
Published as a conference paper at ICLR 2021

CONVEX POTENTIAL FLOWS:
UNIVERSAL PROBABILITY DISTRIBUTIONS WITH
OPTIMAL TRANSPORT AND CONVEX OPTIMIZATION

Chin-Wei Huang
University of Montreal & Mila
chin-wei.huang@umontreal.ca

Ricky T. Q. Chen
University of Toronto & Vector Institute
rtqichen@cs.toronto.edu

Christos Tsirigotis
University of Montreal & Mila
christos.tsirigotis@umontreal.ca

Aaron Courville
University of Montreal, Mila & CIFAR Fellow
aaron.courville@umontreal.ca

ABSTRACT

Flow-based models are powerful tools for designing probabilistic models with
tractable density. This paper introduces Convex Potential Flows (CP-Flow), a
natural and efficient parameterization of invertible models inspired by the opti-
mal transport (OT) theory. CP-Flows are the gradient map of a strongly convex
neural potential function. The convexity implies invertibility and allows us to re-
sort to convex optimization to solve the convex conjugate for efficient inversion.
To enable maximum likelihood training, we derive a new gradient estimator of the
log-determinant of the Jacobian, which involves solving an inverse-Hessian vector
product using the conjugate gradient method. The gradient estimator has constant-
memory cost, and can be made effectively unbiased by reducing the error tolerance
level of the convex optimization routine. Theoretically, we prove that CP-Flows
are universal density approximators and are optimal in the OT sense. Our empiri-
cal results show that CP-Flow performs competitively on standard benchmarks of
density estimation and variational inference.

1 INTRODUCTION

Normalizing flows (Dinh et al., 2014; Rezende & Mohamed, 2015) have recently gathered much
interest within the machine learning community, ever since its recent breakthrough in modelling
high dimensional image data (Dinh et al., 2017; Kingma & Dhariwal, 2018). They are characterized
by an invertible mapping that can reshape the distribution of its input data into a simpler or more
complex one. To enable efficient training, numerous tricks have been proposed to impose structural
constraints on its parameterization, such that the density of the model can be tractably computed.

We ask the following question: “what is the natural way to parameterize a normalizing flow?” To
gain a bit more intuition, we start from the one-dimension case. If a function f : R → R is
continuous, it is invertible (injective onto its image) if and only if it is strictly monotonic. This
means that if we are only allowed to move the probability mass continuously without flipping the
order of the particles, then we can only rearrange them by changing the distance in between.

In this work, we seek to generalize the above intuition of monotone rearrangement in 1D. We do
so by motivating the parameterization of normalizing flows from an optimal transport perspective,
which allows us to define some notion of rearrangement cost (Villani, 2008). It turns out, if we
want the output of a flow to follow some desired distribution, under mild regularity conditions,
we can characterize the unique optimal mapping by a convex potential (Brenier, 1991). In light
of this, we propose to parameterize normalizing flows by the gradient map of a (strongly) convex
potential. Owing to this theoretical insight, the proposed method is provably universal and optimal;
this means the proposed flow family can approximate arbitrary distributions and requires the least
amount of transport cost. Furthermore, the parameterization with convex potentials allows us to
formulate model inversion and gradient estimation as convex optimization problems. As such, we

1

Published as a conference paper at ICLR 2021

make use of existing tools from the convex optimization literature to cheaply and efficiently estimate
all quantities of interest.

In terms of the benefits of parameterizing a flow as a gradient field, the convex potential is an
Rd → R function, which is different from most existing discrete-time flows which are Rd → Rd.
This makes CP-Flow relatively compact. It is also arguably easier to design a convex architecture,
as we do not need to satisfy constraints such as orthogonality or Lipschitzness; the latter two usually
require a direct or an iterative reparameterization of the parameters. Finally, it is possible to incor-
porate additional structure such as equivariance (Cohen & Welling, 2016; Zaheer et al., 2017) into
the flow’s parameterization, making CP-Flow a more flexible general purpose density model.

2 BACKGROUND: NORMALIZING FLOWS AND OPTIMAL TRANSPORT

Normalizing flows are characterized by a differentiable, invertible neural network f such that the
probability density of the network’s output can be computed conveniently using the change-of-
variable formula

pY (f(x)) = pX(x)

∣∣∣∣∂f(x)

∂x

∣∣∣∣−1 ⇐⇒ pY (y) = pX(f−1(y))

∣∣∣∣∂f−1(y)

∂y

∣∣∣∣ (1)

where the Jacobian determinant term captures the local expansion or contraction of the density near
x (resp. y) induced by the mapping f (resp. f−1), and pX is the density of a random variable X .
The invertibility requirement has led to the design of many special neural network parameterizations
such as triangular maps, ordinary differential equations, orthogonality or Lipschitz constraints.

Universal Flows For a general learning framework to be meaningful, a model needs to be flexible
enough to capture variations in the data distribution. In the context of density modeling, this cor-
responds to the model’s capability to represent arbitrary probability distributions of interest. Even
though there exists a long history of literature on universal approximation capability of deep neural
networks (Cybenko, 1989; Lu et al., 2017; Lin & Jegelka, 2018), invertible neural networks gener-
ally have limited expressivity and cannot approximate arbitrary functions. However, for the purpose
of approximating a probability distribution, it suffices to show that the distribution induced by a
normalizing flow is universal.

Among many ways to establish distributional universality of flow based methods (e.g. Huang et al.
2018; 2020b; Teshima et al. 2020; Kong & Chaudhuri 2020), one particular approach is to approx-
imate a deterministic coupling between probability measures. Given a pair of probability densities
pX and pY , a deterministic coupling is a mapping g such that g(X) ∼ pY if X ∼ pX . We seek to
find a coupling that is invertible, or at least can be approximated by invertible mappings.

Optimal Transport Let c(x, y) be a cost function. The Monge problem (Villani, 2008) pertains
to finding the optimal transport map g that realizes the minimal expected cost

Jc(pX , pY) = inf
g̃:g̃(X)∼pY

EX∼pX [c(X, g̃(X))] (2)

When the second moments of X and Y are both finite, and X is regular enough (e.g. having a
density), then the special case of c(x, y) = ||x − y||2 has an interesting solution, a celebrated
theorem due to Brenier (1987; 1991):

Theorem 1 (Brenier’s Theorem, Theorem 1.22 of Santambrogio (2015)). Let µ, ν be probability
measures with a finite second moment, and assume µ has a Lebesgue density pX . Then there exists
a convex potential G such that the gradient map g := ∇G (defined up to a null set) uniquely solves
the Monge problem in eq. (2) with the quadratic cost function c(x, y) = ||x− y||2.

Some recent works are also inspired by Brenier’s theorem and utilize a convex potential to param-
eterize a critic model, starting from Taghvaei & Jalali (2019), and further built upon by Makkuva
et al. (2019) who parameterize a generator with a convex potential and concurrently by Korotin
et al. (2019). Our work sets itself apart from these prior works in that it is entirely likelihood-based,
minimizing the (empirical) KL divergence as opposed to an approximate optimal transport cost.

2

Published as a conference paper at ICLR 2021

(a) (b) (c) (d)

Figure 1: Illustration of Convex Potential Flow. (a) Data x drawn from a mixture of Gaussians. (b) Learned
convex potential F . (c) Mesh grid distorted by the gradient map of the convex potential f = ∇F . (d) Encoding
of the data via the gradient map z = f(x). Notably, the encoding is the value of the gradient of the convex
potential. When the curvature of the potential function is locally flat, gradient values are small and this results
in a contraction towards the origin.

3 CONVEX POTENTIAL FLOWS

Given a strictly convex potential F , we can define an injective map (invertible from its image) via its
gradient f = ∇F , since the Jacobian of f is the Hessian matrix of F , and is thus positive definite.
In this section, we discuss the parameterization of the convex potential F (3.1), and then address
gradient estimation for CP-Flows (3.2). We examine the connection to other parameterization of
normalizing flows (3.3), and finally rigorously prove universality in the next section.

3.1 MODELING

Input Convex Neural Networks We use L(x) to denote a linear layer, and L+(x) to denote a
linear layer with positive weights. We use the (fully) input-convex neural network (ICNN, Amos
et al. (2017)) to parameterize the convex potential, which has the following form

F (x) = L+
K+1(s(zK)) + LK+1(x) zk := L+

k (s(zk−1)) + Lk(x) z1 := L1(x)

where s is a non-decreasing, convex activation function. In this work, we use softplus-type activation
functions, which is a rich family of activation functions that can be shown to uniformly approximate
the ReLU activation. See Appendix B for details.

Algorithm 1 Inverting CP-Flow.

1: procedure INVERT(F, y,CvxSolver)
2: Initialize x← y
3: def closure():
4: Compute loss: l← F (x)− y>x
5: return l
6: x← CvxSolver(closure, x)
7: return x

Invertibility and Inversion Procedure If the ac-
tivation s is twice differentiable, then the Hessian
HF is positive semi-definite. We can make it
strongly convex by adding a quadratic term Fα(x) =
α
2 ||x||

2
2 + F (x), such that HFα � αI � 0. This

means the gradient map fα = ∇Fα is injective onto
its image. Furthermore, it is surjective since for any
y ∈ Rd, the potential x 7→ Fα(x) − y>x has a
unique minimizer1 satisfying the first order condi-
tion ∇Fα(x) = y, due to the strong convexity and
differentiability. We refer to this invertible mapping fα as the convex potential flow, or the CP-Flow.
The above discussion also implies we can plug in a black-box convex solver to invert the gradient
map fα, which we summarize in Algorithm 1. Inverting a batch of independent inputs is as simple
as summing the convex potential over all inputs: since all of the entries of the scalar l in the mini-
batch are independent of each other, computing the gradient all l’s wrt all x’s amounts to computing
the gradient of the summation of l’s wrt all x’s. Due to the convex nature of the problem, a wide
selection of algorithms can be used with convergence guarantees (Nesterov, 1998). In practice, we
use the L-BFGS algorithm (Byrd et al., 1995) as our CvxSolver.

1The minimizer x∗ corresponds to the gradient map of the convex conjugate of the potential. See Appendix
A for a formal discussion.

3

Published as a conference paper at ICLR 2021

Estimating Log Probability Following equation (1), computing the log density for CP-Flows
requires taking the log determinant of a symmetric positive definite Jacobian matrix (as it is the
Hessian of the potential). There exists numerous works on estimating spectral densities (e.g. Tal-
Ezer & Kosloff, 1984; Silver & Röder, 1994; Han et al., 2018; Adams et al., 2018), of which this
quantity is a special case. See Lin et al. (2016) for an overview of methods that only require access
to Hessian-vector products. Hessian-vector products (hvp) are cheap to compute with reverse-mode
automatic differentiation (Baydin et al., 2017), which does not require constructing the full Hessian
matrix and has the same asymptotic cost as evaluating Fα.

In particular, the log determinant can be rewritten in the form of a generalized trace tr logH . Chen
et al. (2019a) limit the spectral norm (i.e. eigenvalues) of H and directly use the Taylor expansion
of the matrix logarithm. Since our H has unbounded eigenvalues, we use a more complex algorithm
designed for symmetric matrices, the stochastic Lanczos quadrature (SLQ; Ubaru et al., 2017). At
the core of SLQ is the Lanczos method, which computes m eigenvalues of H by first constructing
a symmetric tridiagonal matrix T ∈ Rm×m and computing the eigenvalues of T . The Lanczos
procedure only requires Hessian-vector products, and it can be combined with a stochastic trace
estimator to provide a stochastic estimate of our log probability. We chose SLQ because it has
shown theoretically and empirically to have low variance (Ubaru et al., 2017).

3.2 O(1)-MEMORY UNBIASED ∇ log detH ESTIMATOR

0

20

40

60

80

M
em

or
y

Us
ag

e
(G

B) 81.6

32.2

11.3
3.2

SLQ (m=50)
SLQ (m=20)
SLQ (m=10)
CG Backprop

Figure 2: Memory for training CIFAR-10.

We would also like to have an estimator for the gradi-
ent of the log determinant to enable variants of stochastic
gradient descent for optimization. Unfortunately, directly
backpropagating through the log determinant estimator is
not ideal. Two major drawbacks of directly differenti-
ating through SLQ are that it requires (i) differentiating
through an eigendecomposition routine and (ii) storing all
Hessian-vector products in memory (see fig. 2). Problem
(i) is more specific to SLQ, because the gradient of an
eigendecomposition is not defined when the eigenvalues
are not unique (Seeger et al., 2017). Consequently, we have empirically observed that differentiating
through SLQ can be unstable, frequently resulting in NaNs due to the eigendecomposition. Problem
(ii) will hold true for other algorithms that also estimate log detH with Hessian-vector products,
and generally the only difference is that a different numerical routine would need to be differenti-
ated through. Due to these problems, we do not differentiate through SLQ, but we still use it as an
efficient method for monitoring training progress.

Instead, it is possible to construct an alternative formulation of the gradient as the solution of a con-
vex optimization problem, foregoing the necessity of differentiating through an estimation routine
of the log determinant. We adapt the gradient formula from Chen et al. (2019a, Appendix C) to the
context of convex potentials. Using Jacobi’s formula∗ and the adjugate representation of the matrix
inverse†, for any invertible matrix H with parameter θ, we have the following identity:

∂
∂θ log detH = 1

detH
∂
∂θ detH

∗
= 1

detH tr
(
adj(H)∂H∂θ

) †
= tr

(
H−1 ∂H∂θ

)
= Ev

[
v>H−1 ∂H∂θ v

]
.

(3)

Notably, in the last equality, we used the Hutchinson trace estimator (Hutchinson, 1989) with a
Rademacher random vector v, leading to aO(1)-memory, unbiased Monte Carlo gradient estimator.

Computing the quantity v>H−1 in eq. (3) by constructing and inverting the full Hessian requires
d calls to an automatic differentiation routine and is too costly for our purposes. However, we can
recast this quantity as the solution of a quadratic optimization problem

arg min
z

{
1

2
z>Hz − v>z

}
(4)

which has the unique minimizer z∗ = H−1v since H is symmetric positive definite.

4

Published as a conference paper at ICLR 2021

Algorithm 2 Surrogate training objective.

1: procedure SURROGATEOBJ(F, x,CG)
2: Obtain the gradient f(x) , ∇xF (x)
3: Sample Rademacher random vector r
4: def hvp(v):
5: return v> ∂

∂xf(x)
6: z ← stop gradient (CG(hvp, r))
7: return hvp(z)>r

We use the conjugate gradient (CG) method,
which is specifically designed for solving the
unconstrained optimization problems in eq. (4)
with symmetric positive definite H . It uses only
Hessian-vector products and is straightforward
to parallelize. Conjugate gradient is guaranteed
to return the exact solution z∗ within d itera-
tions, and the error of the approximation is known
to converge exponentially fast ||zm − z∗||H ≤
2γm||z0 − z∗||H , where zm is the estimate after
m iterations. The rate of convergence γ < 1 relates to the condition number of H . For more details,
see Nocedal & Wright (2006, Ch. 5). In practice, we terminate CG when ||Hzm − v||∞ < τ is
satisfied for some user-controlled tolerance. Empirically, we find that stringent tolerance values are
unnecessary for stochastic optimization (see appendix F).

Estimating the full quantity in eq. (3) is then simply a matter of computing and differentiating a
scalar quantity (a surrogate objective) involving another Hessian-vector product: d

dθ

(
(zm)>Hv

)
,

where only H is differentiated through (since zm is only used to approximate v>H−1 as a modifier
of the gradient). We summarize this procedure in Algorithm 2. Similar to inversion, the hvp can
also be computed in batch by summing over the data index, since all entries are independent.

3.3 CONNECTION TO OTHER NORMALIZING FLOWS

Residual Flow For α = 1, the gradient map f1 resembles the residual flow (Behrmann et al.,
2019; Chen et al., 2019a). They require the residual block—equivalent to our gradient map f—to be
contractive (with Lipschitz constant strictly smaller than 1) as a sufficient condition for invertibility.
In contrast, we enforce invertibility by using strongly convex potentials, which guarantees that the
inverse of our flow is globally unique. With this, we do not pay the extra compute cost for having
to satisfy Lipschitz constraints using methods such as spectral normalization (Miyato et al., 2018).
Our gradient estimator is also derived similarly to that of Chen et al. (2019a), though we have the
benefit of using well-studied convex optimization algorithms for computing the gradients.

Sylvester Flow By restricting the architecture of our ICNN to one hidden layer, we can also re-
cover a form similar to Sylvester Flows. For a 1-hidden layer ICNN (K = 1) and α = 1, we have
F1 = 1

2 ||x||
2
2 + L+

2 (s(L1x)) + L2(x). Setting the weights of L2 to zero, we have

f1(x) = ∇xF1(x) = x+W>1 diag(w+
2)s′(W1x+ b1). (5)

We notice the above form bears a close resemblance to the Sylvester normalizing flow (Van Den Berg
et al., 2018) (with Q, R and R̃ from Van Den Berg et al. (2018) being equal to W>1 , diag(w+

2) and
I , respectively). For the Sylvester flow to be invertible, they require that R and R̃ be triangular and
Q be orthogonal, which is a computationally costly procedure. This orthogonality constraint also
implies that the number of hidden units cannot exceed d. This restriction to orthogonal matrices and
one hidden layer are for applying Sylvester’s determinant identity. In contrast, we do not require our
weight matrices to be orthogonal, and we can use any hidden width and depth for the ICNN.

Sigmoidal Flow Let s be the softplus activation function and σ = s′. Then for the 1-dimensional
case (d = 1) and α = 0 (without the residual connection), we have

∂

∂x
F0(x) =

∑
j=1

w1,jw
+
2,jσ(w1,jx+b1,j) =

∑
j=1

|w1,j |w+
2,jσ(|w1,j |x+sign(w1,j)b1,j)+const. (6)

which is equivalent to the sigmoidal flow of Huang et al. (2018) up to rescaling (since the weighted
sum is no longer a convex sum) and a constant shift, and is monotone due to the positive weights.
This correspondence is not surprising since a differentiable function is convex if and only if its
derivative is monotonically non-decreasing. It also means we can parameterize an increasing func-
tion as the derivative of a convex function, which opens up a new direction for parameterizing
autoregressive normalizing flows (Kingma et al., 2016; Huang et al., 2018; Müller et al., 2019; Jaini
et al., 2019; Durkan et al., 2019; Wehenkel & Louppe, 2019).

5

Published as a conference paper at ICLR 2021

Flows with Potential Parameterization Inspired by connections between optimal transport and
continuous normalizing flows, some works (Zhang et al., 2018; Finlay et al., 2020a; Onken et al.,
2020) have proposed to parameterize continuous-time transformations by taking the gradient of
a scalar potential. They do not strictly require the potential to be convex since it is guaranteed
to be invertible in the infinitesimal setting of continuous normalizing flows (Chen et al., 2018).
There exist works (Yang & Karniadakis, 2019; Finlay et al., 2020b; Onken et al., 2020) that have
applied the theory of optimal transport to regularize continuous-time flows to have low transport
cost. In contrast, we connect optimal transport with discrete-time normalizing flows, and CP-Flow
is guaranteed by construction to converge pointwise to the optimal mapping between distributions
without explicit regularization (see Section 4).

4 THEORETICAL ANALYSES

As explained in Section 2, the parameterization of CP-Flow is inspired by the Brenier potential.
So naturally we would hope to show that (1) CP-Flows are distributionally universal, and that (2)
the learned invertible map is optimal in the sense of the average squared distance the input travels
E[||x− f(x)||2]. Proofs of statements made in this section can be found in Appendices C and D.

To show (1), our first step is to show that ICNNs can approximate arbitrary convex functions.
However, convergence of potential functions does not generally imply convergence of the gradi-
ent fields. A classic example is the sequence Fn = sin(nx)/

√
n and the corresponding derivatives

fn = cos(nx)
√
n: Fn → 0 as n → ∞ but fn does not. Fortunately, convexity allows us to control

the variation of the gradient map (since the derivative of a convex function is monotone), so our
second step of approximation holds.

Theorem 2. Let Fn : Rd → R be differentiable convex functions and G : Rd → R be a proper
convex function. Assume Fn → G. Then for almost every x ∈ Rd, G is differentiable and fn(x) :=
∇Fn(x)→ ∇G(x) =: g(x).

Combining these two steps and Brenier’s theorem, we show that CP-Flow with softplus-type activa-
tion function is distributionally universal.

Theorem 3 (Universality). Given random variables X ∼ µ and Y ∼ ν, with µ being absolutely
continuous w.r.t. the Lebesgue measure, there exists a sequence of ICNN Fn with a softplus-type
activation, such that∇Fn ◦X → Y in distribution.

N.B. In the theorem we do not require the second moment to be finite, as for arbitrary random
variables we can apply the standard truncation technique and redistribute the probability mass so
that the new random variables are almost surely bounded. For probability measures with finite
second moments, we indeed use the gradient map of ICNN to approximate the optimal transport
map corresponding to the Brenier potential. In the following theorem, we show that the optimal
transport map is the only such mapping that we can approximate if we match the distributions.

Theorem 4 (Optimality). Let G be the Brenier potential of X ∼ µ and Y ∼ ν, and let Fn be a
convergent sequence of differentiable, convex potentials, such that ∇Fn ◦ X → Y in distribution.
Then ∇Fn converges almost surely to∇G.

The theorem states that in practice, even if we optimize according to some loss that traces the
convergence in distribution, our model is still able to recover the optimal transport map, as if we
were optimizing according to the transport cost. This allows us to estimate optimal transport maps
without solving the constrained optimization in (2). See Seguy et al. (2018) for some potential
applications of the optimal transport map, such as domain adaptation or domain translation.

5 EXPERIMENT

We use CP-Flow to perform density estimation (RHS of (1)) and variational inference (LHS of (1))
to assess its approximation capability, and the effectiveness of the proposed gradient estimator. All
the details of experiments can be found in Appendix E. Code is available at https://github.com/CW-
Huang/CP-Flow.

6

https://github.com/CW-Huang/CP-Flow
https://github.com/CW-Huang/CP-Flow

Published as a conference paper at ICLR 2021

data: x z = fiaf (x) z = fcp(x)
d = 8

d = 16

Figure 4: Approximating optimal transport map via maximum likelihood (minimizing KL divergence). In the
first figure on the left we show the data in 2 dimensions. The datapoints are colored according to their horizontal
values (x1). The flows fiaf and fcp are trained to transform the data into a standard Gaussian prior. In the
figures on the right, we plot the expected quadratic transportation cost versus the KL divergence for different
numbers of dimensionality. During training the KL is minimized, so the curves read from the right to the left.

ICNN Architecture Despite the universal property, having a poor parameterization can lead to
difficulties in optimization and limit the effective expressivity of the model. We propose an archi-
tectural enhancement of ICNN, defined as follows (note the change in notation: instead of writing
the pre-activations z, we use h to denote the activated units):

F aug(x) := L+
K+1(hK) + LK+1(x)

hk := concat([h̃k, h
aug
k]) h̃k := s(L+

k (hk−1) + Lk(x)) haugk = s(Laugk (x)) (7)

where half of the hidden units are directly connected to the input, so the gradient would have some
form of skip connection. We call this the input-augmented ICNN. Unless otherwise stated, we use
the input-augmented ICNN as the default architecture.

5.1 TOY EXAMPLES

Data MAF NAF CP-Flow

Figure 3: Learning toy densities.

Having distributional universality for a single
flow layer means that we can achieve high
expressiveness without composing too many
flows. We demonstrate this by fitting the den-
sity on some toy examples taken from Papa-
makarios et al. (2017) and Behrmann et al.
(2019). We compare with the masked au-
toregressive flow (MAF, Papamakarios et al.
(2017)) and the neural autoregressive flow
(NAF, (Huang et al., 2018)). Results are pre-
sented in fig. 3. We try to match the network
size for each data. All models fit the first data
well. As affine couplings cannot split probabil-
ity mass, MAF fails to fit to the second and third
datasets2. Although the last dataset is intrinsi-
cally harder to fit (as NAF, another universal density model, also fails to fit it well), the proposed
method still manages to learn the correct density with high fidelity.

5.2 APPROXIMATING OPTIMAL COUPLING

As predicted by Theorem 4, CP-Flow is guaranteed to converge to the optimal coupling minimizing
the expected quadratic cost. We empirically verify it by learning the Gaussian density and com-
paring the expected quadratic distance between the input and output of the flow against J||x−y||2
between the Gaussian data and the standard Gaussian prior (as there is a closed-form expression).
In fig. 4, we see that the transport cost gets closer to the optimal value when the learned density

2Behrmann et al. (2019) demonstrates one can potentially improve the affine coupling models by composing
many flow layers. But here we restrict the number of flow layers to be 3 or 5.

7

Published as a conference paper at ICLR 2021

Model POWER GAS HEPMASS MINIBOONE BSDS300

Real NVP (Dinh et al., 2017) -0.17 -8.33 18.71 13.55 -153.28
FFJORD (Grathwohl et al., 2018) -0.46 -8.59 14.92 10.43 -157.40
MADE (Germain et al., 2015) 3.08 -3.56 20.98 15.59 -148.85
MAF (Papamakarios et al., 2017) -0.24 -10.08 17.70 11.75 -155.69
TAN (Oliva et al., 2018) -0.48 -11.19 15.12 11.01 -157.03
NAF (Huang et al., 2018) -0.62 -11.96 15.09 8.86 -157.73

CP-Flow (Ours) -0.52 -10.36 16.93 10.58 -154.99

Table 1: Average test negative log-likelihood (in nats) of tabular datasets in Papamakarios et al. (2017) for
density estimation models (lower is better). Standard deviation is presented in the appendix E.4.

MNIST CIFAR-10

Model Bits/dim N. params Bits/dim N. params

Real NVP (Dinh et al., 2017) 1.05 N/A 3.49 N/A
Glow (Kingma & Dhariwal, 2018) 1.06 N/A 3.35 44.0M†

RQ-NSF (Durkan et al., 2019) — — 3.38 11.8M†

Residual Flow (Chen et al., 2019a) 0.97 16.6M‡ 3.28 25.2M‡

Coupling Block Ablation 1.02 3.1M 3.58 2.9M
Residual Block Ablation 1.04 2.9M 3.46 3.1M
CP-Flow (Ours) 1.02 2.9M 3.40 1.9M

Table 2: Negative log-likelihood (in bits) on held-out test data (lower is better). †Taken from Durkan et al.
(2019). ‡Obtained from official open source code.

approaches the data distribution (measured by the KL divergence). We compare against the linear
inverse autoregressive flow (Kingma et al., 2016), which has the capacity to represent the multivari-
ate Gaussian density, yet it does not learn the optimal coupling.

5.3 DENSITY ESTIMATION

We demonstrate the efficacy of our model and the proposed gradient estimator by performing density
estimation on the standard benchmarks.

Tabular Data We use the datasets preprocessed by Papamakarios et al. (2017). In table 1, we
report average negative log-likelihood estimates evaluated on held-out test sets, for the best hyper-
parameters found via grid search. The search was focused on the number of flow blocks, the width
and depth of the ICNN potentials. See appendix E.4 for details. Our models perform competi-
tively against alternative approaches in the literature. We also perform an ablation on the CG error
tolerance and ICNN architectures in appendix F.

Image Data Next, we apply CP-Flow to model the density of standard image datasets, MNIST
and CIFAR-10. For this, we use convolutional layers in place of fully connected layers. Prior works
have had to use large architectures, with many flow blocks composed together, resulting in a large
number of parameters to optimize. While we also compose multiple blocks of CP-Flows, we find
that CP-Flow can perform relatively well with fewer number of parameters (table 2). Notably, we
achieve comparable bits per dimension to Neural Spline Flows (Durkan et al., 2019)—another work
promoting fewer parameters—while having using around 16% number of parameters.

As prior works use different architectures with widely varying hyperparameters, we perform a more
careful ablation study using coupling (Dinh et al., 2014; 2017) and invertible residual blocks (Chen
et al., 2019a). We replace each of our flow blocks with the corresponding baseline. We find that
on CIFAR-10, the baseline flow models do not perform nearly as well as CP-Flow. We believe this
may be because CP-Flows are universal with just one flow block, whereas coupling and invertible
residual blocks are limited in expressivity or Lipschitz-constrained.

8

Published as a conference paper at ICLR 2021

5.4 AMORTIZING ICNN FOR VARIATIONAL INFERENCE

FREYFACES OMNIGLOT CALTECH

Gaussian 4.53 104.28 110.80
Planar 4.40 102.65 109.66
IAF 4.47 102.41 111.58
Sylvester 4.45 99.00 104.62

CP-Flow (vanilla) 4.47 102.06 106.53
CP-Flow (aug) 4.45 100.82 105.17

Table 3: Negative ELBO of VAE (lower is better).
Standard deviation reported in appendix E.6.

Normalizing flows also allow us to employ a larger,
more flexible family of distributions for variational
inference (Rezende & Mohamed, 2015). We repli-
cate the experiment conducted in Van Den Berg
et al. (2018) to enhance the variational autoencoder
(Kingma & Welling, 2013). For inference amor-
tization, we use the partially input convex neural
network from Amos et al. (2017), and use the out-
put of the encoder as the additional input for condi-
tioning. As table 3 shows, the performance of CP-
Flow is close to the best reported in Van Den Berg
et al. (2018) without changing the experiment setup.
This shows that the convex potential parameteriza-
tion along with the proposed gradient estimator can learn to perform accurate amortized inference.
Also, we show that replacing the vanilla ICNN with the input-augmented ICNN leads to improve-
ment of the likelihood estimates.

6 CONCLUSION

We propose a new parameterization of normalizing flows using the gradient map of a convex po-
tential. We make connections to the optimal transport theory to show that the proposed flow is a
universal density model, and leverage tools from convex optimization to enable efficient training
and model inversion. Experimentally, we show that the proposed method works reasonably well
when evaluated on standard benchmarks.

Furthermore, we demonstrate that the performance can be improved by designing better ICNN ar-
chitectures. We leave the exploration for a better ICNN and convolutional ICNN architecture to
improve density estimation and generative modeling for future research.

ACKNOWLEDGEMENTS

We would like to acknowledge the Python community (Van Rossum & Drake Jr, 1995; Oliphant,
2007) for developing the tools that enabled this work, including numpy (Oliphant, 2006; Van
Der Walt et al., 2011; Walt et al., 2011; Harris et al., 2020), PyTorch (Paszke et al., 2019), Mat-
plotlib (Hunter, 2007), seaborn (Waskom et al., 2018), pandas (McKinney, 2012), and SciPy (Jones
et al., 2014).

REFERENCES

Ryan P Adams, Jeffrey Pennington, Matthew J Johnson, Jamie Smith, Yaniv Ovadia, Brian Patton,
and James Saunderson. Estimating the spectral density of large implicit matrices. arXiv preprint
arXiv:1802.03451, 2018.

Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In International Confer-
ence on Machine Learning, pp. 146–155, 2017.

Atılım Günes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
Automatic differentiation in machine learning: a survey. The Journal of Machine Learning Re-
search, 18(1):5595–5637, 2017.

Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, and Jörn-Henrik Jacobsen.
Invertible residual networks. In International Conference on Machine Learning, pp. 573–582,
2019.

Jens Behrmann, Paul Vicol, Kuan-Chieh Wang, Roger Grosse, and Jörn-Henrik Jacobsen. Un-
derstanding and mitigating exploding inverses in invertible neural networks. arXiv preprint
arXiv:2006.09347, 2020.

9

Published as a conference paper at ICLR 2021

Yann Brenier. Décomposition polaire et réarrangement monotone des champs de vecteurs. CR Acad.
Sci. Paris Sér. I Math., 305:805–808, 1987.

Yann Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Commu-
nications on pure and applied mathematics, 44(4):375–417, 1991.

Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory algorithm for
bound constrained optimization. SIAM Journal on scientific computing, 16(5):1190–1208, 1995.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in neural information processing systems, pp. 6571–6583,
2018.

Ricky T. Q. Chen, Jens Behrmann, David K Duvenaud, and Jörn-Henrik Jacobsen. Residual flows
for invertible generative modeling. In Advances in Neural Information Processing Systems, pp.
9916–9926, 2019a.

Yize Chen, Yuanyuan Shi, and Baosen Zhang. Optimal control via neural networks: A convex
approach. In International Conference on Learning Representations, 2019b.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In Conference on Computer Vision and Pattern Recognition, 2014.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International confer-
ence on machine learning, pp. 2990–2999, 2016.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components esti-
mation. arXiv preprint arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. In
International Conference on Learning Representations, 2017.

Vincent Dumoulin, Ethan Perez, Nathan Schucher, Florian Strub, Harm de Vries, Aaron Courville,
and Yoshua Bengio. Feature-wise transformations. Distill, 3(7):e11, 2018.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. In
Advances in Neural Information Processing Systems, pp. 7511–7522, 2019.

Chris Finlay, Augusto Gerolin, Adam M Oberman, and Aram-Alexandre Pooladian. Learning nor-
malizing flows from entropy-kantorovich potentials. arXiv preprint arXiv:2006.06033, 2020a.

Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam M Oberman. How to train your
neural ode: the world of jacobian and kinetic regularization. In International Conference on
Machine Learning, 2020b.

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoencoder
for distribution estimation. In Proceedings of the 32nd International Conference on Machine
Learning, volume 37 of Proceedings of Machine Learning Research, pp. 881–889. PMLR, 07–09
Jul 2015.

Ian Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio. Maxout
networks. In International conference on machine learning, pp. 1319–1327. PMLR, 2013.

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. Ffjord:
Free-form continuous dynamics for scalable reversible generative models. In International Con-
ference on Learning Representations, 2018.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Insu Han, Haim Avron, and Jinwoo Shin. Stochastic chebyshev gradient descent for spectral opti-
mization. In Advances in Neural Information Processing Systems, pp. 7386–7396, 2018.

10

Published as a conference paper at ICLR 2021

Charles R Harris, K Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array program-
ming with numpy. Nature, 585(7825):357–362, 2020.

Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. Neural autoregressive
flows. In International Conference on Machine Learning, pp. 2078–2087, 2018.

Chin-Wei Huang, Laurent Dinh, and Aaron Courville. Augmented normalizing flows: Bridging
the gap between generative flows and latent variable models. arXiv preprint arXiv:2002.07101,
2020a.

Chin-Wei Huang, Laurent Dinh, and Aaron Courville. Solving ode with universal flows: Approx-
imation theory for flow-based models. In ICLR 2020 Workshop on Integration of Deep Neural
Models and Differential Equations, 2020b.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

John D Hunter. Matplotlib: A 2d graphics environment. Computing in science & engineering, 9(3):
90, 2007.

Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics-Simulation and Computation, 18(3):1059–1076,
1989.

Priyank Jaini, Kira A Selby, and Yaoliang Yu. Sum-of-squares polynomial flow. In International
Conference on Machine Learning, pp. 3009–3018, 2019.

Eric Jones, Travis Oliphant, and Pearu Peterson. {SciPy}: Open source scientific tools for {Python}.
2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In
Advances in neural information processing systems, pp. 10215–10224, 2018.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Im-
proved variational inference with inverse autoregressive flow. In Advances in neural information
processing systems, pp. 4743–4751, 2016.

Zhifeng Kong and Kamalika Chaudhuri. The expressive power of a class of normalizing flow mod-
els. arXiv preprint arXiv:2006.00392, 2020.

Alexander Korotin, Vage Egiazarian, Arip Asadulaev, Alexander Safin, and Evgeny Burnaev.
Wasserstein-2 generative networks. arXiv preprint arXiv:1909.13082, 2019.

Hongzhou Lin and Stefanie Jegelka. Resnet with one-neuron hidden layers is a universal approxi-
mator. In Advances in neural information processing systems, pp. 6169–6178, 2018.

Lin Lin, Yousef Saad, and Chao Yang. Approximating spectral densities of large matrices. SIAM
review, 58(1):34–65, 2016.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power of
neural networks: A view from the width. In Advances in neural information processing systems,
pp. 6231–6239, 2017.

Ashok Vardhan Makkuva, Amirhossein Taghvaei, Sewoong Oh, and Jason D Lee. Optimal transport
mapping via input convex neural networks. arXiv preprint arXiv:1908.10962, 2019.

Wes McKinney. Python for data analysis: Data wrangling with Pandas, NumPy, and IPython. ”
O’Reilly Media, Inc.”, 2012.

11

Published as a conference paper at ICLR 2021

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák. Neural im-
portance sampling. ACM Transactions on Graphics (TOG), 38(5):1–19, 2019.

Yurii Nesterov. Introductory lectures on convex programming volume i: Basic course. Lecture
notes, 3(4):5, 1998.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business Media,
2006.

Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

Travis E Oliphant. Python for scientific computing. Computing in Science & Engineering, 9(3):
10–20, 2007.

Junier Oliva, Avinava Dubey, Manzil Zaheer, Barnabas Poczos, Ruslan Salakhutdinov, Eric Xing,
and Jeff Schneider. Transformation autoregressive networks. In Proceedings of the 35th In-
ternational Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 3898–3907. PMLR, 10–15 Jul 2018.

Derek Onken, Samy Wu Fung, Xingjian Li, and Lars Ruthotto. Ot-flow: Fast and accurate continu-
ous normalizing flows via optimal transport. arXiv preprint arXiv:2006.00104, 2020.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. In Advances in Neural Information Processing Systems, pp. 2338–2347, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in neural information processing systems, pp.
8026–8037, 2019.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Interna-
tional Conference on Machine Learning, pp. 1530–1538, 2015.

R Tyrrell Rockafellar. Convex analysis. Number 28. Princeton university press, 1970.

Ludger Rüschendorf and Svetlozar T Rachev. A characterization of random variables with minimum
l2-distance. Journal of multivariate analysis, 32(1):48–54, 1990.

Filippo Santambrogio. Optimal transport for applied mathematicians. Birkäuser, NY, 55(58-63):94,
2015.

Matthias Seeger, Asmus Hetzel, Zhenwen Dai, Eric Meissner, and Neil D Lawrence. Auto-
differentiating linear algebra. arXiv preprint arXiv:1710.08717, 2017.

Vivien Seguy, Bharath Bhushan Damodaran, Remi Flamary, Nicolas Courty, Antoine Rolet, and
Mathieu Blondel. Large scale optimal transport and mapping estimation. In International Con-
ference on Learning Representations, 2018.

RN Silver and H Röder. Densities of states of mega-dimensional hamiltonian matrices. International
Journal of Modern Physics C, 5(04):735–753, 1994.

Amirhossein Taghvaei and Amin Jalali. 2-wasserstein approximation via restricted convex potentials
with application to improved training for gans. arXiv preprint arXiv:1902.07197, 2019.

Hillel Tal-Ezer and Ronnie Kosloff. An accurate and efficient scheme for propagating the time
dependent schrödinger equation. The Journal of chemical physics, 81(9):3967–3971, 1984.

12

Published as a conference paper at ICLR 2021

Takeshi Teshima, Isao Ishikawa, Koichi Tojo, Kenta Oono, Masahiro Ikeda, and Masashi Sugiyama.
Coupling-based invertible neural networks are universal diffeomorphism approximators. arXiv
preprint arXiv:2006.11469, 2020.

Shashanka Ubaru, Jie Chen, and Yousef Saad. Fast estimation of tr(f(A)) via Stochastic Lanczos
Quadrature. SIAM Journal on Matrix Analysis and Applications, 38(4):1075–1099, 2017.

Rianne Van Den Berg, Leonard Hasenclever, Jakub M Tomczak, and Max Welling. Sylvester nor-
malizing flows for variational inference. In 34th Conference on Uncertainty in Artificial In-
telligence 2018, UAI 2018, pp. 393–402. Association For Uncertainty in Artificial Intelligence
(AUAI), 2018.

Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a structure for
efficient numerical computation. Computing in Science & Engineering, 13(2):22, 2011.

Guido Van Rossum and Fred L Drake Jr. Python reference manual. Centrum voor Wiskunde en
Informatica Amsterdam, 1995.

Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media,
2008.

Stéfan van der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a structure for efficient
numerical computation. Computing in science & engineering, 13(2):22–30, 2011.

Michael Waskom, Olga Botvinnik, Drew O’Kane, Paul Hobson, Joel Ostblom, Saulius Lukauskas,
David C Gemperline, Tom Augspurger, Yaroslav Halchenko, John B. Cole, Jordi Warmenhoven,
Julian de Ruiter, Cameron Pye, Stephan Hoyer, Jake Vanderplas, Santi Villalba, Gero Kunter,
Eric Quintero, Pete Bachant, Marcel Martin, Kyle Meyer, Alistair Miles, Yoav Ram, Thomas
Brunner, Tal Yarkoni, Mike Lee Williams, Constantine Evans, Clark Fitzgerald, Brian, and Adel
Qalieh. mwaskom/seaborn: v0.9.0 (july 2018), July 2018. URL https://doi.org/10.
5281/zenodo.1313201.

Antoine Wehenkel and Gilles Louppe. Unconstrained monotonic neural networks. In Advances in
Neural Information Processing Systems, pp. 1545–1555, 2019.

Liu Yang and George Em Karniadakis. Potential flow generator with l2 optimal transport regularity
for generative models. arXiv preprint arXiv:1908.11462, 2019.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. In Advances in neural information processing systems, pp. 3391–
3401, 2017.

Linfeng Zhang, Lei Wang, et al. Monge-ampère flow for generative modeling. arXiv preprint
arXiv:1809.10188, 2018.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10 mil-
lion image database for scene recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2017.

13

https://doi.org/10.5281/zenodo.1313201
https://doi.org/10.5281/zenodo.1313201

Published as a conference paper at ICLR 2021

A INVERTIBILITY OF CP-FLOW

In this section, we formally discuss the invertibility of CP-Flow, and establish the connection to
convex conjugate (Legendre-Fenchel transform). We work with C2 convex potentials F : Rd → R;
i.e. F is convex and twice continuously differentiable. We first check that f := ∇F is injective if F
is strictly convex. This is because if F is twice differentiable and strictly convex, the Hessian matrix
H := ∇2F is symmetric positive definite, and thus z>Hz > 0 for any non-zero vector z. We then
have, for any x 6= y,

f(x)− f(y) =

∫
γ

H(γ)dγ =

∫ 1

0

H(y + t(x− y))(x− y)dt,

where we used the gradient theorem for the line integral on a path γ connecting x and y, and
substituted t 7→ y+ t(x− y) for t going from 0 to 1. Positive-definiteness implies (x− y)>(f(x)−
f(y)) > 0, and since x 6= y, f(x) 6= f(y).

Now we further assume F is strongly convex. Then for any y, Fy(x) := F (x)−x>y is also strongly
convex, which, by Taylor’s theorem, implies that we can place a quadratic lower bound on Fy and
thus Fy(x)→∞ whenever ||x|| → ∞. This means for a sufficiently large constant R, the sub-level
set SR := {x : Fy(x) ≤ R} is non-empty and compact. By the Weierstrass extreme value theorem,
Fy (restricted on SR) has a minimizer x∗, and it is also the global minimizer over Rd. Now lets
differentiate Fy at x∗, which gives ∇F (x∗) − y. The gradient must be equal to 0 by the first order
condition, meaning x∗ is the inverse point of y under f . Since this holds for any y ∈ Rd, f is
surjective.

Now recall the definition of the convex conjugate:

F ∗(y) := sup
x
x>y − F (x) = x∗>y − F (x∗),

where x∗ found by the above procedure depends on y. Note that x∗ is differentiable by the inverse
function theorem. Thus, differentiating F ∗ yields

∇yF ∗(y) = (∇yx∗)>y + x∗ − (∇yx∗)>∇F (x∗) = x∗

since∇F (x∗) = y. This means if y = f(x) = ∇xF (x), then x = ∇yF ∗(y); i.e. ∇F ∗ = (∇F)−1.

B SOFTPLUS TYPE ACTIVATION

In this section, we let r(x) = max(0, x) be the ReLU activation function.

Definition 1. We say a function s is of the softplus type if the following holds

(a) s ≥ r

(b) s is convex

(c) |s(x)− r(x)| → 0 as |x| → ∞

Note that a softplus-type activation function is necessarily continuous, non-decreasing, and uni-
formly approximating ReLU in the following sense:

|s(xa)/a− r(x)| → 0

uniformly for all x ∈ R as a→∞.

The following proposition characterizes a big family of softplus-type functions, and establishes a
close connection between softplus type functions and probability distribution functions.

Proposition 1. Let p be a probability density function of a random variable with mean zero. Then
the convolution s := p ∗ r is a softplus-type function. Moreover, s(x) =

∫ x
−∞ Fp(y)dy, where Fp is

the distribution function of p, and s is at least twice differentiable.

14

Published as a conference paper at ICLR 2021

Proof. We first prove a claim (i): xFp(x)→ 0 as x→ −∞. First, for x ≤ 0,

0 ≥ xFp(x) =

∫ x

−∞
xp(y)dy ≥

∫ x

−∞
yp(y)dy

Since 1y≤xyp(y)→ 0 as x→ −∞ and |1y≤xyp(y)| ≤ |yp(y)|, which is integrable by assumption,
the integral on the RHS of the above goes to 0 by the dominated convergence theorem.

We now show the identity. By definition, since
∫
yp(y)dy = 0

s(x) =

∫
max(x− y, 0)p(y)dy =

∫
max(x, y)p(y)dy

=

∫ x

−∞
xp(y)dy +

∫ ∞
x

yp(y)dy = xFp(x) +

∫ ∞
x

yp(y)dy (8)

where we’ve used claim (i) to evaluate xFp(x) as x→ −∞. On the other hand, integration by part
implies ∫ x

−∞
Fp(y)dy = yFp(y)

∣∣x
−∞ −

∫ x

−∞
yp(y)dy = xFp(x) +

∫ ∞
x

yp(y)dy (9)

Twice differentiability follows from the differentiability of Fp.

(a) Now since r(x) is convex, Jensen’s inequality gives

s(x) =

∫
r(y)p(x− y)dy = E[r(y)] ≥ r(E[y]) = r(x)

(b) s is convex because s′ = Fp is non-decreasing.

(c) To show that s ane r are asymptotically the same, we notice the integral on the RHS of (8) goes
to 0 as |x| → ∞ (by the dominated or monotone convergence theorem). It suffices to show xFp(x)
goes to 0 as x → −∞, which is just claim (i), and x − xFp(x) > 0 goes to 0 as x → ∞. To show
the latter, we can rewrite x − xFp(x) = x(1 − Fp(x)) =

∫∞
x
xp(y)dy, and the same argument as

the claim holds with a vanishing upper bound.

When p is taken to be the standard logistic density, the corresponding s = p ∗ r is simply the regular
softplus activation function. We list a few other softplus-type functions in table 4 and visualize them
in fig. 5. We experimented with the Gaussian-softplus and the logistic-softplus.

p(y) s := p ∗ r

Logistic exp(−x)
(1+exp(−x))2 log (1 + exp(x))

Laplace e−|x|

2 r(x) + e−|x|

2

Gaussian e−
x2

2√
2π

√
π
2 x erf

(
x√
2

)
+e−

x2

2 +
√

π
2 x√

2π

Table 4: Formula of some softplus-type functions. Figure 5: Softplus-type functions.

15

Published as a conference paper at ICLR 2021

C UNIVERSALITY PROOF

Notation: Given a convex set Ω ⊆ Rd, we let C(Ω) denote the set of continuous functions on Ω,
and C×(Ω) := {f ∈ C(Ω) : f is convex} denote the set of convex, continuous functions.

We first show that ICNNs with a suitable activation function are dense inC×. A similar result can be
found in Chen et al. (2019b), where they use a different constructive proof: first show that piecewise
maximum of affine functions, i.e. the maxout unit (Goodfellow et al., 2013), can approximate any
convex function, and then represent maxout using ICNN. We emphasize our construction is simpler
(see proof of Proposition 3).

The following proposition proves that functions that are pointwise maximum of affine functions, are
a dense subset of C×.

Proposition 2. Pointwise maximum of affine functions is dense in C×([0, 1]d).

Proof. Fix some ε > 0. Since f ∈ C×([0, 1]d) is uniformly continuous on [0, 1]d, there exists some
δ > 0 such that |f(x) − f(y)| < ε provided that ||x − y|| < δ. Let n be big enough such that
2−n < δ, and let X be the set of points whose coordinates sit on i2−n for some 1 ≤ i ≤ 2n− 1 (i.e.
there are |X | = (2n − 1)d points in X). For each y ∈ X , let Ly(x) := ∇f(y)>(x − y) + f(y) be
a supporting hyperplane of the graph of f , where ∇f(y) is a subgradient of f evaluated at y. Then
we have a convex approximation fε(x) := maxy∈X Ly(x) which bounds f from below. Moreover,
letting y|x := arg miny∈X ||x− y||, we have (for x 6∈ X),

f(x)− fε(x) = f(x)−max
y∈X

Ly(x)

≤ f(x)− Ly|x(x)

= f(x)− f(y|x)−
d∑
i=1

∇f(y|x)i(xi − y|x,i)

≤ f(x)− f(y|x) +

d∑
i=1

|∇f(y|x)i| · |xi − y|x,i|

≤ f(x)− f(y|x) +

d∑
i=1

ε

|xi − y|x,i|
· |xi − y|x,i|

≤ (d+ 1)ε

Since ε is arbitrary, this construction forms a sequence of approximations converging uniformly to
f from below.

The following proposition shows that maxout units can be equivalently represented by ICNN with
the ReLU activation, and thus entails the density of the latter (as well as ICNN with softplus activa-
tion).

Proposition 3. ICNN with ReLU or softplus-type activation is dense in C×([0, 1]d).

Proof. Let r(x) = max(0, x) be the ReLU activation funciton. Any convex piecewise linear func-
tion f(x) can be represented by f(x) = max(L1, ..., Lk) where Lj = a>j x+ bj , which can then be
reduced to

f(x) = r(max(L1 − Lk, ..., Lk−1 − Lk)) + Lk

= r(r(max(L1 − Lk−1, ..., Lk−2 − Lk−1)) + Lk−1 − Lk) + Lk

= zk

where zj := r(zj−1) +L′j for 2 ≤ j ≤ k, z1 = L1 −L2, L′j := Lj −Lj+1 for 2 ≤ j ≤ k − 1, and
L′k := Lk.

16

Published as a conference paper at ICLR 2021

Since by Proposition 2, pointwise maximum of affine functions is dense in C×, so is ICNN with
the ReLU activation function. The same holds for softplus since softplus can be used to uniformly
approximate ReLU.

Theorem 2. Let Fn : Rd → R be differentiable convex functions and G : Rd → R be a proper
convex function. Assume Fn → G. Then for almost every x ∈ Rd, G is differentiable and fn(x) :=
∇Fn(x)→ ∇G(x) =: g(x).

Proof. We let x be a differentiable point of G. Since convergence of derivatives wrt each coordinate
can be dealt with independently, we assume d = 1 without loss of generality. We can write fn as

fn(x) = lim
m
fnm(x) where fnm(x) =

Fn(x− 1/m)− Fn(x)

−1/m

The problem can be rephrased as proving 3

lim
n

lim
m
fnm = lim

m
lim
n
fnm (10)

Note that fnm is non-decreasing in m since Fn is convex, and thus fnm ≤ fn. Since fnm converges
to fn, for any ε > 0, we can find an integer µ(ε, n) such that for all m ≥ µ(ε, n), |fnm − fn| ≤ ε.
Let mk be a subsequence of {m ≥ 1} defined as mk = µ(2−k, n).

Then |fnmk+1
− fnmk | ≤ 2−k, which is integrable wrt the counting measure on positive integers k,

since ∫
2−k = lim

K→∞

K∑
k=1

2−k = 1

Thus, letting fnm0
= 0, by the Dominated Convergence Theorem, we have

lim
n

lim
K
fnmK = lim

n

∫
fnmk − fnmk−1

=

∫
lim
n
fnmk − fnmk−1

= lim
K

lim
n
fnmK

Although we are only looking at the limit of the subsequence mk, this is sufficient for (10), since
the LHS is equal to limn fn (since each Fn is differentiable), and by linearity of the limit, the RHS
is equal to limK

G(x−1/mK)−G(x)
−1/mK = g(x) (since G is differentiable at x by assumption).

Since the set of points over whichG is not differentiable is a set of measure zero (Rockafellar, 1970,
Thm. 25.5), the convergence holds almost everywhere.

Theorem 3 (Universality). Given random variables X ∼ µ and Y ∼ ν, with µ being absolutely
continuous w.r.t. the Lebesgue measure, there exists a sequence of ICNN Fn with a softplus-type
activation, such that∇Fn ◦X → Y in distribution.

Proof. Assume µ and ν have finite second moments. Since µ is absolutely continuous, by Brenier’s
theorem, there exists a convex function G : Rd → R such that ∇G(X)

d
= ν (where the gradient is

unique up to changes on a null set). By Proposition 3, there exists a sequence of ICNNFn converging
to G pointwise everywhere. Such a sequence can be found since we can let Fn approximate G with
a uniform error of 1/n on a compact domain [−n, n]d. Theorem 2 then implies the gradient map
fn := ∇Fn converges to ∇G pointwise almost everywhere. This implies the weak convergence of
the pushforward measure of fn ◦X .

Now remove the finite second moment assumption and let X and Y be random variables distributed
according to µ (with Lebesgue density p) and ν, respectively. Denote by Bk a ball of radius k > 0
centered at the origin, i.e. Bk := {x : ||x|| ≤ k}. Let Xk = X1X∈Bk + Uk1X 6∈Bk , where
Uk is an independent random variable distributed uniformly on Bk, and let µk be the law of Xk.
Then Xk → X almost surely as k → ∞, and µk is still absolutely continuous wrt the Lebesgue

3Note that there is an implicit dependency on x since the result is pointwise.

17

Published as a conference paper at ICLR 2021

measure, with its density being p(x) + 1
vol(Bk)

µ(||X|| > k) if ||x|| ≤ k or 0 otherwise. Let
Yk and νk be defined similarly (while νk may not be absolutely continuous wrt Lebesgue). From
above, since Xk and Yk are bounded and admit a finite second moment, we know fixing k, we
can find a sequence of fk,n = ∇Fk,n such that fk,n ◦ Xk → Yk in distribution as n → ∞.
Now since weak convergence is metrizable, choose nk to be large enough such that the distance
between the pushforward of fk,nk ◦Xk and νk is at most 1/k. An application of triangle inequality
of the weak metric implies fk,nk ◦ Xk → Y in distribution as k → ∞. Finally, note that since
{||fk,nk ◦Xk − fk,nk ◦X|| > ε} ⊆ {||X|| > k}, by monotonicity, we have

P
(

lim sup
k
||fk,nk ◦Xk − fk,nk ◦X|| > ε

)
≤ P

(
lim sup

k
||X|| > k

)
= 0 (11)

and thus ||fk,nk ◦Xk−fk,nk ◦X|| → 0 almost surely (where P is the underlying probability measure
of the measure space). By Lemma 1 of Huang et al. (2020b) (or equivalently Lemma 2 of Huang
et al. (2020a)), fk,nk ◦X converges in distribution to Y .

D OPTIMALITY PROOF

Theorem 4 (Optimality). Let G be the Brenier potential of X ∼ µ and Y ∼ ν, and let Fn be a
convergent sequence of differentiable, convex potentials, such that ∇Fn ◦ X → Y in distribution.
Then ∇Fn converges almost surely to∇G.

The result can be deduced from the fact that optimality is “stable” under weak limit; see for example,
Santambrogio (2015, Thm 1.50). We prove the special case of quadratic cost function.

Proof. We claim that if F is a convex potential such that Z = ∇F (X) has ν as its law, then
∇F ≡ ∇G almost surely. The proof of the claim is originally due to Rüschendorf & Rachev
(1990), but we present it here for completeness. Let Z ′ be another random variable distributed by ν.
Then by the Fenchel-Young inequality (applied to the convex potential F),

E[X>Z ′] ≤ E[F (X)+F ∗(Z ′)] = E[F (X)+F ∗(Z)] = E[F (X)+F ∗(∇F (X))] = E[X>∇F (X)]

This concludes the proof since ∇G uniquely solves the transportation problem, which is equivalent
to finding a transport map g̃ that maximizes the covariance:

E[||X − g̃(X)||2] = E[||X||2 + ||g̃(X)||2]− 2E[X>g̃(X)]

Let F∞ to be the pointwise limit of Fn. Then for any x1, x2 and t ∈ [0, 1],

F∞(tx1 + (1− t)x2) = lim
n→∞

Fn(tx1 + (1− t)x2)

≤ lim
n→∞

tFn(x1) + (1− t)Fn(x2)

= lim
n→∞

tFn(x1) + lim
n→∞

(1− t)Fn(x2) = tF∞(x1) + (1− t)F∞(x2)

That is, F∞ is convex. Now since Fn is a convergent sequence of convex functions, its gradient∇Fn
also converges pointwise almost everywhere to ∇F∞ by Theorem 2. Let ρ denote the Prokhorov
metric, which metrizes the weak convergence, and by abuse of notation, we write ρ(X,Y) to denote
the distance between the law of X and Y . Then

ρ(∇F∞(X), Y) ≤ ρ(∇F∞(X),∇Fn(X)) + ρ(∇Fn(X), Y)

which means ∇F∞(X) and Y have the same law, ν. Then by the claim, ∇F∞ ≡ ∇G, and thus
∇Fn → ∇G a.s. as n→∞.

18

Published as a conference paper at ICLR 2021

E EXPERIMENTAL DETAILS

E.1 ARCHITECTURE DETAILS

Initialization As ICNNs have positive weights, its initialization has a different dynamics than a
standard feed-forward network. If not stated otherwise, all parameters are initialized using standard
PyTorch modules (Paszke et al., 2019). To parameterize positive weights, we modify the weight
parameters of a standard linear layer with the softplus activation. We then divide all the weights by
the total number of incoming units, so that the average magnitude of each hidden unit will not grow
as the dimensionality of the previous layer increases.

In addition, we reparameterize the CP-Flow Fα as Fw0,w1 defined as

Fw0,w1
= s(w0)||x||2/2 + s(w1)F (x)

where s is the regular (logistic) softplus. w0 is initialized to be s−1(1), and w1 is initialized to be 0
so Fw0,w1 is closer to the identity map.

Finally, we insert the ActNorm layer (Kingma & Dhariwal, 2018) everywhere before an activation
function is applied with the data-dependent initialization.

Activation function We use the following convexity-preserving operators when designing an
ICNN:

1. invariance under affine maps: g ◦ f is convex if f is linear and g is convex

2. non-negative weighted sums:
∑
j wjfj is convex if wjs are non-negative and fjs are con-

vex

3. composing with non-decreasing convex functions: g◦f is convex if f and g are both convex
and g is non-decreasing

Notably, in 1., we do not require g to be non-decreasing. We experiment with a symmetrized version
of softplus g(x) = s(x)− 0.5x where s is a softplus-type activation, whenever g is used as the first
activation. This way, the derivative of g is s′(x) − 0.5, which ranges between ±0.5 and behaves
more like tanh (than sigmoid). This can be used for the first hidden layer of a regular ICNN, or the
augmented layer of the input-augmented ICNN.

We also experiment with an offset version of softplus, which is defined as g(x) = s(x)− s(0). This
way the output of the softplus is more symmetric since it can be negative.

E.2 TOY EXAMPLES

For toy examples, we compute the log-determinant of the Jacobian in a bruteforce manner. We use
the Adam optimizer with an initial learning rate of 0.005. We create a data set following the toy
distribution of size 50000, and train each model for 50 epochs with a minibatch size of 128. For
MAF and NAF we cap the gradient norm to be 10 for stability. For CP-Flow, we use the Gaussian
softplus as activation, and symmetrize it at the first layers.

Data N. FLOWS N. HIDDEN LAYERS N. HIDDEN UNITS

One moon 5 3 32
Eight Gaussians 5 3 32

Rings 5 5 256

Table 5: Architectural details for toy density estimation.

E.3 APPROXIMATING OPTIMAL COUPLING

For the OT map approximation experiment, we simulate data (of size 50, 000) from a Gaussian
distribution N (µ,Σ) with a prior µ ∼ N (0, I) and Σ ∼ W(I, d + 1), where W is the Wishart

19

Published as a conference paper at ICLR 2021

distribution. For CP-Flow, we use a network of 5 hidden layers of 64 hidden units, with the Gaussian-
softplus and zero-offset. We use the Adam optimizer with a minibatch size of 128, trained for two
epochs to generate the figures.

E.4 DENSITY ESTIMATION

Model POWER GAS HEPMASS MINIBOONE BSDS300
Real NVP -0.17± 0.01 -8.33± 0.14 18.71± 0.02 13.55± 0.49 -153.28± 1.78
Glow -0.17± 0.01 -8.15± 0.40 18.92± 0.08 11.35± 0.07 -155.07± 0.03
FFJORD -0.46± 0.01 -8.59± 0.12 14.92± 0.08 10.43± 0.04 -157.40± 0.19
MADE 3.08± 0.03 -3.56± 0.04 20.98± 0.02 15.59± 0.50 -148.85± 0.28
MAF -0.24± 0.01 -10.08± 0.02 17.70± 0.02 11.75± 0.44 -155.69± 0.28
TAN -0.48± 0.01 -11.19± 0.02 15.12± 0.02 11.01± 0.48 -157.03± 0.07
NAF -0.62± 0.01 -11.96± 0.33 15.09± 0.40 8.86± 0.15 -157.73± 0.04
CP-Flow -0.52± 0.01 -10.36± 0.03 16.93± 0.08 10.58± 0.07 -154.99± 0.08

Table 6: Test negative log-likelihood (in nats) of tabular datasets in Papamakarios et al. (2017) for density
estimation models (lower is better). Results for compared models are taken from Grathwohl et al. (2018).
Average and standard deviation report over 3 random seeds at the best hyperparameters found by grid search.
For CP-Flow trained on GAS and BSDS300, only one seed converged at the time of submission, so we report
N/A for the standard deviation.

Dataset N. FLOWS N. HIDDEN LAYERS N. HIDDEN UNITS N. PARAMETERS

POWER 10 5 512 5,463,272
GAS 5 5 512 2,757,276
HEPMASS 5 5 512 2,923,897
MINIBOONE 2 5 256 379,232
BSDS300 10 5 256 2,152,456

Table 7: Best hyperparameters found in our search and the consequent total number of model parameters.

For each dataset, we search via grid search for the best hyperparameter configuration by calculating
the negative log-likelihood in the validation set using an exact bruteforce computation of the log-
determinant of the Jacobian. Initially, we focus our search at basic hyperparameters that influence the
total number of parameters of the model, such as the number of flow blocks, the number of hidden
layers of each convex potential block, and the number of hidden units per layer of each block. After
a first selection of candidate hyperparameters after a constant number of training steps, we instan-
tiate extra experiments considering variations in the softplus-type activations we use. We find that
Gaussian-softplus and symmetrizing it in the activations of the first layer help to the performance,
oftentimes accelerating the training. In table 7, we report the final hyperparameter combinations we
have used for the results presented in table 6.

E.5 GENERATIVE MODELING WITH CONVOLUTIONAL ICNN

On MNIST and CIFAR-10, we used a multiscale architecture. For MNIST, we had 8 CP-Flow
blocks, followed by an invertible downsampling (Dinh et al., 2017), followed by 8 CP-Flow blocks,
another downsampling, and final 8 CP-Flow blocks. Before every block was an ActNorm (Kingma
& Dhariwal, 2018) layer. For CIFAR-10, we had 2 CP-Flow blocks, followed by an invertible down-
sampling (Dinh et al., 2017), followed by 2 CP-Flow blocks, downsampling, 2 CP-Flow blocks,
downsampling, and final 2 CP-Flow blocks. Before every CP-Flow block was an ActNorm (Kingma
& Dhariwal, 2018) layer. All ICNN architectures had 4 hidden layers and 64 hidden units wide. We
averaged across the final spatial dimensions to obtain a scalar output for the convex potential.

We test the invertibility of a CP-Flow model trained on CIFAR-10 on a set of out-of-distribution data
sets constructed by Behrmann et al. (2020) in Table 8. Notably, we do not suffer from the exploding

20

Published as a conference paper at ICLR 2021

Figure 6: (top) Data samples. (bottom) Reconstruction after passing it through a CP-Flow.

DATASET GLOW RESFLOW CP-FLOW

CIFAR-10 (in-dist) 1.12E-6 5.16E-4 1.96E-3

Uniform Inf 3.04E-4 3.62E-3
Gaussian Inf 1.31E-4 5.97E-3
Rademacher Inf 3.43E-5 5.27E-3
SVHN (Netzer et al., 2011) 9.94E-7 1.31E-3 2.53E-3
Texture (Cimpoi et al., 2014) Inf 3.66E-4 1.69E-3
Places (Zhou et al., 2017) Inf 5.31E-4 1.76E-3
tinyImageNet Inf 6.26E-4 1.65E-3

Table 8: Reconstruction RMSE. Results for Glow and ResFlow are taken from Behrmann et al. (2020).

inverse problem and can reliably invert all data sets, either in or out of distribution. Samples of
reconstructed images are shown in Figure 6 which show no visual difference between the original
images and their reconstructions.

E.6 AMORTIZING ICNN FOR VARIATIONAL INFERNECE

We use the partially input convex neural network from Amos et al. (2017) with multiplicative con-
ditioning. There are some other options for conditioning, such as with the hypernetwork (Ha et al.,
2016) or feature-wise transformation (Dumoulin et al., 2018). We remove the non-linear path of the
conditioned variable beyong the first layer, since we found that it hurts training of the VAE. We use
the Gaussian-softplus for all the experiments, symmetrizing it on the first layers. For the Caltech ex-
periment, we also use the offset version, and the softplus is initialized with a multiplicative constant
of 2, which we found leads to faster convergence.

Data N. FLOWS N. HIDDEN LAYERS N. HIDDEN UNITS

FreyFaces 4 4 256
Omniglot 2 2 512
Caltech 8 4 256

Table 9: Architectural details for the VAE experiment.

Model FREYFACES OMNIGLOT CALTECH

No flow (Kingma & Welling, 2013) 4.53± 0.02 104.28± 0.39 110.80± 0.74
Planar (Rezende & Mohamed, 2015) 4.40± 0.06 102.65± 0.42 109.66± 0.42
IAF (Kingma et al., 2016) 4.47± 0.05 102.41± 0.04 111.58± 0.38
Sylvester (Van Den Berg et al., 2018) 4.45± 0.04 99.00± 0.04 104.62± 0.29

CP-Flow (Ours) 4.47± 0.02 102.06± 0.03 106.53± 0.55
CP-Flow aug (Ours) 4.45± 0.03 100.82± 0.30 105.17± 0.57

Table 10: Negative ELBO of VAE (lower is better). For FREYFACES the results are in bits per dim. The numbers
are averaged over three runs of experiments. Standard deviation is presented in the appendix E.6. For CP-Flow
with input-augmented ICNN trained on OMNIGLOT, only one seed converged at the time of submission, so we
report N/A for the standard deviation.

21

Published as a conference paper at ICLR 2021

F ADDITIONAL ABLATION

Figure 7: Simulated signal-to-noise ratio and bias of the
gradient estimator for different atol values

We perform an analysis on the effect of chang-
ing the absolute error tolerance level (atol) on
the gradient estimator’s bias and variance. In a
synthetic setting, we sample a d×d (where d =
10) positive definite matrix H from W(I, 2d)
and scale it down by 1/d (so that the diago-
nal entries do not grow as d increases). We
linearly interpolate atol values between 0 and
1, and compare the error statistics of the gra-
dient estimator against the ground truth gradi-
ent of log detH w.r.t H . The error statistics
are (1) the signal-to-noise ratio (expected value
of the estimator, or the ground truth gradient,
divided by the standard deviation), and (2) the
absolute bias (expected value of the absolute
difference between the estimate and the ground
truth). Since these quantities are intractable, we use Monte Carlo estimate of 100K samples (draw
100K i.i.d. samples of the gradient estimator) to smooth out the curves. The estimates are averaged
across all entries of H and 10 different random H’s. Results are presented in fig. 7.

On a more realistic setting, we monitor the average number of CG iterates (hvp calls), per-iteration
time, as well as validation loss on the Miniboone dataset. Meanwhile, we compare the vanilla ICNN,
input-augmented ICNN, as well as a dense version of ICNN (Huang et al., 2017). Figure 8 shows
that as tolerance value becomes smaller, we indeed need more hvp calls, which eventually saturates
at the dimensionality of the data. However, there is not much difference in terms of log-likelihood
if the tolerance is sufficiently small: the validation loss oscillates and diverges for atol = 0.1, while
the curves for different atol values smaller than 0.001 are almost indistinguishable and fairly stable.
On the other hand, there is a noticeable difference in performance if we simply replace the vanilla
ICNN with the input-augmented ICNN or the dense ICNN. This suggests tuning the architecture
of the convex potential is more crucial for improving the overall performance. This set of ablation
studies were all performed on P100 NVIDIA GPUs and with a constant batch size of 1024.

Runtime of directly backpropogating through Lanczos Furthermore, we include an analysis on
the effect of the number of eigenvalues used in the stochastic Lanczos quadrature method (i.e. size
of the tridiagonal matrix) on training time. In this experiment we directly backpropagated through
the Lanczos estimate to compute the stochastic gradient (instead of using the proposed gradient
estimator). Figure 9 shows that the runtime is much higher than the runtime of the proposed gradient
estimator using CG (bottom left of Figure 8). We note that the experiments with m = 5 diverged,
possibly due to the error in estimation. This complements the memory profile shown in Figure 2,
and accentuates the lower runtime and memory requirement of the proposed method by contrast.

22

Published as a conference paper at ICLR 2021

Figure 8: Ablation of different ICNN architectures and absolute error tolerance for conjugate gradient. Left:
the average number of CG iterates (hvp calls) per flow layer (top row) and the corresponding average time (in
seconds) per iteration (bottom row). Top right: validation set negative log-likelihood (exact estimate). Notice
that, for atol = 1e−7, CG iterations cap at 43 per flow layer; this is the dimensionality of the input data in the
MINIBOONE dataset. Bottom right: per-iteration time (in seconds) averaged over all training steps.

0 500 1000 1500 2000 2500 3000 3500 4000

model updates

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

A
ve

ra
ge

 ti
m

e
(s

ec
s)

 /
ite

ra
tio

n

miniboone
m
5
10
20
arch
Aug

Figure 9: Ablation of the effect of number of eigenvalues used in SLQ on average time (in seconds) per iteration.

23

	Introduction
	Background: Normalizing Flows and Optimal Transport
	Convex Potential Flows
	Modeling
	–Memory Unbiased logdet gradient estimator
	Connection to other normalizing flows

	Theoretical Analyses
	Experiment
	Toy examples
	Approximating optimal coupling
	Density estimation
	Amortizing ICNN for Variational Inference

	Conclusion
	Invertibility of CP-Flow
	Softplus Type Activation
	Universality Proof
	Optimality Proof
	Experimental Details
	Architecture details
	Toy examples
	Approximating Optimal Coupling
	Density Estimation
	Generative Modeling with Convolutional ICNN
	Amortizing ICNN for Variational Infernece

	Additional Ablation

