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Abstract

Estimating the data uncertainty in regression tasks is often done by learning a
quantile function or a prediction interval of the true label conditioned on the
input. It is frequently observed that quantile regression—a vanilla algorithm for
learning quantiles with asymptotic guarantees—tends to under-cover than the
desired coverage level in reality. While various fixes have been proposed, a more
fundamental understanding of why this under-coverage bias happens in the first
place remains elusive.
In this paper, we present a rigorous theoretical study on the coverage of uncertainty
estimation algorithms in learning quantiles. We prove that quantile regression
suffers from an inherent under-coverage bias, in a vanilla setting where we learn a
realizable linear quantile function and there is more data than parameters. More
quantitatively, for α > 0.5 and small d/n, the α-quantile learned by quantile
regression roughly achieves coverage α− (α− 1/2) · d/n regardless of the noise
distribution, where d is the input dimension and n is the number of training
data. Our theory reveals that this under-coverage bias stems from a certain high-
dimensional parameter estimation error that is not implied by existing theories
on quantile regression. Experiments on simulated and real data verify our theory
and further illustrate the effect of various factors such as sample size and model
capacity on the under-coverage bias in more practical setups.

1 Introduction

This paper is concerned with the problem of uncertainty estimation in regression problems. Uncer-
tainty estimation is an increasingly important task in modern machine learning applications—Models
should not only make high-accuracy predictions, but also have a sense of how much the true label
may deviate from the prediction. This capability is crucial for deploying machine learning in the real
world, in particular in risk-sensitive domains such as medical AI [15, 29], self-driving cars [47], and
so on. A common approach for uncertainty estimation in regression is to learn a quantile function or
a prediction interval of the true label conditioned on the input, which provides useful distributional
information about the label. Such learned quantiles are typically evaluated by their coverage, i.e.,
probability that it covers the true label on a new test example. For example, a learned 90% upper
quantile function should be an actual upper bound of the true label at least 90% of the time.

Algorithms for learning quantiles date back to the classical quantile regression [35], which estimates
the quantile function by solving an empirical risk minimization problem with a suitable loss function
that depends on the desired quantile level α. Quantile regression is conceptually simple, and is
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theoretically shown to achieve asymptotically correct coverage as the sample size goes to infinity [34]
or approximately correct coverage in finite samples under specific modeling assumptions [46, 60, 56].
However, it is observed that quantile regression often under-covers than the desired coverage level
in practice [53]. Various alternative approaches for constructing quantiles and confidence intervals
are proposed in more recent work, for example by aggregating multiple predictions using Bayesian
neural networks or ensembles [24, 37], or by building on the conformal prediction technique to
construct prediction intervals with finite-sample coverage guarantees [68, 66, 39, 53]. However,
despite these advances, a more fundamental understanding on why vanilla quantile regression exhibits
this under-coverage bias is still lacking.

This paper revisits quantile regression and presents a first precise theoretical study on its coverage, in
a new regime where the number of samples n is proportional to the dimension d, and the ratio d/n is
small (so that the problem is under-parametrized). Our main result shows that quantile regression
exhibits an inherent under-cover bias under this regime, even in the well-specified setting of learning
a linear quantile function when the true data distribution follows a Gaussian linear model. To the best
of our knowledge, this is the first rigorous theoretical justification of the under-coverage bias. Our
main contributions are summarized as follows.

• We prove that linear quantile regression exhibits an inherent under-coverage bias in the well-
specified setting where the data is generated from a Gaussian linear model, and the number
of samples n is proportional to the feature dimension d with a small d/n (Section 3). More
quantitatively, quantile regression at nominal level α ∈ (0.5, 1) roughly achieves coverage
α− (α− 1/2)d/n regardless of the noise distribution. To the best of our knowledge, this is the
first rigorous characterization of the under-coverage bias in quantile regression.

• Towards understanding the source of this under-coverage bias, we disentangle the effect of
estimating the bias and estimating the linear coefficient on the coverage of the learned linear
quantile (Section 4). We show that the estimation error in the bias can have either an under-
coverage or over-coverage effect, depending on the noise distribution. In contrast, the estimation
error in the linear coefficient always drives the learned quantile to under-cover, and we show this
effect is present even on broader classes of data distributions beyond the Gaussian linear model.

• We perform experiments on simulated and real data to test our theory (Section 5). Our simulations
show that the coverage of quantile regression in Gaussian linear models agrees well with our
precise theoretical formula as well as the α− (α− 1/2)d/n approximation. On real data, we
find quantile regression using high-capacity models (such as neural networks) exhibits severe
under-coverage biases, while linear quantile regression can also have a mild but non-negligible
amount of under-coverage, even after we remove the potential effect of model misspecification.

• On the technical end, our analysis builds on recent understandings of empirical risk minimiza-
tion problems in the high-dimensional proportional limit with a small d/n, and develops new
techniques such as a novel concentration argument to deal with an additional learnable variable
in learning linear models with biases, which we believe could be of further interest (Section 6).

1.1 Related work

Algorithms for uncertainty estimation in regression The earliest methods for uncertainty esti-
mation in regression adopted subsampling methods (bootstrap) or leave-one-out methods (Jackknife)
for assessing or calibrating prediction uncertainty [52, 63, 58, 25]. More recently, a growing line of
work builds on the idea of conformal prediction [55] to design uncertainty estimation algorithms for
regression. These algorithms provide confidence bounds or prediction intervals by post-processing
any predictor, and can achieve distribution-free finite-sample marginal coverage guarantees utilizing
exchangeability of the data [50, 66, 39, 53, 33, 67, 69, 68, 11]. Further modifications of the conformal
prediction technique can yield stronger guarantees such as group coverage [10] or coverage under dis-
tribution shift [9] under additional assumptions. Our under-coverage results advocate the necessity of
such post-processing techniques, and are complementary in the sense that we provide understandings
on the more vanilla quantile regression algorithm. Quantiles and prediction intervals can also be ob-
tained by aggregating multiple predictors, such as using Bayesian neural networks [41, 24, 32, 44, 42]
or ensembles [37, 49, 28, 45]. These methods offer an alternative approach for uncertainty estimation,
but do not typically come with coverage guarantees.
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Theoretical analysis of quantile regression Linear quantile regression with the pinball loss dates
back to the late 1970s [34]. The same work proved the asymptotic normality of the regression
coefficients in the n → ∞, fixed d limit. Takeuchi et al. [60] studied non-parametric quantile
regression using kernel methods, and provided generalization bounds (with the pinball loss) based
on the Rademacher complexity. Meinshausen [46] studied non-parametric quantile regression using
random forest and showed its consistency under proper assumptions. Christmann and Steinwart
[19], Steinwart et al. [56] established a “self-calibration” inequality for the quantile loss, which, when
combined with standard generalization bounds, can be translated to an estimation error bound for
quantile regression. These works all focus on bounding the parameter or function estimation error,
which can be translated to bounds on the coverage bias, but does not tell the sign of this coverage
bias as we do in this paper. We also remark that conformalization can be used in conjunction with
quantile regression to correct its coverage bias [53].

Uncertainty quantification for classification For classification problems, two main types of un-
certainty quantification methods have been considered: outputting discrete prediction sets with
guarantees of covering the true (discrete) label [70, 71, 38, 7, 12, 18, 17], or calibrating the predicted
probabilities [51, 72, 73, 37, 26]. The connection between prediction sets and calibration was dis-
cussed in [27]. The sample complexity of calibration has been studied in a number of theoretical
works [36, 27, 54, 30, 40, 8]. Our work is inspired by the recent work of Bai et al. [8], which showed
that logistic regression is over-confident even if the model is correctly specified and the sample size
is larger than the dimension.

High-dimensional behaviors of empirical risk minimization There is a rapidly growing liter-
ature on limiting characterizations of convex optimization-based estimators in the n ∝ d regime
[21, 13, 23, 31, 57, 61, 20, 62, 43, 59, 16]. Our analysis builds on results for unregularized M-
estimator derived in [62] and generalizes theirs in certain aspects (see also [23, 20, 31]).

2 Preliminaries

In this paper we focus on the problem of learning quantiles. Suppose we observe a training dataset
{(xi, yi)}ni=1 drawn i.i.d. from some joint distribution P on Rd × R, where xi ∈ Rd is the input
features and y ∈ R is the real-valued response (label). Let F (t|x) := P(Y ≤ t|X = x) denote the
conditional CDF of Y |X. Our goal is to learn the α-(conditional) quantile of Y |X:

q?α(x) := inf {t ∈ R : F (t|x) ≥ α}.
For example, q?0.95(x) is the ground truth 95% quantile of the true conditional distribution Y |X,
and can be seen as the “ideal” 95% upper confidence bound for the label y given the features x.
Throughout this paper we work with upper quantiles, that is, α ∈ (0.5, 1) (some typical choices are
α ∈ {0.8, 0.9, 0.95}); by symmetry our results hold for learning lower quantiles as well.

Coverage For any learned quantile function f̂ : Rd → R, the marginal coverage (henceforth
“coverage”) of f̂ is the probability of y ≤ f̂(x) on a new test example (x, y):

Coverage(f̂) := P(x,y)

(
y ≤ f̂(x)

)
= Ex

[
P
(
y ≤ f̂(x)|x

)]
. (1)

For learning the α-quantile (α > 0.5), we usually expect Coverage(f̂) ≈ α, i.e. f̂(x) covers the
label y on approximately α proportion of the data, under the ground truth data distribution.

We say that f̂ has under-coverage if Coverage(f̂) < α and over-coverage if Coverage(f̂) > α. Note
that these two notions are not symmetric: Over-coverage means that the learned upper quantile f̂(x)
is overly conservative (higher than enough), and is typically tolerable; In contrast, under-coverage
means that f̂(x) fails to cover y with α probability, and is typically considered as a failure. We
remark that while there exist more fine-grained notions of coverage such as conditional coverage [10],
the (marginal) coverage is still a basic requirement for any quantile learning algorithm.

Quantile regression We consider quantile regression, a standard method for learning quantiles from
data [35]. Quantile regression estimates the true quantile function qα(·) via the pinball loss [34, 56]

`α(t) = −(1− α)t1 {t ≤ 0}+ αt1 {t > 0} . (2)
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Note that in the special case of α = 0.5, we have `0.5(t) = |t|/2, and thus the pinball loss strictly
generalizes the absolute loss (for learning medians) to learning any quantile. Given the training dataset
and any function class {fθ : θ ∈ Θ} (e.g. linear models or neural networks), quantile regression
solves the (unregularized) empirical risk minimization (ERM) problem

θ̂ = arg min
θ∈Θ

R̂n(θ) :=
1

n

n∑
i=1

`α(yi − fθ(xi)). (3)

(We take θ̂ as any minimizer of R̂n when the minimizer is non-unique.) Let R(θ) := E[R̂n(θ)]
denote the corresponding population risk. It is known that the population risk over all (measurable)
functions is minimized at the true quantile q?α = arg minf R(f) under minimal regularity conditions
(for completeness, we provide a proof in Appendix B.1).

3 Quantile regression exhibits under-coverage

We analyze quantile regression in the vanilla setting where the input distribution is a standard Gaussian
and y follows a linear model of x:

y = w>? x + z, where x ∼ N(0, Id), z ∼ Pz. (4)

Above, w? ∈ Rd is the ground truth coefficient vector, and the noise z ∼ Pz is independent of x.
The Gaussian input assumption is required only for technical convenience in the high-dimensional
limiting analysis, and we believe it is not strictly required for the same result to hold1 (an extension to
more general input distributions can also be found in Section 4). The noise distribution Pz is required
to satisfy the following smoothness assumption, but can otherwise be arbitrary:
Assumption A (Smooth density). The noise distribution Pz has a smooth density φz ∈ C∞(R)

(with corresponding CDF Φz), with bounded derivatives: supt∈R |φ
(k)
z (t)| < ∞ for any k ≥ 0.

We further assume that φz(zα) > 0, where α ∈ (0.5, 1) is our pre-specified quantile level, and
zα := inf {t ∈ R : Φz(t) ≥ α} is the α-quantile of Pz .

Under the above model, it is straightforward to see that the true α-conditional quantile of y|x is also
a linear model (with bias):

q?α(x) = w>? x + zα. (5)

Given the training data {(xi, yi)}ni=1, we learn a linear quantile function f̂(x) = ŵ>x + b̂ via
quantile regression:

(ŵ, b̂) = arg min
w,b

R̂n(w, b) :=
1

n

n∑
i=1

`α(yi − (w>xi + b)), (6)

where `α is the pinball loss in (2). As our linear function class realizes the true quantile function (5),
the population risk is minimized at the true quantile: arg minw,bR(w, b) = (w?, zα).

We are now ready to state our main result, which shows that quantile regression exhibits an inherent
under-coverage bias even in this vanilla realizable setting.
Theorem 1 (Quantile regression exhibits under-coverage bias). Suppose the data is generated from
the linear model (4) and the noise satisfies Assumption A. Let f̂(x) = ŵ>x + b̂ be the output of
quantile regression (6) at level α ∈ (0.5, 1). Then, in the limit of n, d → ∞ and d/n → κ where
κ ∈ (0, κ0] for some small κ0 > 0, for the coverage (1), we have (

p→ denotes convergence in
probability)

Coverage(f̂)
p→ α− Cα,κ for some Cα,κ > 0.

That is, the limiting coverage of the learned quantile function is less than α. Further, for small enough
κ we have the local linear expansion

Cα,κ = (α− 1/2)κ+ o(κ). (7)
1Our results can be extended directly to any correlated Gaussian input x ∼ N(0,Σ) by the transform

x̃ = Σ−1/2x and w̃? = Σ1/2w?. We believe our results also hold for i.i.d. sub-Gaussian inputs by the
universality principle (e.g. [14]).
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Theorem 1 builds on the precise characterization of ERM problems in the high-dimensional propor-
tional limit [62], along with new techniques over existing work for dealing with the unique challenges
in quantile regression (such as analyzing the additional learnable bias b). An overview of the main
technical steps is provided in Section 6, and the full proof is deferred to Appendix C.

Implications Theorem 1 can be illustrated by the following numeric example. Suppose we perform
quantile regression at α = 0.9, where the data follows the linear model (4), and our κ = d/n = 0.1
(so that the sample size is 10x number of parameters). Then Theorem 1 shows that, even in this
realizable, under-parametrized setting, the coverage of the learned quantile f̂ is going to be roughly
0.9− Cα,κ when n, d are large, and further Cα,κ ≈ (α− 1/2)κ = 0.04. Thus the actual coverage is
around 0.9− 0.04 = 0.86, and such a 4% under-coverage bias can be rather non-negligible in reality.

We remark that a symmetric conclusion of Theorem 1 also holds for lower quantiles, and we further
expect similar results also hold for learning prediction intervals, where the coverage is defined as the
two-sided coverage of the prediction interval formed by the learned {lower quantile, upper quantile}.
To the best of our knowledge, this offers a first precise theoretical understanding of why practically
trained quantiles or prediction intervals often under-cover than the desired coverage level [53].

Comparison against existing theories An important feature of the under-coverage bias shown
in Theorem 1 is that it only shows up in the n, d proportional regime, and is not implied by ex-
isting theories on quantile regression. Classical asymptotic theory only shows asymptotic normal-
ity
√
n([ŵ, b̂] − [w?, zα]) → N(0,V) in the n → ∞, fixed d limit [34, 64]. Under this limit,

Coverage(f̂) is consistent at α with O(1/
√
n) deviation. Christmann and Steinwart [19], Steinwart

et al. [56] consider the finite n, d setting and establish self-calibration inequalities (similar to strong

convexity) that bounds the quantile estimation error by the square root excess loss
√
R(f̂)−R(q?α).

Combined with standard generalization theories (e.g. via Rademacher complexities) and Lipschitz-
ness, this can be turned into a bound on |Coverage(f̂) − α|, but does not tell the sign (positive or
negative) of the coverage bias.

Large κ; extension to over-parametrized learning While Theorem 1 requires a small κ = d/n,
the approximation formula (7) suggests that the under-coverage should get more severe as κ—the
measure of over-parametrization in this problem—gets larger. We confirm this trend experimentally
in our simulations in Section 5.1.

As an extension to Theorem 1, we also show theoretically that the under-coverage bias indeed becomes
even more severe in over-parametrized learning, under the same linear model (4): When d/n > Õ(1),
and the noise Pz is sub-Gaussian and symmetrically distributed about 0, the convergence point of
the gradient descent path on the quantile regression risk R̂n is the minimum-norm interpolator of
the data, which has coverage 0.5± Õ(1/

√
d) with high probability (see Appendix D for the formal

statement and the proof). Notably, this 0.5 coverage does not depend on α and exhibits a severe
under-coverage.

4 Understanding the source of the under-coverage bias

In this section, we take steps towards a deeper understanding of how the under-coverage bias shown
in Theorem 1 happens. Recall that the quantile regression returns f̂(x) = ŵ>x+ b̂ where (ŵ, b̂) is a
solution to the ERM problem (6) and estimates the true parameters (w?, zα). Our main approach in
this section is to disentangle the effect of the two sources—the estimation error in b̂ and the estimation
error in w—on the coverage of f̂ .

We show that the estimation error in b̂ can have either an under-coverage or an over-coverage effect,
depending on the noise distribution (Section 4.1). In contrast, the estimation error in ŵ always has
an under-coverage effect; this holds not only for the linear model assumed in Theorem 1, but also on
more general data distributions (Section 4.2). In the setting of Theorem 1, this under-coverage effect
of ŵ is always strong enough to dominate the effect of b̂, leading to the overall under-coverage.
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4.1 Effect of estimation error in b̂

To study the effect of b̂, we use the quantity b̂ − zα as a measure for its effect on the coverage—
Recall that the true quantile is q?α(x) = w>? x + zα, thus having b̂ < zα means that b̂ contributes
to under-coverage, whereas b̂ > zα means b̂ contributes to over-coverage. (This can be seen more
straightforwardly in the easier case where we know w? and only output b̂ to estimate zα.)

The following corollary shows that, under the same settings of Theorem 1, the error b̂− zα can be
understood precisely. The proof can be found in Appendix E.1.

Corollary 2 (Effect of b̂ on coverage depends on noise distribution). Under the same settings as
Theorem 1, for any α ∈ (0.5, 1), as n, d→∞ with d/n→ κ ∈ (0, κ0], we have

(a) The learned bias b̂ from quantile regression (6) converges to the following limit:

b̂− zα
p→ Cbα,κ = b̄0κ+ o(κ),

where b̄0 has a closed-form expression:

b̄0 :=
−α(1− α)φ′z(zα)− (2α− 1)φ2

z(zα)

2φ3
z(zα)

. (8)

(b) For any α ∈ (0.5, 1), when Pz is the Gaussian distribution (with arbitrary scale), we have
b̄0 < 0 in which case Cbα,κ < 0 for small enough κ. Conversely, for any α ∈ (0.5, 1), there
exists some noise distribution Pz for which b̄0 > 0, in which case Cbα,κ > 0 for small enough κ.

Corollary 2 shows that the sign ofCbα,κ in the limiting regime (and thus the effect of b̂ on the coverage)
depends on b̄0, which in turn depends on the noise distribution Pz . For common noise distributions
such as Gaussian we have Cbα,κ < 0 at small κ, but there also exists Pz such that Cbα,κ > 0. Note
that the second claim in part (b) follows directly from (8): we can always design the density φz by
varying φz(zα) and φ′z(zα) so that b̄0 > 0. Overall, this result shows that the under-coverage bias in
Theorem 1 cannot be simply explained by the under-estimation error in b̂.

4.2 Effect of estimation error in ŵ; relaxed data distributions

We now show that the primary source of the under-coverage is the estimation error in ŵ, which
happens not only on the linear data distribution assumed in Theorem 1, but also on a broader class of
data distributions. We consider the following relaxed data distribution assumption

y = µ?(x) + σ?(x)z, (9)

where the noise z ∼ Pz . We do not put structural assumptions on (µ?, σ?), except that we assume
the true α-quantile is still a linear function of x, that is, there exists (w?, b?) for which

q?α(x) = µ?(x) + σ?(x)zα = w>? x + b?. (10)

Since here we are interested in the effect of estimating w?, for simplicity, we assume that we know
b? and only estimate w? via some estimator ŵ. We now collect our assumptions and state the result.

Assumption B (Relaxed data distribution). The data is distributed as model (9) with a linear α-
quantile function (10). Further, the data distribution satisfies the following regularity conditions:

(a) The distribution of x ∈ Rd is symmetric about 0, has a lower bounded covariance E[xx>] � γId,
and is K-sub-Gaussian, for constants γ,K > 0.

(b) The variance function σ?(·) is bounded and symmetric: For all x ∈ Rd we have σ ≤ σ?(x) ≤ σ
for some constants σ, σ > 0, and σ?(x) = σ?(−x).

(c) The noise density φz is continuously differentiable and symmetric about 0, i.e. φz(t) = φz(−t)
for all t ∈ R. Further, φz is uni-modal, i.e. φ′z(t)|t<0 > 0 and φ′z(t)|t>0 < 0.
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Figure 1: Coverage of quantile regression on simulated data from the realizable linear model (4). (a)(b) Each
dot represents a combination of (α, κ) and reports the mean and one-std coverage over 8 random problem
instances. (a) Coverage against the nominal quantile level α for fixed values of κ = d/n. (b) Coverage against κ
for fixed α ∈ {0.8, 0.9, 0.95}. Here “analytical” refers to our analyitical formula α−Cα,κ, and α−(1−α/2)κ
is its local linear approximation at small κ (both from Theorem 1).

Theorem 3 (Estimation error in ŵ leads to under-coverage on a family of data distributions). Under
the relaxed data distribution assumption (Assumption B), for any α > 3/4, there exists constants
c, r0 > 0 such that for any learned quantile estimate f̂(x) = ŵ>x + b? with small estimation error
‖ŵ −w?‖2 ≤ r0, we have

Coverage(f̂) ≤ α− cγ/σ2 · ‖ŵ −w?‖22 ,

that is, the learned quantile under-covers by at least Ω(‖ŵ −w?‖22). Above, c > 0 is an absolute
constant, and r0 > 0 depends on (γ, σ,K,Φz, α) but not (n, d).

Implications; proof intuition Theorem 3 shows that, for a broad class of data distributions, any
estimator ŵ will under-cover by at least Ω(‖ŵ −w?‖22). If particular, any estimator satisfying
‖ŵ −w?‖2 � Õ(

√
d/n) (e.g. from standard generalization theory) will under-cover by Õ(d/n).

This confirms that the estimation error in the (bulk) regression coefficient ŵ is the primary source of
the under-coverage bias, under assumptions that are more general than Theorem 1 in certain aspects
(such as the distribution of x and y|x). We remark that as opposed to Theorem 1, Therorem 3 does
not give an end-to-end characterization of any specific algorithm, but assumes we have an estimator
ŵ with a small error.

At a high-level, Theorem 3 follows from the fact that any estimator ŵ>x+ b? must be lower than the
true quantile w>? x + b? for some x and higher for some other x. Averaging the coverage indicator
over x, such under-coverage and over-coverage cancel out on the first-order if x has a symmetric
distribution, but aggregate to yield a under-coverage effect on the second-order as long as Φz(t)|t>0

is concave (which holds if Pz is unimodal). The proof of Theorem 3 can be found in Appendix E.2.

5 Experiments

5.1 Simulations

Setup We first test our Theorem 1 via simulations. We generate data from the linear model (4) in
d = 100 dimensions with ‖w?‖2 = 1 and noise distribution Pz = N(0, 0.25). We vary κ = d/n ∈
{0.02, 0.04, . . . , 0.5} where κ determines a sample size n, and vary α ∈ {0.5, 0.52, ..., 0.98}.
For each combination of (α, κ), we generate 8 random problem instances, and solve the quantile
regression ERM problem (6) on each instance via (sub)-gradient descent. We evaluate the coverage of
the learned quantile f̂ (thanks to the linear model (4), the coverage can be computed exactly without
needing to introduce a test set). Additional details about the setup can be found in Appendix F.1.

Results Figure 1 plots the coverage of the learned quantiles. Observe that quantile regression
exhibits under-coverage consistently across different values of (α, κ). Figure 1a shows that at fixed κ,
the amount of under-coverage gets more severe at a higher α, which is qualitatively consistent with
our approximation formula (α− 1/2)κ. Figure 1b further compares simulations with our analytical
formula α − Cα,κ (found numerically through solving the system of equations 12), as well as the
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Table 1: Coverage (%) of quantile regression on real data at nominal level α = 0.9. Each entry reports the
test-set coverage with mean and std over 8 random seeds. (d, n) denotes the {feature dim, # training examples}.

Dataset Linear MLP-3-64 MLP-3-512 MLP-freeze-3-512 d n

Community 88.63±1.53 76.46±1.41 63.09±2.91 87.85±1.30 100 1599
Bike 89.64±0.44 88.75±0.91 87.67±0.49 89.27±0.57 18 8708
Star 89.48±2.56 83.14±1.76 69.71±1.82 88.05±2.42 39 1728
MEPS_19 90.09±0.72 85.46±0.96 78.55±0.93 89.03±0.51 139 12628
MEPS_20 90.06±0.57 86.52±0.65 80.77±0.72 89.60±0.28 139 14032
MEPS_21 89.99±0.39 83.79±0.52 73.09±0.82 89.15±0.36 139 12524

Nominal (α) 90.00 90.00 90.00 90.00 - -

local linear approximation α− (α− 1/2)κ claimed in Theorem 1. Note that the simulations agree
extremely well with the analytical formula. The approximation α− (α− 1/2)κ is also very accurate
for almost all κ at α = 0.8, and accurate for small κ at α = 0.9, 0.95. These verify our Theorem 1
and suggests it holds at rather realistic values of the dimension (d = 100).

5.2 Real data experiments

Datasets and models We take six real-world regression datasets: community and crimes
(Community) [2], bike sharing (Bike) [1], Tennessee’s student teacher achievement ratio (STAR) [6],
as well as the medical expenditure survey number 19 (MEPS_19) [3], number 20 (MEPS_20) [4], and
number 21 (MEPS_21) [5]. All datasets are pre-processed to have standarized features and randomly
split into a 80% train set and 20% test set.

To go beyond linear quantile functions, we perform quantile regression with one of the following
four models as our fθ: linear model (Linear), a 3-layer MLP (two non-linear layers) with width 64
(MLP-3-64), 512 (MLP-3-512), and a variant of the width-512 MLP where all representation layers
are frozen and only the last linear layer is trained (MLP-freeze-3-512). All linear layers include a
trainable bias. We minimize the α-quantile loss (3) via momentum SGD with batch size 64. For each
setting, we average over 8 random seeds where each seed determines the train-validation split, model
initialization, and SGD batching. In our real experiments we fix α = 0.9. (Results at α ∈ {0.8, 0.95}
as well as additional experimental setups can be found in Appendix F.2).

Results Table 1 reports the coverage of the learned quantile functions (evaluated on the test sets).
Observe that all MLPs exhibit under-coverage compared with the nominal level 90%. Additionally,
the amount of under-coverage correlates well with model capacity—the two vanilla MLPs under-
covers more severely than the MLP-freeze and the linear model. Notice that the linear model does
not have a notable under-coverage on most datasets—we believe this is a consequence of d/n being
small on these datasets. The only exception is the Community dataset with the highest d/n ≈ 1/16,
on which the linear model does under-cover mildly by roughly 1%.

5.3 Linear quantile regression on pseudo-labels

To further test the coverage of linear quantile regression on real data distributions, we make two
modifications: (1) We subset the training data by fixing d and reducing n, so as to test the coverage
across differerent values of κ = d/n; (2) We compare linear quantile regression on both true labels
yi, and pseudo-labels ypseudo

i generated from estimated linear models. These pseudo-labels are
generated by first fitting a linear model ŵ ∈ Rd (with square loss) on the training data, and then
generating a new label using the fitted linear model ŵ:

ypseudo
i = ŵ>xi + σ̂zi,

where σ̂ is estimated as
√

Ê(x,y)[(y − ŵ>x)2] on a separate hold-out split, and zi ∼ N(0, 1). The
motivation for the pseudo-labels is to make sure that the data comes from a true linear model,
removing the potential effect of model misspecification.

Table 2 shows that on the MEPS_20 dataset, linear quantile regression exhibits under-coverage at
relatively large values of κ (0.1, 0.2, 0.5) for both kinds of labels. Also, there is no notable difference
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between pseudo-labels and true labels. This provides evidence that our theory on linear quantile
regression may hold broadly on real-world data distributions.

Table 2: Coverage of linear quantile regression on true labels vs. pseudo-labels.

κ = d/n 0.01 0.02 0.05 0.1 0.2 0.5

MEPS_20 89.83±0.67 89.89±0.81 89.54±0.82 88.74±1.51 87.15±1.52 84.75±1.81
MEPS_20 Pseudo 90.05±0.85 89.95±0.64 89.49±0.64 88.90±1.60 86.96±1.30 83.70±2.98

Nominal (α) 90.00 90.00 90.00 90.00 90.00 90.00

6 Proof overview of Theorem 1

Closed-form expression for coverage Our first step is to obtain a closed-form expression for the
coverage. Recall that

Coverage(f̂) := P(x,y)(y ≤ f̂(x)) = P(x,z)(〈w?,x〉+ z ≤ 〈ŵ,x〉+ b̂).

As x is standard Gaussian, and the random variable z has cumulative distribution function Φz ,
standard calculation then yields the closed form expression (Lemma B.1)

Coverage(f̂) = EG∼N(0,1)[Φz(‖ŵ −w?‖2G+ b̂)].

Concentration of ‖ŵ − w?‖2 and b̂ We generalize results from recent advances in high-
dimensional M-estimator in linear models [23, 20, 31, 62] to show that ‖ŵ −w?‖2 and b̂ obtained
by quantile regression 6 concentrates around fixed values in the high-dimensional limit. We show
that, in the limit of d, n→∞ and d/n→ κ, the following concentration happens:

‖ŵ −w?‖2
p→ τ?(κ), and b̂

p→ b?(κ). (11)

Above, τ? and b? are determined by the solutions of a system of nonlinear equations with three
variables (τ, λ, b): 

τ2κ = λ2 · E(G,Z)∼N(0,1)×Pz [e
′
`αb

(τG+ Z;λ)2],

τκ = λ · E(G,Z)∼N(0,1)×Pz [e
′
`αb

(τG+ Z;λ)G],

0 = E(G,Z)∼N(0,1)×Pz [e
′
`αb

(τG+ Z;λ)],

(12)

where e`(x; τ) = minv
1
2τ (x − v)2 + `(v) and `αb = `α(t − b) is the shifted pinball loss (2). (See

Theorem C.1 for the formal statement.) This is established via two main steps: We first build on the
results of Thrampoulidis et al. [62] to show that a variant of the risk minimization problem with a
fixed bias b concentrates around the solution to the first two equations in (12). We then develop a
novel concentration argument to deal with the additional learnable bias b in the minimization problem
(6), which introduces the third equation in (12) that will be used in characterizing the limiting value
of the minimizer b̂.

The concentration (11) implies that Coverage(f̂) also converges to the following limiting coverage
value (Lemma C.3):

Coverage(f̂)
p→ EG∼N(0,1)[Φz(τ?(κ)G+ b?(κ))] =: α− Cα,κ. (13)

Calculating the limiting coverage via local linear analysis In this final step, as another technical
crux of the proof, we further evaluate the small κ approximation of coverage value (13), and determine
the sign of Cα,κ. This is achieved by a local linear analysis on the solutions of the aforementioned
system of equations at small κ (Lemma C.2) in a similar fashion as in [8], and a precise analysis on
the interplay between the concentration values τ?, b?, and the noise density φz . Combining these
calculations yields that Cα,κ/κ = −(α−1/2) +o(1) for small enough κ (Lemma C.4). As α > 1/2,
this establishes Theorem 1. All details on these analyses can be found in our proofs in Appendix C.
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7 Conclusion

This paper presents a first theoretical justification of the under-coverage bias in quantile regression.
We prove that quantile regression suffers from an inherent under-coverage bias even in well-specified
linear settings, and provide a precise quantitative characterization of the amount of the under-coverage
bias on Gaussian linear models. Our theory further identifies the high-dimensional estimation error in
the regression coefficient as the main source of this under-coverage bias, which holds more generally
on a broad class of data distributions. We believe our work opens up several interesting directions for
future work, such as analyzing non-linear quantile regression, as well as analyzing other notions of
uncertainty in regression problems.
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A Technical tools

A.1 The pinball loss

Recall that we took `α : R→ R≥0 to be the pinball loss for the α-quantile, i.e.,

`α(t) = −(1− α)t1 {t ≤ 0}+ αt1 {t > 0} .

We denote `αb (t) = `α(t − b) to be the shifted pinball loss. We will suppress the superscript in
`b = `αb whenever it is clear in the context. The loss function `b is weakly differentiable, with a weak
derivative `′b given by

`′b(t) = −(1− α)1 {t ≤ 0}+ α1 {t > 0} .

A.2 Calculus of the Moreau envelope and prox operator

Given a convex loss function ` : R→ R, we define its the Moreau envelope e` : R× R>0 → R by

e`(x;λ) = min
v

[ 1

2λ
(x− v)2 + `(v)

]
,

and the proximal operator prox`(x;λ) : R× R>0 → R by

prox`(x;λ) = arg min
v

[ 1

2λ
(x− v)2 + `(v)

]
.

Since ` is convex, prox`(x;λ) is well-defined. For ` = `b, we have

prox`b(x;λ) = b · 1{x ∈ [b− (1− α)λ, b+ αλ]}
+ (x− αλ)1{x > b+ αλ}+ (x+ (1− α)λ)1{x < b− (1− α)λ}.

The function e`b is differentiable with respect to (x, λ, b), with derivatives

∂xe`b(x;λ) =
x− prox`b(x;λ)

λ
,

∂λe`b(x;λ) = −
[x− prox`b(x;λ)]2

2λ2
= −1

2
(∂xe`b(x;λ))

2,

∂be`b(x;λ) = − ∂xe`b(x;λ).

(14)

The functions ∂xe`b , ∂λe`b and ∂be`b are weakly-differentiable with respect to (x, λ, b), with the
following formulas giving one (choice of) weak derivative:

∂x∂xe`b(x;λ) =
1

λ
1{prox`b(x;λ) = b} ≥ 0,

∂λ∂xe`b(x;λ) = −
[x− prox`b(x;λ)]2

2λ2
= −∂xe`b(x;λ)∂x∂xe`b(x;λ),

∂b∂xe`b(x;λ) = − ∂x∂xe`b(x;λ),

∂λ∂be`b(x;λ) = − ∂xe`b(x;λ)∂b∂xe`b(x;λ) = ∂xe`b(x;λ)∂x∂xe`b(x;λ),

∂b∂be`b(x;λ) = ∂x∂xe`b(x;λ),

∂λ∂λe`b(x;λ) = − ∂xe`b(x;λ)∂λ∂xe`b(x;λ) = ∂xe`b(x;λ)2∂x∂xe`b(x;λ).

(15)

A.3 Implicit function theorem

We state the standard implicit function theorem in the following.
Lemma A.1 (Implicit function theorem). Let F (p, κ) : Rs × R≥0 → Rs be a continuously dif-
ferentiable vector-valued function on B(p0, ε) × [0, κ̄0) for some κ̄0 > 0. Suppose F (p0, 0) = 0
and

σmin(∇pF (p0, 0)) > 0.

Then there exists a constant κ0 > 0 and a continuous differentiable path p?(κ) ∈ B(p0, ε), such that

F (p?(κ), κ) = 0, ∀κ ∈ [0, κ0).
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A.4 Other technical lemmas

Lemma A.2. For any vectors u,v ∈ Rd and any positive definite matrix A ∈ Rd×d, A � 0, we
have ∣∣u>(A + vv>)−1v

∣∣ ≤ ∣∣u>A−1v
∣∣.

Proof. Recall the Sherman-Morrison-Woodbury identity for matrix inversion:

(A + vv>)−1 = A−1 − A−1vv>A−1

1 + v>A−1v
.

Applying this, we have∣∣u>(A + vv>)−1v
∣∣ =

∣∣∣∣u>A−1v − u>
A−1vv>A−1

1 + v>A−1v
v

∣∣∣∣
=

∣∣∣∣u>A−1v −
(
u>A−1v

)
· v>A−1v

1 + v>A−1v

∣∣∣∣
=

∣∣∣∣(u>A−1v
)
· 1

1 + v>A−1v

∣∣∣∣ ≤ ∣∣u>A−1v
∣∣.

Above, the last line used v>A−1v ≥ 0 since A−1 � 0. This proves the lemma.

Lemma A.3. Let X ∈ Rs be a random variable with distribution µ, and let u : Rs → Rk be a
continuous function. Assume that there exist (xt)t∈[k] that are in the support of the distribution
of X (i.e., for any t ∈ [k], we have µ({x : ‖xt − x‖2 ≤ ε}) > 0 for any ε > 0), such that
[u(x1), . . . ,u(xk)] ∈ Rk×k is full rank. Then we have

E[u(X)u(X)>] � 0.

Proof of Lemma A.3. We denote

ω(ε) = sup
t∈[k]

[
2 sup
x∈B(xt,ε)

‖u(x)− u(xt)‖2 · sup
x∈B(xt,ε)

‖u(x)‖2 + sup
x∈B(xt,ε)

‖u(x)− u(xt)‖22
]
.

Since u is a continuous function on Rs, we have

lim
ε→0

ω(ε) = 0.

We further denote
ν(ε) = min

t∈[k]
µ(B(xt, ε)).

Then by the fact that (xt)t∈[k] ⊆ supp(µ), we have ν(ε) > 0 for any ε > 0.

Then, for any ε > 0, we have

E[u(X)u(X)>] �
k∑
t=1

∫
B(xt,ε)

u(x)u(x)>µ(dx)

�
k∑
t=1

(u(xt)u(xt)
> − ω(ε)Ik)ν(ε)

= ν(ε)

k∑
t=1

u(xt)u(xt)
> − ω(ε)kν(ε)Ik

� ν(ε)
[
λmin

( k∑
t=1

u(xt)u(xt)
>
)
− ω(ε)k

]
Ik.

Since [u(x1), . . . ,u(xk)] has full rank, we have λmin(
∑k
t=1 u(xt)u(xt)

>) > 0. We can choose ε
sufficiently small, so that λmin(

∑k
t=1 u(xt)u(xt)

>)−ω(ε)k > 0. This gives E[u(X)u(X)>] � 0.
This proves the lemma.
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B Properties of quantile regression

B.1 Population minimizer of quantile risk

We can express the population quantile risk as
R(f) = E[`α(y − f(x))] = ExE[`α(y − f(x))|x].

Therefore, any function f(x) that minimizes the conditional expectation E[`α(y − f(x))|x] at every
x minimizes the above risk. It is a classical result that for any distribution P on R, a minimizer
of Ey∼P [`α(y − f)] is the α-quantile qα = inf {t ∈ R : F (t) ≥ α}, where F is the CDF of P [34,
Section 3]. Therefore, the conditional quantile function q?(x) = arg minf E[`α(y − f(x))|x] is a
minimizer of the aforementioned conditional expectation at every x. This proves the claim.

B.2 Explicit expression of coverage

Lemma B.1. Under the linear model (4), for any linear quantile function f̂(x) = ŵ>x + b̂, the
coverage of f̂ can be expressed as

Coverage(f̂) = P(x,y)

(
y ≤ ŵ>x + b̂

)
= EG∼N(0,1)

[
Φz

(
‖ŵ −w?‖2G+ b̂

)]
.

Proof. By the linear model (4), we have y = w>? x + z and thus

P(x,y)

(
y ≤ ŵ>x + b̂

)
= P(x,z)

(
w>? x + z ≤ ŵ>x + b̂

)
= P(x,z)

(
z ≤ (ŵ −w?)

>x + b̂
)

= Ex

[
Φz

(
(ŵ −w?)

>x + b̂
)]

= EG∼N(0,1)

[
Φz

(
‖ŵ −w?‖2G+ b̂

)]
.

Above, the last step used the Gaussian input assumption x ∼ N(0, Id).

C Proof of Theorem 1

Recall that `αb (t) = `α(t− b) where `α(t) is the pinball loss for the α-quantile, i.e.,
`α(t) = −(1− α)t1 {t ≤ 0}+ αt1 {t > 0} .

We will consider a fixed α, so we often write `b ≡ `αb . We further define

e`(x;λ) := min
v∈R

[
1

2λ
(x− v)2 + `(v)

]
.

We consider the following system of equations in three variables (τ, λ, b) ∈ R>0 × R>0 × R, which
will be key to our analysis of the quantile ERM problem (6):

τ2κ = λ2 · E
[
e′`b(τG+ Z;λ)2

]
,

τκ = λ · E
[
e′`b(τG+ Z;λ)G

]
,

0 = E
[
e′`b(τG+ Z;λ)

]
.

(16)

The following two lemmas show that the system of equations (16) has a unique solution, which
further admits a local linear expansion over κ with closed-form coefficients.
Lemma C.1 (Existence of unique solution). There exists κ0 > 0 such that for any κ ∈ (0, κ0], there
exists a unique solution (τ?(κ), λ?(κ), b?(κ)) of the system of equations (16).

Define constants

τ̄2
0 :=

α(1− α)

φ2
z(zα)

,

λ̄0 :=
1

φz(zα)
,

b̄0 :=
−α(1− α)φ′z(zα)− (2α− 1)φ2

z(zα)

2φ3
z(zα)

.

(17)
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Lemma C.2 (Local linear expansion of solution at small κ). Let (τ?(κ), λ?(κ), b?(κ)) denote the
solutions to (16) for any κ ∈ (0, κ0]. The following local linear expansion holds at small κ:

τ2
? (κ) = τ̄2

0κ+ o(κ),

λ?(κ) = λ̄0κ+ o(κ),

b?(κ) = zα + b̄0κ+ o(κ),

(18)

where zα = Φ−1
z (α) is the α-quantile of Pz .

We now show that the quantile ERM problem (6) exhibits a sharp concentration in the proportional
limit (n, d → ∞, d/n → κ) where the concentration values are determined by the solutions
(τ2
? (κ), λ?(κ), b?(κ)) above. This result is a novel extension of (the unregularized case of) [62,

Theorem 4.1] in that it incorporates—and proves the concentration in presence of—the additional
trainable bias parameter b. Recall the ERM problem (6) is

(ŵ, b̂) ∈ arg min
w,b

R̂n(w, b) :=
1

n

n∑
i=1

`α(yi − (w>xi + b)). (19)

Theorem C.1 (Concentration of quantile ERM). Under the linear model (4) and Assumption A,
consider the limit n, d → ∞ and d/n → κ ∈ (0, κ0] where κ0 > 0 is some constant. Then with
probability approaching one, the empirical risk minimizer (ŵ, b̂) exists (but may not be unique), and
for any empirical risk minimizer (ŵ, b̂), we have

b̂
p→ b?(κ), ‖ŵ −w?‖22

p→ τ2
? (κ).

Denote
Coverageα,κ ≡ EG∼N(0,1)[Φz(τ?(κ)G+ b?(κ))].

Combining Theorem C.1, Lemma C.2, and the expression of the coverage in Lemma B.1, the
following two lemmas show that Coverage(f̂) also concentrates around a value Coverageα,κ =
α− Cα,κ, where Cα,κ admits a local linear expansion with a closed-form coefficient.

Lemma C.3. Under the settings of Theorem 1, we have as n, d→∞, d/n→ κ ∈ (0, κ0],

Coverage(f̂)
p→ Coverageα,κ. (20)

Lemma C.4. Under the same setting as Lemma C.3, we further have

Coverageα,κ = α− Cα,κ
= α+ (φz(zα)b̄0 + (1/2)φ′z(zα)τ̄2

0 )κ+ o(κ).
(21)

By Lemma C.4 and the definition of b̄0 and τ̄2
0 in (17), the above coefficient in front of κ can be

simplified as

φz(zα)b̄0 + (1/2)φ′z(zα)τ̄2
0

= φz(zα) · −α(1− α)φ′z(zα)− (2α− 1)φ2
z(zα)

2φ3
z(zα)

+
1

2
φ′z(zα) · α(1− α)

φ2
z(zα)

= −(α− 1/2).

This shows that Cα,κ = (α−1/2)κ+o(κ), and in particular Cα,κ > 0 for all small κ as α−1/2 > 0.
This proves Theorem 1.

The rest of this section is organized as follows. We prove Lemma C.1 in Section C.1 (which
requires analyzing a transformed system of equations and applying the implicit function theorem). In
Section C.2, we connect the system of equations to a variational problem over four real variables. We
then use this connection to prove Theorem C.1 in Section C.3. Finally, we prove Lemma C.3 and
Lemma C.4 in Section C.4.
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C.1 Proof of Lemma C.1 and Lemma C.2

C.1.1 Analysis of system of equations (16)

We first perform a change of variables. For any (τ̄ , λ̄, b̄, κ) ∈ Ω× (0, 1) where Ω = R≥0×R≥0×R,
we rewrite the system of equations (16) as

F (p;κ) = 0, (22)

where p = (τ̄ , λ̄, b̄), F (p;κ) := (F1(p;κ), F2(p;κ), F3(p;κ)) in which

F1(τ̄ , λ̄, b̄;κ) := τ̄2 − λ̄2 · E
[
e′`b̄κ+zα

(τ̄
√
κG+ Z; λ̄κ)2

]
,

F2(τ̄ , λ̄, b̄;κ) := τ̄ − κ−1/2λ̄ · E
[
e′`b̄κ+zα

(τ̄
√
κG+ Z; λ̄κ)G

]
,

F3(τ̄ , λ̄, b̄;κ) := κ−1E
[
e′`b̄κ+zα

(τ̄
√
κG+ Z; λ̄κ)

]
.

(23)

Equation (22) and the system (16) are equivalent up to a change of variables: For any fixed κ, any
solution (τ?, λ?, b?) of Eq. (16) yields a solution (τ?/κ, λ?/κ, (b? − zα)/κ, κ) of F (p;κ) = 0,
and vice versa. Notice that this equivalence allows us to establish Lemma C.1 and Lemma C.2 by
considering the transformed equation (22).

The following two auxiliary lemmas, which give a continuity analysis of the function F , are key
to establishing Lemma C.1 and Lemma C.2. These auxiliary lemmas are required for checking
the conditions of the implicit function theorem. The proofs of these two lemmas are deferred to
Section C.1.2 and C.1.3 respectively. As a shorthand, we take

p0 = (τ̄0, λ̄0, b̄0),

where τ̄0, λ̄0, b̄0 are defined in (17).
Lemma C.5. Let Assumption A hold. Let F be as defined in Eq. (22). Then for any ε such that
B(p0, 2ε) ⊆ Ω = R≥0 × R≥0 × R, there exists a continuous matrix function J : B(p0, ε)→ R3×3

with
σmin(J(p0)) > 0, (24)

and
lim
κ→0

sup
p∈B(p0,ε)

∥∥∥∇pF (p, κ)− J(p)
∥∥∥

op
= 0. (25)

Lemma C.6. Let Assumption A hold. Let F be as defined in Eq. (22). Then for any ε such that
B(p0, 2ε) ⊆ Ω = R≥0 × R≥0 × R, there exists two continuous vector functions F0, g : B(p0, ε)→
R3 such that

lim
κ→0

sup
p∈B(p0,ε)

∥∥∥F (p, κ)− F0(p)
∥∥∥

2
= 0,

lim
κ→0

sup
p∈B(p0,ε)

∥∥∥∂κF (p, κ)− g(p)
∥∥∥

2
= 0.

Moreover, we have
lim
κ→0+

F (p0, κ) = F0(p0) = 0.

By Lemma C.5 and C.6, we can continuously extend the function F to the region B(p0, ε)× [0, κ0)
for some small κ0, such that F (p, κ) is continuously differentiable in the same region. Moreover,
by Lemma C.6, we have F (p0, 0) = limκ→0 F (p0, κ) = 0. Finally, by Lemma C.5, we have
σmin(∇pF (p0, 0)) > 0.

C.1.2 Proof of Lemma C.5

For any p = (τ̄ , λ̄, b̄) ∈ Ω = R≥0×R≥0×R, we define a continuous matrix function J : Ω→ R3×3

by

J(p) =

 2τ̄ −2λ̄α(1− α) 0
1− λ̄φz(zα) −τ̄φz(zα) 0
−τ̄φ′z(zα) (1− 2α)φz(zα) −φz(zα)

 .
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Evaluating J(p0) (recall p0 is defined in Eq. (17)), we have

J(p0) =


2
√
α(1−α)

φz(zα) − 2α(1−α)
φz(zα) 0

0 −
√
α(1− α) 0

−
√
α(1−α)

φz(zα) φ′z(zα) (1− 2α)φz(zα) −φz(zα)

 .

Since we have assumed that φz(zα) 6= 0, it is easy to see that det(J(p0)) = −2α(1− α) 6= 0. This
proves Eq. (24).

We next prove Eq. (25). Recall that the definition of F = (F1, F2, F3) as given in Eq. (23), by the
calculus of e`b as in Section A.2, we have

F1(p;κ) = τ̄2 − EG
{ 1

κ2

∫
[G−,G+]

(z −G)2φz(z)dz + λ̄2α2[1− Φz(G+)] + λ̄2(1− α)2Φz(G−)
}
,

F2(p;κ) = τ̄ − κ−1/2EG
{ 1

κ

∫
[G−,G+]

(z −G)Gφz(z)dz + λ̄α[(1− Φz(G+))G]− λ̄(1− α)Φz(G−)G
}
,

F3(p;κ) = κ−1EG
{ 1

λ̄κ

∫
[G−,G+]

(z −G)φz(z)dz + α[1− Φz(G+)]− (1− α)Φz(G−)
}
,

where
G ≡ zα + κb̄−Gτ̄

√
κ,

G+ ≡ zα + κb̄+ ακλ̄−Gτ̄
√
κ,

G− ≡ zα + κb̄− (1− α)κλ̄−Gτ̄
√
κ.

(26)

Using the smoothness property of φz , with some calculus, we have
lim
κ→0

∂τ̄F1(p;κ) = 2τ̄ ,

lim
κ→0

∂τ̄F2(p;κ) = 1− λ̄φz(zα),

lim
κ→0

∂τ̄F3(p;κ) = − τ̄φ′z(zα),

lim
κ→0

∂λ̄F1(p;κ) = − 2λ̄α(1− α),

lim
κ→0

∂λ̄F2(p;κ) = − τ̄φz(zα),

lim
κ→0

∂λ̄F3(p;κ) = (1− 2α)φz(zα),

lim
κ→0

∂b̄F1(p;κ) = 0,

lim
κ→0

∂b̄F2(p;κ) = 0,

lim
κ→0

∂b̄F3(p;κ) = − φz(zα).

This proves that limκ→0∇pF (p;κ) = J(p). With some more refined analysis, it is easy to see that
the convergence above is uniform over p ∈ B(p0, ε) for small ε. This proves the lemma.

C.1.3 Proof of Lemma C.6

In this proof, we follow the same notations with the proof of Lemma C.5 as in Section C.1.3.

For any (τ̄ , λ̄, b̄, κ) ∈ Ω× (0, κ0) where Ω = R≥0 × R≥0 × R, we define

f1(p, κ) = E
[
e′`b̄κ+zα

(τ̄
√
κG+ Z; λ̄κ)2

]
,

f2(p, κ) = E
[
e′′`b̄κ+zα

(τ̄
√
κG+ Z; λ̄κ)

]
,

f3(p, κ) = E
[
e′`b̄κ+zα

(τ̄
√
κG+ Z; λ̄κ)

]
.

(27)

By the definition of F1, F2, F3 as in Eq. (23), we have
F1(p, κ) = τ̄2 − λ̄2f1(p, κ),

F2(p, κ) = τ̄ − τ̄ λ̄f2(p, κ),

F3(p, κ) = κ−1f3(p, κ).

(28)
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Then, Lemma C.6 holds as long as we show that there exists continuous functions T (p) =
(T1(p), T2(p), T3(p)) and g(p) = (g1(p), g2(p), g3(p)) such that

f1(p, κ) = T1(p) + o(1), (29)

∂κf1(p, κ) = − λ̄−2g1(p) + o(1), (30)
f2(p, κ) = T2(p) + o(1), (31)

∂κf2(p, κ) = − (τ̄ λ̄)−1g2(p) + o(1), (32)
f3(p, κ) = o(1), (33)

∂κf3(p, κ) = T3(p) + o(1), (34)

∂2
κf3(p, κ) = g3(p) + o(1), (35)

where the o(1) terms convergence to 0 uniformly over p ∈ B(p0, ε) as κ→ 0+. Moreover, we need

T1(p0) = τ̄2
0 /λ̄

2
0, (36)

T2(p0) = 1/λ̄0, (37)
T3(p0) = 0. (38)

We first prove Eq. (29), (30) and (36). First, we have (c.f. Eq. (26))

lim
κ→0+

f1(p, κ) = lim
κ→0+

E
[ 1

λ̄2κ2

∫
[G−,G+]

(z −G)2φz(z)dz + α2[1− Φz(G+)] + (1− α)2Φz(G−)
]

= α2(1− Φz(zα)) + (1− α)2Φz(zα) = α(1− α) = τ̄2
0 /λ̄

2
0.

where the last equality is by the definition in Eq. (17). Further, by smoothness of the density
φz , and the fact that the neighborhood B(p0, ε) is bounded, this convergence is uniform over
p = (τ̄ , λ̄, b̄) ∈ B(p0, ε). This proves Eq. (29) and (36).

Moreover, we have
∂κf1(p, κ)

= E
[
− 2

λ̄2κ3

∫
[G−,G+]

(z −G)2φz(z)dz

+
1

λ̄2κ2
(G+ −G)2φz(G+)(b̄+ αλ̄−Gτ̄/(2

√
κ))

− 1

λ̄2κ2
(G− −G)2φz(G−)(b̄− (1− α)λ̄−Gτ̄/(2

√
κ))

− α2φz(G+)(b̄+ αλ̄−Gτ̄/(2
√
κ)) + (1− α)2φz(G−)(b̄− (1− α)λ̄−Gτ̄/(2

√
κ))
]

= E
[
− 2

λ̄2κ3

∫
[G−,G+]

(z −G)2φz(z)dz
]
,

where the last inequality is by Stein’s identity for Z ∼ N (0, 1) and a consequence of many cancella-
tion happening. So this gives

lim
κ→0+

∂κf1(p, κ) = − 2

3λ̄2

[
α2 − (1− α)3

]
φz(zα).

Again, by the smoothness of φz , and the fact that the neighborhood B(p0, ε) is bounded, this
convergence is uniform over p = (τ̄ , λ̄, b̄) ∈ B(p0, ε). This proves Eq. (30). The proof of other
equations within (29) to (38) follow from similar continuity arguments. This proves Lemma C.6.

C.1.4 Proof of Lemma C.1 and Lemma C.2

We consider the function F defined in (23). First, by Lemma C.6, we have F (p0, 0+) = 0.
Further, by Lemma C.5 and C.6, the conditions in the Implicit Function Theorem (Lemma A.1) are
satisfied, from which we can conclude that there exists κ0 > 0 and a continuously differentiable
path {p(κ) = (τ̄(κ), λ̄(κ), b̄(κ)) : κ ∈ [0, κ0)} ⊂ B(p0, ε), such that F (p(κ), κ) = 0 for any
κ ∈ [0, κ0). Therefore, the set of variables

(τ?(κ), λ?(κ), b?(κ)) =
(
τ̄(κ) · κ, λ̄(κ) · κ, zα + b̄ · κ

)
,
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is a unique solution to the original system of equations (16) by the equivalence between system (16)
and system (22) under this change of variables. This proves Lemma C.1.

In order to prove Lemma C.2 (the local linear expansion), it suffices to prove that p(κ) → p0 =
(τ̄0, λ̄0, b̄0). This was already implied by the continuity of p(κ) w.r.t. κ as stated above.

C.2 Connection between system of equations (16) and a variational problem

Define

D(τ, b, τg, β) ≡
[βτg

2
+

1

κ
E(G,Z)∼N (0,1)×Pz [e`b(τG+ Z; τg/β)]− τβ

]
. (39)

The D defined above is strictly convex-concave as stated in the following lemma.

Lemma C.7 (Strict convexity-concavity). Suppose κ ∈ (0, 1). Then for any (τ, b, τg, β) ∈ R>0 ×
R× R>0 × R>0, the function D defined in (39) is strictly convex in (τ, b, τg) (∇2

τ,b,τg
D � 0), and

strictly concave in β.

Proof of Lemma C.7. Define

E(τ, b, τg, β) ≡ E(G,Z)∼N (0,1)×Pz [e`b(τG+ Z; τg/β)].

We write in short ∂xe = ∂xe`b(τG + Z; τg/β) and ∂2
xe = ∂x∂xe`b(τG + Z; τg/β). Then by Eq.

(14), we have
∂τE(τ, b, τg, β) ≡ E[∂xe ·G],

∂bE(τ, b, τg, β) ≡ − E[∂xe],

∂τgE(τ, b, τg, β) ≡ − 1

2β
E
[
(∂xe)

2
]
,

∂βE(τ, b, τg, β) ≡ τg
2β2

E
[
(∂xe)

2
]
.

By Eq. (15), for any (τ, b, τg, β) ∈ R>0 × R× R>0 × R>0, we have

∂2
βE = − τg

β3
E[(∂xe)

2] +
τ2
g

β4
E[(∂xe)

2∂2
xe] = − τg

β3
E[(∂xe)

21{prox`b(τG+ Z) 6= b}] < 0.

This gives ∂2
βD = κ−1∂2

βE < 0, so that D is strictly concave in β (for any fixed (τ, b, τg)).

By Eq. (15) again, we have

∇2
(τ,b,τg)E = E

 G2 · ∂2
xe −G · ∂2

xe −β−1∂xe ·G · ∂2
xe

−G · ∂2
xe ∂2

xe β−1∂xe · ∂2
xe

−β−1∂xe ·G · ∂2
xe β−1∂xe · ∂2

xe β−2(∂xe)
2 · ∂2

xe


=
β

τg
E[1{prox`b(τG+ Z; τg/β) 6= b} · uu>].

where u = (G,−1, β−1∂xe). Note that there exists (G1, Z1), (G2, Z2) and (G3, Z3) such that
prox`b(τG1 + Z1; τg/β), prox`b(τG2 + Z2; τg/β), prox`b(τG3 + Z3; τg/β) 6= b, andG1 −1 β−1∂xe`b(τG1 + Z1; τg/β)

G2 −1 β−1∂xe`b(τG2 + Z2; τg/β)
G3 −1 β−1∂xe`b(τG3 + Z3; τg/β)


is full rank. By Lemma A.3, we have ∇2

(τ,b,τg)E � 0. Note that∇2
(τ,b,τg)D = κ−1∇2

(τ,b,τg)E � 0,
so that D is strictly convex in (τ, b, τg) (for any fixed β). This proves the lemma.

We now characterize a min-max variational problem associated with the function D, and show that
it has a unique solution for small κ, and the solution is related to the solution of the system of
equations (16).
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Lemma C.8 (Characterization of variational problem). Consider the following variational problem
in four variables over the function D defined in (39):

inf
τ>0,b∈R,τg>0

sup
β>0

D(τ, b, τg, β)

= inf
τ>0,b∈R,τg>0

sup
β>0

[βτg
2

+
1

κ
E(G,Z)∼N (0,1)×Pz [e`b(τG+ Z; τg/β)]− τβ

]
.

(40)

For all sufficiently small κ ∈ (0, κ0], there exists a unique solution (τ̃?, b̃?, τ̃g,?, β̃?) (which depends
on κ) to problem (40). This solution is related to the solution (τ?(κ), λ?(κ), b?(κ)) of (16) as

τ̃? = τ̃g,? = τ?(κ), β̃? = τ?(κ)/λ?(κ), b̃? = b?(κ). (41)

Further, for some positive ε > 0, for any b′ ∈ [b? − ε, b? + ε], the following variational problem in
three variables

inf
τ>0,τg>0

sup
β>0

D(τ, b′, τg, β)

= inf
τ>0,b∈R,τg>0

sup
β>0

[βτg
2

+
1

κ
E(G,Z)∼N (0,1)×Pz

[
e`b′ (τG+ Z; τg/β)

]
− τβ

] (42)

has a unique solution within R3
>0.

Proof of Lemma C.8. Calculating the derivatives of D(τ, b, τg, β), we get

∂τD(τ, b, τg, β) = κ−1E[Ge′`b(τG+ Z; τg/β)]− β,
∂bD(τ, b, τg, β) = − κ−1E[e′`b(τG+ Z; τg/β)],

∂τgD(τ, b, τg, β) = β/2− 1

2κβ
E[e′`b(τG+ Z; τg/β)2],

∂βD(τ, b, τg, β) = τg/2− τ +
τg

2κβ2
E[e′`b(τG+ Z; τg/β)2].

By Lemma C.1, there exists κ0 > 0 such that for any κ ∈ (0, κ0], there exists a unique solution
(τ?(κ), λ?(κ), b?(κ)) of Eq. (16). Plugging in (τ, b, τg, β) = (τ?(κ), b?(κ), τ?(κ), τ?(κ)/λ?(κ)) into
the derivatives above and using Eq. (16), we get∇(τ,b,τg,β)D(τ?(κ), b?(κ), τ?(κ), τ?(κ)/λ?(κ)) = 0.
This proves that (τ̃?, b̃?, τ̃g,?, β̃?) = (τ?(κ), b?(κ), τ?(κ), τ?(κ)/λ?(κ)) is a stationary point of D.

Since D is jointly strictly convex in (τ, b, τg) and strictly concave in β as stated in Lemma C.7, we
get

inf
τ>0,b∈R,τg>0

sup
β>0

D(τ, b, τg, β) ≤ sup
β>0

D(τ̃?, b̃?, τ̃g,?, β) = D(τ̃?, b̃?, τ̃g,?, β̃?),

inf
τ>0,b∈R,τg>0

sup
β>0

D(τ, b, τg, β) ≥ inf
τ>0,b∈R,τg>0

D(τ, b, τg, β̃?) = D(τ̃?, b̃?, τ̃g,?, β̃?).

This proves that (τ̃?, b̃?, τ̃g,?, β̃?) is a solution of the variational problem (40). By the strict convexity-
concavity property of D again, the solution of the variational problem (40) is unique. Finally, the
existence and uniqueness of the solution of infτ>0,τg>0 supβ>0 D(τ, b′, τg, β) for b′ ∈ [b?−ε, b?+ε]
follows from similar arguments.

C.3 Proof of Theorem C.1

Preliminary: the asymptotic limit fixed b via CGMT For any convex function ` : R → R, we
define notation

`′+(v) ≡ sup
s∈∂`(v)

|s|.

For τ > 0, we define (with some abuse of notation)

D(τ) ≡ inf
τg>0

sup
β>0

[βτg
2

+
1

κ
E(G,Z)∼N (0,1)×Pz [e`(τG+ Z; τg/β)]− τβ

]
. (43)

The following proposition is by [62, Theorem 4.1], which uses the Convex Gaussian Comparison
Theorem (CGMT).
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Proposition C.1 (A simplification of Theorem 4.1 in [62] up to model rescaling). Let ` be a closed
proper convex function and Pz be a distribution on the real line satisfying

• E(G,Z)∼N (0,1)×Pz [|`′+(cG+ Z)|2] <∞, for all c ∈ R;

• supv∈R |`′+(v)| <∞.

Further assume that the set arg minτ D(τ) is bounded for the function D defined in (43). Then D
has a unique minimizer τ? > 0. Moreover, in the limit n, d→∞ and d/n→ κ, we have

min
w

1

n

n∑
i=1

`(yi − 〈xi,w〉)
p→ min

τ
D(τ).

Furthermore, for any ε > 0, defining Sε ≡ {w : |‖w −w?‖22 − τ2
? | ≤ ε}, there exists δ > 0 such

that

min
w∈Scε

1

n

n∑
i=1

`(yi − 〈xi,w〉)
p→ min

τ
D(τ) + δ.

As a consequence, for any empirical risk minimizer ŵ satisfying

ŵ ∈ arg min
w

1

n

n∑
i=1

`(yi − 〈xi,w〉),

we have
‖ŵ −w?‖22

p→ τ2
? .

We are now ready to prove Theorem C.1.

Proof of Theorem C.1. We define (with some abuse of notation)

D(τ, b) ≡ inf
τg>0

sup
β>0

[βτg
2

+
1

κ
E(G,Z)∼N (0,1)×Pz

[
e`αb (τG+ Z; τg/β)

]
− τβ

]
. (44)

Step 1. Show that b̂ p→ b?. For any fixed b ∈ R, define the associated minimum empirical risk (over
w ∈ Rd) as

Ln(b) ≡ min
w

R̂n(w, b).

Notice that b̂ = arg minb∈R Ln(b). Let (τ?, κ?, b?) be defined as in Lemma C.1 (as well as
Lemma C.8). By Lemma C.8, there exists some ε > 0 such that for any fixed b ∈ [b? − ε, b? + ε],
we have arg minτ D(τ) is a singleton. Therefore the conditions of Proposition C.1 is satisfied, from
which we conclude that

Ln(b)
p→ min

τ
D(τ, b).

Now, observe that minτ D(τ, b) = minτ,τg maxβ D(τ, b, τg, β) is strictly convex in b (this is because
D(τ, b, τg, β) has a positive definite Hessian w.r.t. (τ, b, τg) at any (τ, b, τg, β) by Lemma C.7). Then
for any ε > 0, there exists δ > 0 such that

min
τ
D(τ, b? + ε) ≥ min

τ
D(τ, b?) + δ, min

τ
D(τ, b? − ε) ≥ min

τ
D(τ, b?) + δ.

As a consequence, with probability going to 1, we have the event

{Ln(b? + ε) > Ln(b?) + δ/2, Ln(b? − ε) > Ln(b?) + δ/2}.

Furthermore, since Ln(b) is a convex function in b, this implies that, with probability going to 1, we
have |̂b− b?| ≤ ε. Note that this is for any ε > 0. This proves that b̂

p→ b?.

Step 2. Show that ‖ŵ −w?‖22
p→ τ2

? . By Proposition C.1, for any ε > 0, there exists δ > 0 such
that

min
w∈Scε

R̂n(w, b?)
p→ min

τ
D(τ, b?) + δ.

where Sε ≡ {w : |‖w −w?‖22 − τ2
? | ≤ ε}.
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Furthermore, note that `α(t) = −(1 − α)t1 {t ≤ 0} + αt1 {t > 0} is a 1-Lipschitz function in t,
this gives

sup
w

∣∣∣R̂n(w, b1)− R̂n(w, b2)
∣∣∣ ≤ |b1 − b2|

As a consequence, we have

min
w∈Scε

R̂n(w, b̂) ≥ min
w∈Scε

R̂n(w, b?)− |̂b− b?|
p→ min

τ
D(τ, b?) + δ.

In the mean time, by Proposition C.1, we have

min
w

R̂n(w, b̂) ≤ min
w

R̂n(w, b?) + |̂b− b?|
p→ min

τ
D(τ, b?).

This implies that, with probability approaching 1, we have

min
w∈Scε

R̂n(w, b?) ≥ min
τ
D(τ, b?) + 2δ/3 and min

w
R̂n(w, b̂) ≤ min

τ
D(τ, b?) + δ/3.

On this event we have ŵ ∈ Sε. Note that this is for any ε > 0. This proves that ‖ŵ−w?‖22
p→ τ2

? .

C.4 Proof of Lemma C.3 and Lemma C.4

Recall that

Coverage(f̂) = P(x,y)

(
y ≤ ŵ>x + b̂

)
= EG∼N(0,1)

[
Φz

(
‖ŵ −w?‖2G+ b̂

)]
.

Eq. (20) is simply by the fact that T (τ, b;G) ≡ Φz(τG + b) is a continuous function in (τ, b), by
Theorem C.1, and by the dominant convergence theorem. This proves Lemma C.3.

Furthermore, by Taylor expansion, we have

Coverageα,κ = E[Φz(τ?(κ)G+ b?(κ))]

= Φz(zα) + φz(zα)E[(τ?(κ)G+ b?(κ)− zα)] +
1

2
φ′z(zα)E[(τ?(κ)G+ b?(κ)− zα)2]

+
1

6
E[φ′′z (ξ)(τ?(κ)G+ b?(κ)− zα)3]

= α+ φz(zα)(b?(κ)− zα) +
1

2
φ′z(zα)τ2

? (κ) + o(κ)

= α+

(
φz(zα)b̄0 +

1

2
φ′z(zα)τ̄2

0

)
κ+ o(κ),

where the last equality is by Lemma C.2 and by the boundedness of φ′′z . This proves Eq. (21) and
thus Lemma C.4.

D Extension to over-parametrized learning

In this section we provide a variant of Theorem 1 in the over-parametrized case, i.e. when d ≥ n, so
that the learned quantile functions have the capacity to interpolate the entire training dataset. We still
assume that the data are generated from the linear model (4). For notational simplicity, throughout
this section we let θ := [w>, b]> ∈ Rd+1 denote the concatenation of w and b, and let R̂n(θ) denote
the empirical risk (6). We also let x̃ = [x>, 1]> ∈ Rd+1 denote the augmented feature so that
θ>x̃ = w>x + b. We let X̃ ∈ Rn×(d+1) denote the augmented input matrix and z ∈ Rn denote the
noise vector.

In the over-parametrized case, the ERM is no longer well-defined as there are multiple interpolating
solutions. We consider instead the quantile functions obtained on the gradient descent path on the
empirical risk R̂n. More precisely, we consider the vanilla (sub)-gradient descent algorithm: Initialize
θ1 = 0, and iterate for all t ≥ 1

θt+1 = θt − ηtgt, (45)

where gt ∈ ∂R̂n(θt) is any sub-gradient of the empirical risk R̂n (6) at θt.
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Theorem D.1 (Quantile regression under over-parametrization). Suppose the data is generated from
the Gaussian linear model (4) with ‖w‖2 = R, and the nominal quantile level α ∈ (0.5, 1). Further
assume the noise distribution Pz is symmetric about 0 and σ2-sub-Gaussian. Then, there exists an
absolute constant C0 > 0 such that if n ≥ C0(d+ log(1/δ)), the following holds.

Let θt be the iterates of the sub-gradient descent algorithm (45) with step-size ηt := β/
√
t for any

β > 0, and let θ∞ ∈ Rd+1 denote any limit point of {θt}t≥1, then we have

(a) θ∞ is the minimum `2-norm interpolator of the training data, i.e.

θ∞ = arg min
θ∈Rd

{
‖θ‖2 : X̃θ = y

}
.

(b) With probability at least 1 − δ (over the training data), the coverage of the limiting quantile
function f̂∞ := θ>∞x̃ = w>∞x + b∞ concentrates around 0.5:∣∣∣Coverage(f̂∞)− 0.5

∣∣∣ ≤ C(R+ σ) ·
√

log(1/δ)

d
,

where C > 0 is a constant that only depends on supt∈R |φz(t)|.

Implications Theorem D.1 shows that a severe under-coverage bias in the over-parametrized case:
The coverage of the limiting quantile function (of the gradient descent path) is 0.5 ± Õ(1/

√
d),

regardless of the nominal quantile level α ∈ (0.5, 1). Therefore f̂∞ under-covers by α− 0.5 = Θ(1),
and this under-coverage bias does not diminish as we increase n, d.

The proof of Theorem D.1 is established in the following two subsections.

D.1 Proof of Part (a)

We begin by observing that the sub-gradients of the quantile risk (6) takes the form

gt =
1

n

n∑
i=1

(`α)′(yi − θ>t x̃i) · x̃i ∈ span{x̃1, . . . , x̃n}, (46)

where (`α)′(t) is the sub-gradient of `α, which takes value −(1− α) at t < 0, α at t > 0, and any
value within [−(1− α), α] at t = 0. As we initialized at θ1 = 0, this implies that

θt ∈ span{x̃1, . . . , x̃n}

for all t ≥ 1. Also, by (46) we have ‖gt‖2 ≤ M := maxi∈[n] ‖x̃i‖2, since |(`α)′| ≤
max {α, 1− α} ≤ 1.

Also, let θ`2 denote the minimum `2-norm interpolator of the dataset:

θ`2 := arg min
θ∈Rd

{
‖θ‖2 : X̃θ = y

}
= X̃†y = X̃>(X̃X̃>)−1y. (47)

This θ`2 exists whenever d+ 1 ≥ n (so that x̃i ∈ Rd+1 are linearly independent with probability one
and thus X̃X̃> ∈ Rn×n is invertible). It further satisfies

• R̂n(θ`2) = 0 (since θ>`2 x̃i = yi). Therefore θ`2 is a minimizer of R̂n since R̂n ≥ 0.

• θ`2 ∈ span{x̃1, . . . , x̃n}.

• θ`2 is the only point within span{x̃1, . . . , x̃n} that satisfies R̂n(θ`2) = 0, as any such point
θ ∈ Rd+1 must satisfy X̃θ = y, and there is only one such point in the span because of the
linear independence of {x̃i}ni=1.

We now use the following lemma on the last-iterate convergence of sub-gradient descent, adapted
from [48, Corollary 3]:
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Lemma D.1 (Last-iterate convergence of sub-gradient descent). Suppose F : RD → R is a convex
function with bounded sub-gradients: ‖g‖2 ≤M for all g ∈ ∂F (θ) and any θ ∈ RD. Let θ? ∈ RD
be any minimizer of F with F? = F (θ?) > −∞. Consider the sub-gradient descent algorithm

θt+1 = θt − ηtgt,

where gt ∈ ∂F (θt), and ηt = β/
√
t for some β > 0. Then, we have for all T ≥ 3 that

F (θT )− F? ≤
‖θ1 − θ?‖22 + 4M2β2 log T

2β
√
T

.

Applying Lemma D.1 with on the quantile risk R̂n the associated minimizer θ`2 , we get that (for
T ≥ 3)

R̂n(θT ) ≤
‖θ`2‖

2
2 + 4M2β2 log T

2β
√
T

.

This implies that R̂n(θT )→ 0 as T →∞.

The above implies that any limit point θ∞ of the sequence {θt}t≥1 must satisfy

• R̂n(θ∞) = 0, by continuity of R̂n;
• θ∞ ∈ span(x̃1, . . . , x̃n), by the closedness of the span.

Combined with the above assertions on θ`2 , this shows that θ∞ = θ`2 , establishing part (a) of the
theorem.

D.2 Proof of part (b)

We first establish a covariance lower bound useful for the subsequent analyses. As xi ∼ N(0, Id),
the input matrix X ∈ Rn×d has i.i.d. N(0, 1) entries, and thus X’s columns are also i.i.d. N(0, In).
By standard sub-Gaussian covariance concentration, we have with probability at least 1− δ that∥∥∥∥1

d
XX> − In

∥∥∥∥
op

≤ C

(√
n+ log(1/δ)

d
+
n+ log(1/δ)

d

)
for some absolute constant C > 0 (this can be found in e.g. [65, Example 4.7.3]). In particular, we
have

∥∥XX>/d− In
∥∥

op
≤ 1/4 provided d ≥ C(n+ log(1/δ)). On this event, we have

XX> � 3d

4
In.

We will apply a small variant of this result: as long as d− 1 ≥ C(n+ log(1/δ)), we also have for
any fixed matrix V? ∈ Rd×(d−1) with orthogonal columns that

XV?V
>
? X
> � 3(d− 1)

4
In �

d

2
In. (48)

Bounding |b∞| By (47), we have[
w∞
b∞

]
= θ∞ = θ`2 = X̃>(X̃X̃>)−1y = X̃>(X̃X̃>)−1(Xw? + z)

=

[
X>

1>n

]
(X̃X̃>)−1(Xw? + z).

Therefore

b∞ = 1>n (X̃X̃>)−1(Xw? + z) = 1>n
(
XX> + 1n1

>
n

)−1
Xw?︸ ︷︷ ︸

I

+1>n
(
XX> + 1n1

>
n

)−1
z︸ ︷︷ ︸

II

.

We now bound terms I and II separately.
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For term I, let us assume for the moment that ‖w?‖2 = 1. Let V? ∈ Rd×d−1 denote the orthogonal
complement to the matrix w? (i.e. so that [w?, V?] ∈ Rd×d is an orthogonal matrix). We have

I = 1>n
(
XV?V

>
? X
> + Xw?w

>
? X
> + 1n1

>
n

)−1
Xw?.

As XV?V
>
? X
> is an positive definite matrix with probability one whenever d− 1 ≥ n, applying

Lemma A.2 twice, we get

|I| ≤
∣∣∣1>n (XV?V

>
? X
> + 1n1

>
n

)−1
Xw?

∣∣∣ ≤ ∣∣∣1>n (XV?V
>
? X
>)−1

Xw?

∣∣∣.
Now, notice that XV? ∈ Rn×d−1 and Xw? ∈ Rn have i.i.d. N(0, 1) entries and are independent
of each other. Further, Xw? ∼ N(0, In), and thus the random variable 1>n

(
XV?V

>
? X
>)−1

Xw?

(conditional on XV?) is ‖vI‖22-sub-Gaussian (due to the independence between XV? and Xw?),
where

‖vI‖22 = 1>n
(
XV?V

>
? X
>)−2

1n ≤
4

d2
‖1n‖22 =

4n

d2
,

where the inequality used the covariance lower bound (48). This shows that

|I| ≤ C
√

4n/d2 · log(1/δ) ≤ C
√

log(1/δ)/d

with probability at least 1− δ, where the last step used n ≤ d. It is straightforward to see that, for
general ‖w?‖2 = R, we have

|I| ≤ CR
√

4n/d2 · log(1/δ) ≤ CR
√

log(1/δ)/d. (49)

For term II, As X and z are independent, the random variable II = 1>n (XX> + 1n1
>
n )−1z (condi-

tional onX) is ‖vII‖22 σ2-sub-Gaussian, where

‖vII‖22 = 1>n (XX> + 1n1
>
n )−21n ≤

4

d2
‖1n‖22 =

4n

d2
≤ 4

d
.

Similar as above, we have with probability at least 1− δ that

|II| ≤ Cσ
√

log(1/δ)/d. (50)

Combining (49) and (50), we get with probability at least 1− δ that (rescaling 3δ → δ)

|b∞| ≤ C(R+ σ)
√

log(1/δ)/d. (51)

Bounding the coverage bias We now translate the bound on |b∞| to a bound on the coverage error∣∣∣Coverage(f̂∞)− 0.5
∣∣∣. First, note that by symmetry of the distribution of (w∞ −w?)

>x and the
fact that Φz(t) + Φz(−t) = 1 (due to the symmetry of Pz), we have

E
[
Φz
(
(w∞ −w?)

>x
)]

= E
[

1

2

(
Φz
(
(w∞ −w?)

>x
)

+ Φz
(
−(w∞ −w?)

>x
))]

= 0.5.

Therefore we have∣∣∣Coverage(f̂∞)− 0.5
∣∣∣ =

∣∣E[Φz((w∞ −w?)
>x + b∞

)
− Φz

(
(w∞ −w?)

>x
)]∣∣

≤ sup
t∈R
|φz(t)| · |b∞|

≤ C sup
t∈R
|φz(t)| · |b∞| ≤ C sup

t∈R
|φz(t)| · (R+ σ)

√
log(1/δ)/d.

Notably the bound is also upper bounded by C supt∈R |φz(t)| · (R+σ)
√

log(1/δ)/n as we assumed
d ≥ n. This proves part (b) of the theorem.
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E Proofs for Section 4

E.1 Proof of Corollary 2

First, part (a) is a direct consequence of Lemma C.2 which was established within the proof of
Theorem 1.

We now prove part (b). We first show that b̄0 < 0 for Pz being any Gaussian distribution. We first
observe that to determine the sign of b̄0, it suffices to consider the standard Gaussian: The value of
b̄0 does not depend on the location parameter (since φz and zα shifts together with a location shift).
Also, scalings won’t change the sign of b̄0 (although it scales the numerator and the denominator by a
different amount).

We next calculate b̄0 for Pz = N(0, 1). We have φ′z(zα) = −zαφz(zα) for φz(t) =

exp(−t2/2)/
√

2π. Therefore the numerator of b̄0 is

−α(1− α)φ′z(zα)− (2α− 1)φ2
z(zα) = (α(1− α)zα − (2α− 1)φz(zα))φz(zα).

Consider the change of variable t := zα so that α = Φz(t). To show the above quantity is negative, it
suffices to show that

Φ(t)(1− Φ(t))t− (2Φ(t)− 1)φ(t) < 0

⇐⇒ t(1− Φ(t))

φ(t)
− 2 +

1

Φ(t)︸ ︷︷ ︸
:=F (t)

< 0

for all t > 0, where Φ(t) = Φz(t) is shorthand for the standard Gaussian CDF. To show this, we first
observe that F (0) = −2 + 1/Φ(0) = 0, and further

F ′(t) =
(1 + t2)(1− Φ(t))

φ(t)
− t− φ(t)

Φ(t)2
.

We can numerically check that F ′(t) < −0.03 for t ∈ [0, 1], within which range we have F (t) <
−0.03t < 0. On the other hand, using the Gaussian CDF approximation bound

1− 1

t2
≤ t(1− Φ(t))

φ(t)
≤ 1− 1

t2
+

3

t4
for all t > 0,

we have

F (t) ≤ 1− 1

t2
+

3

t4
− 2 +

1

1− (t−1 − t−3)φ(t)

(i)

≤ − 1

t2
+

3

t4
+ 2(t−1 − t−3)φ(t) ≤ 3 + 2t3φ(t)− t2

t4
(ii)
< 0,

where (i) happens when (t−1 − t−3)φ(t) < 1/2, which happens for all t ≥ 1, and (ii) happens
when t ≥ 2. This shows that F (t) < 0 for t ≥ 2. For t ∈ [1, 2], one can check numerically that
F (t) < −0.1 < 0. This shows F (t) < 0 for all t > 0, which establishes b̄0 < 0 for Pz = N(0, 1),
showing the first claim in part (b).

Next, for any α ∈ (0.5, 1), we show that there exists a noise distributions P̃z for which b̄0 > 0. Indeed,
simply take any smooth density φz (such as standard Gaussian density), and modify φz locally around
zα into some new smooth density φ̃z such that both the new α-quantile z̃α ≈ zα and φ̃z(z̃α) ≈ φz(zα)

(with arbitrarily small differences), but φ̃′z(z̃α) < 0 is negative with a high magnitude |φ̃′z(z̃α)|.
Taking this magnitude high enough, we can always make −α(1−α)φ̃′z(z̃α)− (2α− 1)φ̃z(z̃α)2 > 0,
which gives b̄0 > 0 for the noise distribution P̃z defined by the density φ̃z . This shows the second
claim in part (b).
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E.2 Proof of Theorem 3

For any f̂(x) = ŵ>x + b?, the coverage can be expressed as

Coverage(f̂) = P
(
y ≤ ŵ>x + b?

) (i)
= P

(
µ?(x) + σ?(x)z ≤ ŵ>x + b?

)
(ii)
= P

(
σ?(x)(z − zα) ≤ (ŵ −w?)

>x
)

= P
(
z ≤ zα +

(ŵ −w?)
>x

σ?(x)

)
= E

[
Φz

(
zα +

(ŵ −w?)
>x

σ?(x)

)]
.

Above, (i) used the data distribution assumption (9), and (ii) follows by subtracting both sides by
µ?(x) + σ?(x) = w>? x + b? by the linear true quantile assumption (10).

Now, by assumption α ≥ 3/4, we have zα > z1/2 = 0. We claim the following holds for all t ∈ R:

1

2
(Φz(zα + t) + Φz(zα − t)) ≤ Φz(zα)− ct21 {|t| ≤ zα} , (52)

where c > 0 is a constant that only depends on Φz and zα. To see this, notice that Φ′′z (t) = φ′z(t) < 0
for t > 0 and thus Φz is concave for t ≥ 0. Further, Φz is c-strongly concave on [zα/2, 3zα/2] for
some c > 0 as Φ′′z (t) = φ′z(t) is continuous and negative on this compact interval. This shows that

1

2
(Φz(zα + t) + Φz(zα − t)) ≤ Φz(zα)− ct2

for |t| ≤ zα/2, and further by the concavity of Φz on [0, 2zα] that

1

2
(Φz(zα + t) + Φz(zα − t)) ≤

1

2
(Φz(zα + t0) + Φz(zα − t0)) ≤ Φz(zα)− ct20 ≤ Φz(zα)− ct2/4

for |t| ∈ (zα/2, zα] (where t0 := zα/2). This verifies claim (52) for |t| ≤ zα. On the other hand, if
|t| ≥ zα, we have (taking t > 0 w.l.o.g.) Φz(zα + t) ≤ 1 always and Φ(zα − t) ≤ Φz(0) = 1/2.
Therefore

1

2
(Φz(zα + t) + Φz(zα − t)) ≤

1

2
(1 + 1/2) = 3/4 ≤ Φ(zα).

This verifies claim (52) for |t| > zα.

Now, note that (ŵ −w?)
>x/σ?(x) is symmetric about 0 by our assumption that x has a symmet-

ric distribution and σ?(x) = σ?(−x). Therefore, we can rewrite and upper bound the coverage
using (52):

Coverage(f̂) = E
[

1

2

(
Φz

(
zα +

(ŵ −w?)
>x

σ?(x)

)
+ Φz

(
zα −

(ŵ −w?)
>x

σ?(x)

))]
(i)

≤ E

[
Φz(zα)− c

(
(ŵ −w?)

>x

σ?(x)

)2

1

{∣∣∣∣ (ŵ −w?)
>x

σ?(x)

∣∣∣∣ ≤ zα}
]

= α− cE

[(
(ŵ −w?)

>x

σ?(x)

)2

1

{∣∣∣∣ (ŵ −w?)
>x

σ?(x)

∣∣∣∣ ≤ zα}
]

(ii)

≤ α− c

σ2E
[(

(ŵ −w?)
>x
)2
1
{∣∣(ŵ −w?)

>x
∣∣ ≤ zασ}]

= α− c

σ2

(
(ŵ −w?)

>E[xx>](ŵ −w?)− E
[(

(ŵ −w?)
>x
)2
1
{∣∣(ŵ −w?)

>x
∣∣ > zασ

}])
(iii)

≤ α− c

σ2

(
γ ‖ŵ −w?‖22 − E

[(
(ŵ −w?)

>x
)2
1
{∣∣(ŵ −w?)

>x
∣∣ > zασ

}]
︸ ︷︷ ︸

(?)

)
.

Above, (i) used (52); (ii) used the bound σ ≤ σ?(x) ≤ σ; (iii) used the covariance lower bound
E[xx>] � γId. Further, letting r := ‖ŵ −w?‖2, the random variable (ŵ −w?)

>x (with random-
ness only in x) is Kr2-sub-Gaussian, since x is K-sub-Gaussian by our assumption. Therefore the
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term (?) can be further upper bounded as

(?) ≤
(
E
[(

(ŵ −w?)
>x
)4] · P(∣∣(ŵ −w?)

>x
∣∣ > zασ

))1/2

≤
(
CK2r4 · 2 exp(−z2

ασ
2/Kr2)

)1/2
≤ CKr2 · exp(−z2

ασ
2/2Kr2)

(i)

≤ 1

2
γr2,

where (i) happens if r ≤ r0 for some r0 = r0(γ, σ,K, zα). Plugging this back into the preceding
bound yields

Coverage(f̂) ≤ α−
cγ

2σ2 · r
2 = α−

cγ

2σ2 · ‖ŵ −w?‖22

for any ŵ such that ‖ŵ −w?‖2 ≤ r0. This proves the desired result.

F Additional experimental details and ablations

F.1 Simulations

We provide additional details about our simulations in Section 5.1. In each problem instance, we
generate (xi, yi) from the Gaussian linear model (4): xi ∼ N(0, Id), yi = w>? xi + zi where
zi

iid∼ Pz = N(0, 0.25). We choose ‖w?‖2 = 1. We run the (sub)-gradient descent algorithm on the
full empirical risk R̂n (note the risk also depends on the quantile level α) for 50k steps, with initial
learning rate 0.01 and a 10x learning rate decay at the 25k-th step. For all our settings (choice of
n, d, α), this optimization schedule ensures that the training loss changes by less than 10−5 between
consecutive iterations at the final iteration.

Each problem instance yields a solution (ŵ, b̂) which specifies a linear quantile function f̂(x) =

ŵ>x + b̂. We evaluate its coverage exactly using the closed-form formula (cf. Section 6)

Coverage(f̂) = EG∼N(0,1)

[
Φz(‖ŵ −w?‖2G+ b̂)

]
.

We compute this by using numerical integration (over the gaussian random variable G). The entire
set of experiments (for producing Figure 1) is done on a single CPU machine in roughly 6 hours.

F.2 Real data experiments

We provide additional details about our real data experiments in Section 5.2 and 5.3. All models
(linear, MLP, MLP-freeze) in Section 5.2 are trained by minimizing the quantile risk (3). We use
SGD with momentum 0.9, initial learning rate 10−3 for 1500 epochs, and apply a 10x learning rate
decay at epoch {500, 1000}. For each dataset and each random seed, we perform a train-validation
split where we use 80% of the data as the train set and 20% of the data as the test set. The coverage
of the trained model is evaluated on the test split. For all datasets and all models, we repeat the same
experiment across 8 random seeds, and report the mean and standard deviation of the coverage in
Table 1.

For our pseudo-label experiments in Section 5.3, we train the linear model ŵ first by minimizing
the square loss and using the same optimization schedule above. After ŵ is learned, we generate the
pseudo-labels ypseudo

i using ŵ and the estimated standard deviation σ̂ as described in Section 5.3.
This is done for both the train and test sets for which we obtain a “pseudo” train set and a “pseudo”
test set. We then perform linear quantile regression on these pseudo datasets in a same fashion as in
Section 5.3.

The experiments for Sections 5.2 and 5.3 are done on a 8-GPU machine (with Tesla V-100 GPUs) in
roughly a day.

Ablations on α Table 3 and 4 report coverage results on the real data with α ∈ {0.8, 0.95}
respectively, in the same settings as in Section 5.2. These tables also show that under-coverage
happens consistently across different datasets and different models, with patterns similar as in Table 1
(which uses α = 0.9).
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Table 3: Coverage (%) of quantile regression on real data at nominal level α = 0.8. Each entry reports the
test-set coverage with mean and std over 8 random seeds. (d, n) denotes the {feature dim, # training examples}.

Dataset Linear MLP-3-64 MLP-3-512 MLP-freeze-3-512 d n

Community 78.25±1.75 66.07±1.48 56.17±2.81 77.45±1.76 100 1599
Bike 79.95±0.66 78.07±1.00 78.66±0.86 79.46±0.83 18 8708
Star 79.97±2.37 72.95±1.83 59.26±1.41 78.42±2.04 39 1728
MEPS_19 80.11±1.12 76.47±0.93 70.04±0.75 79.02±1.28 139 12628
MEPS_20 79.84±0.75 77.11±0.73 71.88±0.87 79.29±0.53 139 14032
MEPS_21 79.57±0.72 74.58±0.70 65.55±0.69 79.29±0.73 139 12524

Nominal (α) 80.00 80.00 80.00 80.00 - -

Table 4: Coverage (%) of quantile regression on real data at nominal level α = 0.95. Each entry reports the
test-set coverage with mean and std over 8 random seeds. (d, n) denotes the {feature dim, # training examples}.

Dataset Linear MLP-3-64 MLP-3-512 MLP-freeze-3-512 d n

Community 93.82±0.98 86.23±1.43 74.38±1.86 93.58±1.33 100 1599
Bike 94.56±0.45 93.77±0.63 93.16±0.80 94.19±0.65 18 8708
Star 94.08±1.73 90.96±1.91 81.58±1.82 93.39±1.68 39 1728
MEPS_19 94.69±0.41 90.71±0.72 85.32±1.23 94.19±0.42 139 12628
MEPS_20 94.84±0.30 92.06±0.43 87.32±0.77 94.58±0.32 139 14032
MEPS_21 94.97±0.34 89.55±0.39 80.70±0.79 94.42±0.29 139 12524

Nominal (α) 95.00 95.00 95.00 95.00 - -

F.3 License of datasets

The Community [2] and Bike [1] datasets are retrieved from the publicly available UCI machine
learning repository [22] and subject to the license of the repository. The STAR dataset [6] is also a
public access dataset. The three mediecal expenditure survey datasets MEPS_19, MEPS_20, MEPS_21
contain a data use agreement section in their documentation (cf. the “documentation” link in [3–5])
which our use case (train quantile functions and report coverages) comply with. All the datasets are
anonymized and to the best of our knowledge do not contain personally identifiable information or
offensive contents.
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