.2± 0.7 85.3± 3.3 7.9± 0.5 87.0± 1.9 8.5± 2.6 93.0± 0.1 9.2± 0.4 93.0± 0.2 9.3± 0.3

Table 6: Macro F1 score and AUC score of attacking group fairness on GCN. FATE poisons the graph
via both edge flipping (FATE-flip) and edge addition (FATE-add) while all other baselines poison the
graph via edge addition. Higher is better (↑) for macro F1 score (Macro F1) and AUC score (AUC).
Bold font indicates the highest macro F1 score or AUC score.

Dataset Ptb. Random DICE FA-GNN FATE-flip FATE-add
Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑)

Pokec-n

0.00 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5
0.05 65.7± 0.3 70.4± 0.4 64.9± 0.2 69.8± 0.3 64.9± 0.2 70.4± 0.2 66.0± 0.3 70.3± 0.6 66.0± 0.3 70.3± 0.6
0.10 64.6± 0.4 69.6± 0.3 63.4± 0.6 67.7± 0.3 64.1± 0.3 70.0± 0.1 66.1± 0.6 70.4± 0.6 66.1± 0.6 70.4± 0.6
0.15 65.1± 0.4 69.6± 0.1 62.8± 0.7 67.3± 0.4 64.3± 0.6 69.1± 0.5 66.1± 0.2 70.6± 0.6 66.1± 0.2 70.6± 0.6
0.20 64.5± 0.5 69.1± 0.1 60.9± 0.2 64.6± 0.2 63.5± 0.2 68.0± 0.2 66.4± 0.3 70.7± 0.4 66.4± 0.3 70.7± 0.4
0.25 64.5± 0.6 68.8± 0.1 59.7± 0.6 63.6± 0.6 65.0± 0.2 69.5± 0.3 66.3± 0.3 70.6± 0.6 66.3± 0.3 70.6± 0.6

Pokec-z

0.00 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3
0.05 68.5± 0.4 74.5± 0.4 67.2± 0.5 74.2± 0.3 67.9± 0.3 74.5± 0.2 68.6± 0.4 75.2± 0.4 68.6± 0.4 75.2± 0.4
0.10 68.5± 0.3 74.8± 0.3 66.3± 0.2 72.9± 0.1 67.5± 0.5 73.8± 0.3 68.6± 0.6 75.2± 0.3 68.6± 0.6 75.2± 0.3
0.15 67.8± 0.3 74.4± 0.3 65.3± 1.0 70.0± 0.8 66.1± 0.6 72.7± 0.2 68.9± 0.7 75.3± 0.2 68.9± 0.7 75.3± 0.2
0.20 68.2± 0.4 74.5± 0.6 62.6± 0.6 68.0± 0.9 66.1± 0.2 71.9± 0.1 68.4± 0.5 75.1± 0.3 68.4± 0.5 75.1± 0.3
0.25 68.0± 0.4 74.0± 0.4 63.4± 0.4 68.6± 0.6 65.3± 0.6 71.2± 0.3 68.4± 1.1 74.4± 1.4 68.4± 1.1 74.4± 1.4

Bail

0.00 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1
0.05 92.0± 0.2 95.3± 0.2 90.6± 0.3 93.8± 0.2 90.8± 0.1 94.4± 0.2 91.8± 0.1 97.1± 0.1 91.7± 0.1 97.1± 0.2
0.10 91.4± 0.2 94.7± 0.3 89.2± 0.1 92.2± 0.3 89.5± 0.1 93.5± 0.1 91.6± 0.2 96.9± 0.1 91.6± 0.2 96.9± 0.1
0.15 91.1± 0.2 94.2± 0.2 87.8± 0.2 91.1± 0.2 88.7± 0.3 92.5± 0.2 91.4± 0.2 96.9± 0.1 91.5± 0.1 96.9± 0.1
0.20 90.7± 0.2 94.1± 0.1 86.9± 0.1 90.2± 0.2 88.4± 0.1 92.2± 0.1 91.3± 0.2 96.8± 0.1 91.4± 0.2 96.8± 0.1
0.25 90.4± 0.2 93.4± 0.3 86.2± 0.1 89.2± 0.3 88.5± 0.2 92.0± 0.1 91.2± 0.1 96.8± 0.1 91.3± 0.2 96.8± 0.1

Table 7: Macro F1 score and AUC score of attacking group fairness on FairGNN. FATE poisons
the graph via both edge flipping (FATE-flip) and edge addition (FATE-add) while all other baselines
poison the graph via edge addition. Higher is better (↑) for macro F1 score (Macro F1) and AUC
score (AUC). Bold font indicates the highest macro F1 score or AUC score.

Dataset Ptb. Random DICE FA-GNN FATE-flip FATE-add
Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑)

Pokec-n

0.00 65.6± 0.3 70.4± 0.5 65.6± 0.3 70.4± 0.5 65.6± 0.3 70.4± 0.5 65.6± 0.3 70.4± 0.5 65.6± 0.3 70.4± 0.5
0.05 64.3± 0.6 68.3± 1.1 64.2± 0.8 68.4± 1.4 63.6± 0.7 68.2± 0.5 65.8± 0.5 70.7± 0.4 65.8± 0.5 70.7± 0.4
0.10 63.8± 0.2 67.3± 1.1 63.4± 0.8 67.4± 0.6 63.9± 0.4 68.3± 0.2 66.0± 0.7 70.8± 0.5 66.0± 0.7 70.8± 0.5
0.15 63.5± 0.2 67.8± 0.4 60.7± 0.7 65.2± 1.2 63.1± 0.6 67.2± 0.5 65.8± 1.0 70.8± 0.5 65.8± 1.0 70.8± 0.5
0.20 63.1± 0.6 67.8± 1.1 60.2± 1.0 63.7± 1.1 62.3± 0.6 66.7± 0.9 65.7± 0.7 70.4± 0.5 65.7± 0.7 70.4± 0.5
0.25 62.4± 0.3 66.8± 0.8 57.3± 0.4 61.8± 0.7 62.4± 1.4 67.6± 1.3 65.1± 1.2 70.1± 0.5 65.1± 1.2 70.1± 0.5

Pokec-z

0.00 68.4± 0.4 75.1± 0.3 68.4± 0.4 75.1± 0.3 68.4± 0.4 75.1± 0.3 68.4± 0.4 75.1± 0.3 68.4± 0.4 75.1± 0.3
0.05 66.3± 0.9 73.5± 0.9 66.4± 0.8 72.8± 1.2 66.5± 1.4 72.6± 1.4 68.4± 0.4 74.7± 0.9 68.4± 0.4 74.7± 0.9
0.10 66.0± 0.7 72.9± 1.1 64.9± 0.8 71.4± 0.4 65.2± 0.9 71.3± 1.7 68.2± 0.8 75.3± 0.8 68.2± 0.8 75.3± 0.8
0.15 66.0± 0.8 71.8± 2.1 63.9± 0.8 68.5± 1.5 63.4± 1.5 70.0± 1.8 68.3± 0.5 75.2± 0.6 68.3± 0.5 75.2± 0.6
0.20 65.6± 0.9 71.9± 1.4 62.1± 1.1 67.9± 1.8 63.7± 0.9 68.9± 1.6 68.3± 0.3 75.5± 0.3 68.3± 0.3 75.5± 0.3
0.25 65.0± 0.7 71.2± 1.7 61.9± 0.4 66.7± 1.1 62.8± 1.8 69.4± 1.5 68.0± 0.5 75.3± 0.3 68.0± 0.5 75.3± 0.3

Bail

0.00 93.3± 0.2 97.4± 0.1 93.3± 0.2 97.4± 0.1 93.3± 0.2 97.4± 0.1 93.3± 0.2 97.4± 0.1 93.3± 0.2 97.4± 0.1
0.05 89.5± 1.5 92.8± 1.8 87.8± 1.3 90.9± 1.5 87.8± 2.2 91.2± 1.8 93.0± 0.1 97.3± 0.1 93.0± 0.1 97.3± 0.1
0.10 89.1± 2.2 92.7± 2.5 86.7± 2.0 90.1± 1.0 85.6± 2.7 90.5± 1.7 92.7± 0.1 97.1± 0.1 92.7± 0.1 97.1± 0.1
0.15 88.8± 2.2 92.4± 2.5 85.2± 2.3 88.0± 2.8 86.1± 2.4 90.3± 2.2 92.6± 0.1 97.0± 0.1 92.6± 0.1 97.0± 0.1
0.20 87.8± 2.8 91.6± 2.5 83.2± 3.1 86.5± 3.6 84.1± 3.0 89.0± 1.5 92.5± 0.2 97.0± 0.1 92.3± 0.1 97.0± 0.1
0.25 87.5± 2.6 91.5± 2.6 83.3± 3.9 87.3± 3.7 85.1± 2.3 89.6± 1.3 92.3± 0.1 97.0± 0.1 92.3± 0.2 97.0± 0.1
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E Additional Experimental Results: Attacking Individual Fairness on Graph691

Neural Networks692

A – FATE with InFoRM-GNN as the victim model. InFoRM-GNN is an individually fair graph693

neural network that ensures individual fairness through regularizing the individual bias measure694

defined in Section 5. Here, we study how robust InFoRM-GNN is in fairness attacks against individual695

fairness with linear GCN as the surrogate model.696

Main results. We attack individual fairness using FATE via both edge flipping (FATE-flip in Table 8697

and edge addition (FATE-add in Table 8), whereas edges are only added for all other baseline methods.698

From Table 8, we can see that: (1) for Pokec-n and Pokec-z, FATE-flip and FATE-add are effective: they699

are the only methods that could consistently attack individual fairness across different perturbation700

rates; FATE-flip and FATE-add are deceptive by achieving comparable or higher micro F1 scores701

compared with the micro F1 score on the benign graph (when perturbation rate is 0.00). (2) For702

Bail, almost all methods fail the fairness attacks. A possible reason is that the adjacency matrix A of703

Bail is essentially a similarity graph, which causes pairwise node similarity matrix S being close to704

the adjacency matrix A. Even though FATE (and other baseline methods) add adversarial edges to705

attack individual fairness, regularizing the individual bias defined by S (a) not only helps to ensure706

individual fairness (b) but also provide useful supervision signal in learning a representative node707

representation due to the closeness between S and A. (3) Compared with the results in Table 2 where708

GCN is the victim model, InFoRM-GNN is more robust against fairness attacks against individual709

fairness due to smaller individual bias in Table 8.710

Effect of the perturbation rate. From Table 8, we can see that FATE can always achieve comparable711

or even better micro F1 scores across different perturbation rates. In the meanwhile, the correlation712

between the perturbation rate and the individual bias is relatively weak. One possible reason is that713

the individual bias is computed using the pairwise node similarity matrix, which is not impacted by714

poisoning the adjacency matrix. Though poisoning the adjacency matrix could affect the learning715

results, the goal of achieving deceptive fairness attacks (i.e., the lower-level optimization problem716

in FATE) may not cause the learning results obtained by training on the benign graph to deviate717

much from the learning results obtained by training on the poisoned graph. Consequently, a higher718

perturbation rate may have less impact on the computation of individual bias.719

Table 8: Effectiveness of attacking individual fairness on InFoRM-GNN. FATE poisons the graph
via both edge flipping (FATE-flip) and edge addition (FATE-add) while all other baselines poison the
graph via edge addition. Higher is better (↑) for micro F1 score (Micro F1) and InFoRM bias (Bias).
Bold font indicates the success of fairness attack (i.e., bias is increased after attack) with the highest
micro F1 score. Underlined cell indicates the failure of fairness attack (i.e., ∆SP is decreased after
attack).

Dataset Ptb. Random DICE FA-GNN FATE-flip FATE-add
Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑)

Pokec-n

0.00 68.0± 0.4 0.5± 0.1 68.0± 0.4 0.5± 0.1 68.0± 0.4 0.5± 0.1 68.0± 0.4 0.5± 0.1 68.0± 0.4 0.5± 0.1
0.05 67.3± 0.5 0.5± 0.0 67.0± 0.2 0.5± 0.0 68.3± 0.2 0.5± 0.0 68.4± 0.4 0.6± 0.1 68.3± 0.4 0.5± 0.1
0.10 67.0± 0.2 0.5± 0.1 65.5± 0.6 0.5± 0.1 67.2± 0.2 0.4± 0.0 68.3± 0.6 0.5± 0.1 68.4± 0.5 0.6± 0.1
0.15 66.7± 0.5 0.5± 0.1 63.8± 0.3 0.4± 0.0 66.1± 0.2 0.4± 0.0 68.3± 0.6 0.6± 0.1 68.1± 0.7 0.6± 0.1
0.20 66.9± 0.3 0.4± 0.1 63.7± 0.2 0.3± 0.0 66.5± 0.2 0.4± 0.0 67.9± 0.8 0.5± 0.1 68.1± 0.7 0.6± 0.1
0.25 66.6± 0.5 0.5± 0.0 62.2± 0.5 0.2± 0.1 65.1± 0.2 0.4± 0.0 68.7± 0.3 0.6± 0.0 68.5± 0.8 0.6± 0.1

Pokec-z

0.00 68.4± 0.5 0.5± 0.0 68.4± 0.5 0.5± 0.0 68.4± 0.5 0.5± 0.0 68.4± 0.5 0.5± 0.0 68.4± 0.5 0.5± 0.0
0.05 68.9± 0.2 0.6± 0.1 67.0± 0.6 0.6± 0.1 68.1± 0.7 0.5± 0.1 68.7± 0.7 0.7± 0.1 68.9± 0.5 0.6± 0.0
0.10 67.9± 0.2 0.6± 0.1 66.3± 0.4 0.5± 0.1 68.0± 0.6 0.5± 0.0 68.9± 0.6 0.6± 0.0 68.8± 0.6 0.6± 0.0
0.15 67.6± 0.3 0.6± 0.1 65.3± 0.4 0.4± 0.1 66.8± 0.3 0.5± 0.1 69.1± 0.5 0.6± 0.0 69.0± 0.7 0.6± 0.1
0.20 67.7± 0.5 0.6± 0.1 63.9± 0.6 0.3± 0.0 66.4± 0.6 0.4± 0.1 69.1± 0.2 0.6± 0.0 69.3± 0.3 0.6± 0.0
0.25 66.8± 0.4 0.5± 0.1 64.5± 0.3 0.2± 0.0 65.3± 0.4 0.4± 0.0 68.9± 0.7 0.6± 0.0 69.4± 0.4 0.6± 0.0

Bail

0.00 92.8± 0.1 1.7± 0.1 92.8± 0.1 1.7± 0.1 92.8± 0.1 1.7± 0.1 92.8± 0.1 1.7± 0.1 92.8± 0.1 1.7± 0.1
0.05 91.9± 0.1 0.4± 0.0 91.5± 0.1 1.6± 0.0 91.3± 0.1 1.5± 0.1 92.8± 0.3 1.7± 0.1 92.7± 0.1 1.6± 0.1
0.10 91.7± 0.1 0.3± 0.0 90.4± 0.1 1.4± 0.1 90.4± 0.2 1.5± 0.1 92.8± 0.1 1.6± 0.0 92.8± 0.1 1.6± 0.0
0.15 91.5± 0.1 0.3± 0.0 89.7± 0.1 1.4± 0.0 90.0± 0.1 1.7± 0.1 92.8± 0.0 1.6± 0.1 92.8± 0.1 1.6± 0.0
0.20 91.5± 0.1 0.3± 0.0 88.6± 0.2 1.3± 0.1 89.1± 0.1 1.7± 0.1 92.8± 0.1 1.6± 0.0 92.7± 0.1 1.5± 0.1
0.25 91.1± 0.2 0.3± 0.0 87.6± 0.2 1.3± 0.1 88.9± 0.1 1.8± 0.1 92.6± 0.1 1.6± 0.1 92.7± 0.0 1.6± 0.1

B – Performance evaluation under different utility metrics. Similar to Appendix D, we provide720

additional results on evaluating the utility of FATE in attacking individual fairness with macro F1721

score and AUC score. From Tables 9 and 10, we can draw a conclusion that FATE can achieve722

comparable or even better macro F1 scores and AUC scores for both GCN and InFoRM-GNN across723

different perturbation rates. It further proves the ability of FATE on deceptive fairness attacks in the724

task of semi-supervised node classification.725
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Table 9: Macro F1 score and AUC score of attacking individual fairness on GCN. FATE poisons
the graph via both edge flipping (FATE-flip) and edge addition (FATE-add) while all other baselines
poison the graph via edge addition. Higher is better (↑) for macro F1 score (Macro F1) and AUC
score (AUC). Bold font indicates the highest macro F1 score or AUC score.

Dataset Ptb. Random DICE FA-GNN FATE-flip FATE-add
Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑)

Pokec-n

0.00 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5
0.05 65.2± 0.3 70.1± 0.2 64.4± 0.4 69.5± 0.2 65.6± 0.6 71.1± 0.2 65.7± 0.4 70.1± 0.6 65.5± 0.3 70.2± 0.8
0.10 65.2± 0.3 69.6± 0.5 62.5± 0.3 66.9± 0.2 65.4± 0.6 70.2± 0.3 65.5± 0.3 70.2± 0.7 65.8± 0.5 70.7± 0.6
0.15 65.4± 0.2 69.4± 0.3 60.9± 0.5 64.8± 0.4 64.6± 0.2 69.4± 0.1 65.6± 0.4 70.0± 0.5 65.4± 0.1 69.8± 0.7
0.20 64.9± 0.2 69.6± 0.3 61.3± 0.2 65.5± 0.2 63.7± 0.5 69.0± 0.1 65.2± 0.3 69.7± 0.6 65.6± 0.6 70.2± 0.7
0.25 64.7± 0.1 69.4± 0.2 60.0± 0.3 63.5± 0.4 63.3± 0.5 68.4± 0.3 65.4± 0.6 69.7± 0.7 65.6± 0.8 69.8± 0.8

Pokec-z

0.00 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3
0.05 68.7± 0.4 75.0± 0.4 67.0± 0.5 73.8± 0.5 68.0± 0.4 75.1± 0.5 68.5± 0.5 75.4± 0.2 68.5± 0.3 75.2± 0.4
0.10 68.5± 0.1 75.1± 0.5 66.0± 0.5 72.5± 0.3 67.9± 0.6 74.4± 0.5 68.8± 0.5 75.5± 0.3 68.8± 0.4 75.6± 0.2
0.15 67.5± 0.4 74.4± 0.3 65.1± 0.4 71.0± 0.5 66.8± 0.4 72.6± 0.2 68.4± 0.5 75.5± 0.4 68.8± 0.7 75.6± 0.3
0.20 67.5± 0.4 74.7± 0.4 63.9± 0.3 69.4± 0.4 66.1± 0.1 71.8± 0.2 68.7± 0.5 75.5± 0.3 69.0± 0.4 75.6± 0.3
0.25 67.2± 0.3 74.1± 0.3 63.5± 0.4 68.5± 0.3 64.8± 0.4 70.5± 0.4 68.9± 0.3 75.6± 0.2 69.1± 0.3 75.7± 0.3

Bail

0.00 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1
0.05 91.2± 0.3 94.8± 0.2 90.9± 0.1 94.0± 0.2 90.3± 0.2 94.1± 0.2 92.3± 0.4 97.3± 0.1 92.1± 0.3 97.3± 0.1
0.10 90.6± 0.1 94.2± 0.3 89.0± 0.1 91.9± 0.2 89.1± 0.1 92.9± 0.3 92.3± 0.1 97.3± 0.4 92.2± 0.2 97.3± 0.1
0.15 90.3± 0.1 94.1± 0.2 88.0± 0.0 90.9± 0.2 88.6± 0.2 92.4± 0.3 92.4± 0.1 97.3± 0.0 92.3± 0.2 97.3± 0.1
0.20 90.2± 0.0 93.9± 0.1 87.1± 0.2 90.4± 0.2 87.9± 0.2 91.8± 0.2 92.4± 0.1 97.3± 0.0 92.4± 0.2 97.3± 0.1
0.25 90.9± 0.1 93.5± 0.2 85.9± 0.3 89.6± 0.3 87.6± 0.1 91.6± 0.2 92.2± 0.2 97.2± 0.1 92.2± 0.2 97.3± 0.1

Table 10: Macro F1 score and AUC score of attacking individual fairness on InFoRM-GNN. FATE poi-
sons the graph via both edge flipping (FATE-flip) and edge addition (FATE-add) while all other
baselines poison the graph via edge addition. Higher is better (↑) for macro F1 score (Macro F1) and
AUC score (AUC). Bold font indicates the highest macro F1 score or AUC score.

Dataset Ptb. Random DICE FA-GNN FATE-flip FATE-add
Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑)

Pokec-n

0.00 65.4± 0.4 70.5± 0.8 65.4± 0.4 70.5± 0.8 65.4± 0.4 70.5± 0.8 65.4± 0.4 70.5± 0.8 65.4± 0.4 70.5± 0.8
0.05 65.1± 0.3 69.9± 0.2 64.5± 0.4 69.3± 0.2 65.6± 0.3 70.8± 0.1 65.9± 0.4 70.7± 0.8 65.8± 0.5 70.5± 0.9
0.10 64.9± 0.2 69.6± 0.5 62.7± 0.4 67.0± 0.2 64.8± 0.4 69.8± 0.3 65.8± 0.5 70.3± 1.0 66.0± 0.4 70.9± 1.1
0.15 64.8± 0.4 69.6± 0.4 60.7± 0.2 64.8± 0.2 64.4± 0.1 69.2± 0.3 65.7± 0.6 70.3± 0.7 65.8± 0.4 70.3± 0.9
0.20 65.1± 0.2 69.5± 0.3 61.0± 0.1 65.4± 0.3 63.4± 0.4 69.0± 0.2 65.5± 0.8 70.2± 0.9 65.6± 0.6 70.5± 0.7
0.25 64.6± 0.3 69.6± 0.2 59.8± 0.3 63.4± 0.2 63.6± 0.3 68.6± 0.2 66.0± 0.5 70.8± 0.3 65.9± 0.5 70.4± 0.8

Pokec-z

0.00 68.3± 0.4 75.2± 0.2 68.3± 0.4 75.2± 0.2 68.3± 0.4 75.2± 0.2 68.3± 0.4 75.2± 0.2 68.3± 0.4 75.2± 0.2
0.05 68.6± 0.2 75.1± 0.3 66.9± 0.5 73.4± 0.4 67.8± 0.6 75.0± 0.3 68.6± 0.7 75.1± 0.6 68.7± 0.4 75.4± 0.3
0.10 67.6± 0.2 74.3± 0.4 66.1± 0.4 72.1± 0.8 67.7± 0.6 73.9± 0.6 68.6± 0.6 75.6± 0.3 68.6± 0.6 75.5± 0.3
0.15 67.2± 0.3 74.1± 0.4 64.9± 0.5 71.2± 0.3 66.7± 0.3 72.3± 0.1 68.9± 0.4 75.4± 0.4 68.9± 0.6 75.4± 0.4
0.20 67.3± 0.6 74.4± 0.4 63.9± 0.6 69.4± 0.5 66.0± 0.5 71.7± 0.2 69.0± 0.2 75.5± 0.2 69.2± 0.4 75.4± 0.4
0.25 66.3± 0.4 73.9± 0.4 63.9± 0.6 68.9± 0.4 65.0± 0.5 70.8± 0.2 68.8± 0.7 75.6± 0.3 69.3± 0.4 75.8± 0.1

Bail

0.00 91.9± 0.1 97.2± 0.0 91.9± 0.1 97.2± 0.0 91.9± 0.1 97.2± 0.0 91.9± 0.1 97.2± 0.0 91.9± 0.1 97.2± 0.0
0.05 91.0± 0.1 94.2± 0.2 90.5± 0.1 93.9± 0.1 90.4± 0.1 94.2± 0.1 92.0± 0.0 97.1± 0.1 91.9± 0.2 97.0± 0.2
0.10 90.7± 0.2 93.9± 0.3 89.3± 0.1 92.4± 0.3 89.4± 0.2 93.3± 0.1 92.0± 0.1 97.0± 0.0 91.9± 0.1 97.0± 0.0
0.15 90.5± 0.1 93.8± 0.3 88.4± 0.1 91.4± 0.3 88.8± 0.2 92.4± 0.1 92.0± 0.1 97.0± 0.0 91.9± 0.2 97.0± 0.1
0.20 90.5± 0.2 93.7± 0.2 87.3± 0.2 90.5± 0.3 87.8± 0.1 91.8± 0.1 92.0± 0.1 96.9± 0.0 91.9± 0.1 96.8± 0.1
0.25 90.1± 0.2 93.4± 0.3 85.9± 0.2 89.1± 0.5 87.4± 0.1 91.4± 0.1 91.8± 0.1 96.8± 0.1 91.9± 0.1 96.9± 0.0
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F Tranferability of Fairness Attacks by FATE726

For the evaluation results shown in Sections 6.1 and 6.2 as well as Appendices D and E, both727

the surrogate model (linear GCN) and the victim models (i.e., GCN, FairGNN, InFoRM-GNN)728

are convolutional aggregation-based graph neural networks. In this section, we aim to test the729

transferability of FATE by generating poisoned graphs on the convolutional aggregation-based730

surrogate model (i.e., linear GCN) and testing on graph attention network (GAT), which is a non-731

convolutional aggregation-based graph neural network.732

More specifically, we train a graph attention network (GAT) with 8 attention heads for 400 epochs.733

The hidden dimension, learning rate, weight decay and dropout rate of GAT are set to 64, 1e − 3,734

1e− 5 and 0.5, respectively.735

The results on attacking statistical parity and individual fairness with GAT as the victim model736

are shown in Table 11. Even though the surrogate model used by the attacker is a convolutional737

aggregation-based linear GCN, from the table, it is clear that FATE can consistently succeed in (1)738

effective fairness attack by increasing ∆SP and the individual bias (Bias) and (2) deceptive attack739

by offering comparable or even better micro F1 score (Micro F1) when the victim model is not a740

convolutional aggregation-based model. Thus, it shows that the adversarial edges flipped/added by741

FATE is able to transfer to graph neural networks with different type of aggregation function.742

Table 11: Transferability of attacking statical parity and individual fairness with FATE on GAT.
FATE poisons the graph via both edge flipping (FATE-flip) and edge addition (FATE-add). Higher is
better (↑) for micro F1 score (Micro F1) ∆SP and InFoRM bias (Bias).

Attacking Statistical Parity

Dataset Ptb. Pokec-n Pokec-z Bail
Micro F1 (↑) Bias (↑) Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑)

FATE-flip

0.00 63.8± 5.3 4.0± 3.2 68.2± 0.5 8.6± 1.1 89.7± 4.2 7.5± 0.6
0.05 63.9± 5.5 6.4± 5.1 68.3± 0.4 10.5± 1.3 90.1± 3.8 8.1± 0.6
0.10 63.6± 5.3 7.9± 6.7 67.8± 0.4 11.2± 1.7 90.3± 3.2 8.5± 0.6
0.15 63.7± 5.3 7.5± 6.1 68.2± 0.6 11.2± 1.5 90.2± 2.7 8.8± 0.3
0.20 64.1± 5.6 7.7± 6.3 67.8± 0.6 11.1± 0.9 90.0± 2.7 8.7± 0.6
0.25 63.6± 5.2 8.5± 7.0 68.0± 0.4 11.5± 1.2 89.9± 3.0 8.8± 0.5

FATE-add

0.00 63.8± 5.3 4.0± 3.2 68.2± 0.5 8.6± 1.1 89.7± 4.2 7.5± 0.6
0.05 63.9± 5.5 6.4± 5.1 68.3± 0.4 10.5± 1.3 90.2± 3.7 8.1± 0.7
0.10 63.6± 5.3 7.9± 6.7 67.8± 0.4 11.2± 1.7 90.3± 3.2 8.5± 0.6
0.15 63.7± 5.3 7.5± 6.1 68.2± 0.6 11.2± 1.5 90.3± 2.6 8.8± 0.3
0.20 64.1± 5.6 7.7± 6.3 67.8± 0.6 11.1± 0.9 90.1± 2.6 8.8± 0.5
0.25 63.6± 5.2 8.5± 7.0 68.0± 0.4 11.5± 1.2 89.9± 2.9 8.8± 0.5

Attacking Individual Fairness

Dataset Ptb. Pokec-n Pokec-z Bail
Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑)

FATE-flip

0.00 63.8± 5.3 0.4± 0.2 68.2± 0.5 0.5± 0.1 89.7± 4.2 2.5± 1.2
0.05 63.6± 5.3 0.5± 0.2 68.2± 0.8 0.6± 0.1 90.0± 4.2 2.7± 1.1
0.10 63.7± 5.3 0.5± 0.2 67.8± 0.5 0.6± 0.1 90.0± 4.0 2.8± 1.3
0.15 63.7± 5.4 0.5± 0.2 68.2± 0.5 0.6± 0.2 90.2± 3.6 2.8± 1.4
0.20 63.5± 5.1 0.5± 0.2 68.5± 0.5 0.6± 0.2 90.2± 3.4 2.8± 1.2
0.25 63.5± 5.1 0.5± 0.2 68.0± 0.6 0.6± 0.1 90.2± 3.1 2.7± 1.2

FATE-add

0.00 63.8± 5.3 0.4± 0.2 68.2± 0.5 0.5± 0.1 89.7± 4.2 2.5± 1.2
0.05 63.9± 5.4 0.5± 0.2 68.2± 0.7 0.6± 0.1 90.0± 4.6 2.7± 1.4
0.10 63.8± 5.4 0.5± 0.2 68.2± 0.5 0.6± 0.2 90.1± 4.0 2.8± 1.2
0.15 63.8± 5.4 0.5± 0.2 68.3± 0.2 0.6± 0.2 90.1± 3.9 2.8± 1.2
0.20 63.7± 5.3 0.5± 0.2 68.4± 0.3 0.6± 0.1 90.3± 3.2 2.8± 1.3
0.25 63.7± 5.3 0.5± 0.2 68.4± 0.3 0.6± 0.1 90.2± 3.1 2.8± 1.2
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G Further Discussions about FATE743

A – Relationship between fairness attacks and the impossibility theorem of fairness. The744

impossibility theorems show that some fairness definitions may not be satisfied at the same time.6745

However, this may not always be regarded as fairness attacks. To our best knowledge, the impossibility746

theorems prove that two fairness definitions (e.g., statistical parity and predictive parity) cannot be747

fully satisfied at the same time, i.e., biases for two fairness definitions are both zero). However, there748

is no formal theoretical guarantees that ensuring one fairness definition will always amplify the bias749

of another fairness definition. Such formal guarantees might be nontrivial and beyond the scope of750

our paper. As we pointed out in the abstract, the main goal of this paper is to provide insights into the751

adversarial robustness of fair graph learning and can shed light for designing robust and fair graph752

learning in future studies.753

B – Relationship between FATE and Metattack. FATE bears subtle differences with Metattack [50],754

which also utilize meta learning for adversarial attacks. Note that Metattack aims to degrade the755

utility of a graph neural network by maximizing the task-specific utility loss (e.g., cross entropy for756

node classification) in the upper-level optimization problem. Different from Metattack, FATE aims to757

attack the fairness instead of utility by setting the upper-level optimization problem as maximizing a758

bias function rather than a task-specific utility loss.759

6https://machinesgonewrong.com/fairness/
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