
10
2

10
3

10
4

10
5

10
6

10
7

log(dimension)

10
-1

10
0

10
1

10
2

10
3

lo
g

(
ti
m

e
 (

s
.)

)

Figure 1: Time taken by our QN method (forward estimate only, N = 25) to perform 500 iterations VS dimension.
The problem is a random logistic regression. The algorithm scales well even for large scale problem (d ≈ 5 · 106): as
predicted by the theory, the log-log plot exhibits a clear linear dependence between the time taken and the dimension.
The limitation was the memory allocation of Matlab when creating the logistic regression problem.

0 50 100 150

10
-15

10
-10

10
-5

10
0

0 50 100 150

10
-20

10
-10

10
0

0 50 100 150 200

10
-20

10
-10

10
0

Gradient Forward Est. l-BFGS

0.1

0.2

0.3

0.4

Gradient Forward Est. l-BFGS

0.05

0.1

0.15

0.2

0.25

0.3

Gradient Forward Est. l-BFGS

0.05

0.1

0.15

0.2

0.25

0.3

Figure 2: Time comparison between the Gradient method, L-BFGS, and the QN method presented in our paper
(orthogonal forward estimate only). The problem is a logistic regression on the dataset Sid0. Top: time comparison
VS accuracy. Bottom: Box plot of the per-iteration time for each method. (Left to right) N = 5, 25, 100, where
N is the memory parameter of our method and L-BFGS. Gradient descent iterations are slower than BFGS for two
reasons: the backtracking line-search for GD, combined with keeping track of function values, may take up to 4×
the L-BFGS time. Overall, the time taken by the forward estimate only is comparable to gradient descent, and is
surprisingly worse when N is smaller. After investigation, this is because the condition in the backtracking line-
search is always ensured when the algorithm is close to x⋆, introducing less computation (this indicates a potential
super-linear convergence regime). Overall, our algorithm scales well with N and is much better than L-BFGS, despite
being a (very) suboptimal implementation.

1

