10°
X

102 F X
8 X
Q.
€ 10'¢ X
3 x°

100 X

107 Y

102 10° 10* 10° 108 107

log(dimension)

Figure 1: Time taken by our QN method (forward estimate only, N = 25) to perform 500 iterations VS dimension.
The problem is a random logistic regression. The algorithm scales well even for large scale problem (d ~ 5 - 10°): as
predicted by the theory, the log-log plot exhibits a clear linear dependence between the time taken and the dimension.
The limitation was the memory allocation of Matlab when creating the logistic regression problem.

10° 10°3 10°
2\
~ ~ \ 3\
- \ N
~
5, 1077 ~ r x \ £ .
= ~ - ——Gradient Descent - N —— Gradient Descent
s . 1 1g10 \ — -Forward Estimate Only |- 1 1g10 1 — =Forward Estimate Only||-
B B |\ Ibfgs minfunc B \ Ibfgs minfunc
10710 MY r = A -
Gradient Descent o \ '
— =Forward Estimate Only \ '
Ibfgs minfunc
107t T T T 10720+ T T 10720+ T T T
0 50 100 150 0 50 100 150 0 50 100 150 200
Time (sec) Time (sec) Time (sec)
T - .
|
|
04 ; 03 | 03 |
I # | -
—_
T 0.25 I 0.25 |
g ! g &
ki 03 | Z 02 ! =
= 5 - ! % = 02 *
£ ‘ £ £ ‘ ! 1
' | [I y |
& 02 0 % S 015 ! i Sots | ‘ ‘
| +
} | ul + = Y s
ot L = | | |
T 0.05 I I
. o 0.05 1
Gradient Forward Est. I-BFGS Gradient Forward Est. I-BFGS Gradient Forward Est. I-BFGS

Figure 2: Time comparison between the Gradient method, L-BFGS, and the QN method presented in our paper
(orthogonal forward estimate only). The problem is a logistic regression on the dataset Sid0. Top: time comparison
VS accuracy. Bottom: Box plot of the per-iteration time for each method. (Left to right) N = 5,25,100, where
N is the memory parameter of our method and L-BFGS. Gradient descent iterations are slower than BFGS for two
reasons: the backtracking line-search for GD, combined with keeping track of function values, may take up to 4x
the L-BFGS time. Overall, the time taken by the forward estimate only is comparable to gradient descent, and is
surprisingly worse when N is smaller. After investigation, this is because the condition in the backtracking line-
search is always ensured when the algorithm is close to a*, introducing less computation (this indicates a potential
super-linear convergence regime). Overall, our algorithm scales well with N and is much better than L-BFGS, despite
being a (very) suboptimal implementation.

