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Abstract
As a more challenging domain adaptation set-
ting, universal domain adaptation (UniDA) in-
troduces category shift on top of domain shift,
which needs to identify unknown category in
the target domain and avoid misclassifying tar-
get samples into source private categories. To
this end, we propose a novel UniDA approach
named Batch Singular value Polarization and
Weighted Semantic Augmentation (BSP-WSA).
Specifically, we adopt an adversarial classifier to
identify the target unknown category and align
feature distributions between the two domains.
Then, we propose to perform SVD on the classi-
fier’s outputs to maximize larger singular values
while minimizing those smaller ones, which could
prevent target samples from being wrongly as-
signed to source private classes. To better bridge
the domain gap, we propose a weighted seman-
tic augmentation approach for UniDA to gener-
ate data on common categories between the two
domains. Extensive experiments on three bench-
marks demonstrate that BSP-WSA could outper-
form existing state-of-the-art UniDA approaches.

1. Introduction
The tremendous successes of deep learning are largely
attributed to its reliance on diverse and massive anno-
tated training data (Huang et al., 2021; 2022a;b; 2023;
2024). However, meeting such requirements is laborious
and resource-intensive, especially in the military and medi-
cal fields (Chen et al., 2024). Intuitively, one can leverage a
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well-labeled source domain to assist in annotating a target
domain of interest. However, in practice, the domain shift
problem may exist between the two domains, which will
degrade annotation performance in the target. To address
this problem, domain adaptation (DA) as an effective tech-
nology allows for domain shift and aims to improve the
generalization performance of a model trained on the source
to the target (Wang et al., 2020; 2021; 2022a; 2023a;b).

However, DA assumes that the source and target domains
share the same label space, which does not align with real-
world scenarios. In recent years, researchers have relaxed
the assumption of the same label space and proposed vari-
ous new DA settings, such as partial DA (Cao et al., 2018;
Zhang et al., 2018; Cao et al., 2019), open-set DA (Saito
et al., 2018; Liu et al., 2019; Luo et al., 2020), universal DA
(UniDA) (You et al., 2019b; Lifshitz & Wolf, 2021; Kundu
et al., 2022). Among these scenarios, UniDA is the most
challenging one, as it introduces category shift on top of
domain shift. UniDA assumes that the two domains not only
have common categories but also have their own private cat-
egories. Moreover, there is no prior knowledge about which
classes are common and which are private.

For a UniDA task, it is crucial to classify target domain sam-
ples accurately. Samples that belong to private classes of the
target domain should be identified as unknown, while those
from classes common to both domains should be classified
into the corresponding classes of the source domain. Since
the source domain also contains private classes, it is essen-
tial to prevent target samples from being misclassified into
source private classes, considering distribution differences
between the two domains. Conversely, when we attempt
to alleviate the domain shift using existing DA techniques,
the lack of prior knowledge about the relationship between
the label spaces of the two domains (category shift) makes
it difficult to reduce the distribution discrepancy between
common categories effectively.

To address the aforementioned problems in UniDA, we pro-
pose a Batch Singular value Polarization and Weighted
Semantic Augmentation approach (BSP-WSA). Inspired
by Saito et al., we employ an adversarial classifier to simul-
taneously detect samples of unknown category in the target
domain and achieve distribution alignment between the two
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Figure 1. Effect of batch singular value polarization. The left part is the singular value fluctuation curve (the index is sorted in descending
order of singular values), and the right part is the feature distribution of the source and target domains. Firstly, we perform SVD on the
predicted label matrix of the target domain. Then, we maximize the larger singular values while minimizing the smaller ones to steep the
singular value curve and reduce the diversity of predicted labels. As a result, we could prevent target domain samples from being wrongly
assigned to private categories in the source domain.

domains. Specifically, the classifier aims to categorize as
many target samples as possible into the unknown category.
At the same time, the feature generator is employed to learn
features that confuse the classifier, causing it to classify
target samples into known categories. This approach unifies
the sample discovery of unknown category and distribution
alignment into a unified adversarial learning process. How-
ever, for UniDA, directly using this strategy would classify
some target samples into the source private categories, com-
promising the correct distribution alignment process for the
common categories.

In DA, designing loss functions based on SVD has gained
widespread research due to its simplicity and effective-
ness (Chen et al., 2019a;b; Cui et al., 2020). Cui et al. indi-
cate that maximizing the sum of singular values of the label
matrix could enhance the class diversity. In contrast, UniDA
requires reducing the class diversity or preventing the possi-
bility of target samples being classified into source private
classes. Inspired by this, we observe that by maximizing the
larger singular values but minimizing the smaller singular
values (singular value polarization), the class diversity could
be reduced, or the number of samples classified as source
private classes could be reduced. As shown in the left part
of Fig. 1, the singular value curve becomes steeper through
the process of singular value polarization, indicating that the
difference between larger and smaller values is increased.
As depicted in the right part of Fig. 1, the target samples
misclassified into source private classes are corrected to the
common classes.

Li et al. and Xie et al. utilize semantic data augmenta-
tion (Wang et al., 2022b) to bridge the distribution gap
between the two domains, which can be regarded as a sup-
plement to feature distribution alignment strategies (Long
et al., 2018; Chen et al., 2019b; Kang et al., 2019). Inspired
by this, we introduce a weighted semantic augmentation
approach specifically designed for UniDA, which utilizes
the statistical information of the two domains to generate
samples for each common category with larger weights. Our

main contributions can be summarized as follows,

• We propose a batch singular value polarization method
to prevent target samples from being assigned to source
private classes, and achieve distribution alignment be-
tween common classes of the two domains.

• We propose a weighted semantic augmentation method
to bridge the gap between two different domains fur-
ther, producing samples for each common category
with larger weights.

• Extensive experiments on three benchmarks with
UniDA setting could verify the effectiveness of BSP-
WSA compared to existing state-of-the-art approaches.

2. Related Work
Universal Domain Adaptation. Considering both the do-
main and category shifts, UniDA aims to classify target
samples belonging to private classes as unknown, and those
from common classes as corresponding classes in the source
domain. Therefore, the most crucial problem in UniDA is
distinguishing between common and private classes, thereby
aligning distributions of common categories between the
two domains and detecting unknown class in the target do-
main. To this end, You et al. construct a sample-level
transferability criterion based on domain similarity and pre-
diction uncertainty (entropy). Saito et al. only utilize the
entropy of prediction results to characterize the probability
of a sample belonging to known or unknown classes. Fu
et al. introduce a novel transferability measure estimated by
a mixture of uncertainty quantities.

As the methods mentioned above need to set a threshold
manually, Saito & Saenko propose to learn the threshold
using source samples and adapt it to the target domain. Chen
et al. learn a category-aware heterogeneous threshold vector
to reject diverse unknown samples. Chen et al. introduce
a bimodality hypothesis for the maximum discriminative
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probability distribution to detect the possible target private
samples, and present a data-based statistical approach to
separate the common and private categories. Chang et al.
design an OT-based partial alignment with adaptive filling
to detect common classes. Chen et al. try to minimize the
open-set entropy to learn the unknown threshold adaptively.

In contrast, we employ singular value polarization to distin-
guish between shared and private classes more effectively.
Additionally, we introduce weighted semantic augmentation
to align the distributions of common classes better.

SVD-based Domain Adaptation. In recent years, design-
ing regularization losses through SVD has received exten-
sive attention in many computer vision tasks. During the
SVD process on the feature matrix, Chen et al. observe that
larger singular values correspond to transferability, while
smaller ones correspond to discriminability. Therefore, they
propose to penalize the larger singular values to improve
feature discriminability in adversarial domain adaptation
networks. Moreover, Chen et al. also propose to penalize
the smaller singular values to prompt feature transferabil-
ity. Shi et al. observe that minimizing the sum of singular
values of the feature matrix could remove environmental fea-
tures and prompt domain-invariant features accordingly. Cui
et al. observe that maximizing the sum of singular values
of the label matrix could enhance the certainty and diver-
sity of predicted results. Similarly, this paper also performs
SVD on the predicted label matrix. In contrast, we aim to
maximize the larger singular values while minimizing those
smaller ones to deal with UniDA problem.

3. Proposed Approach
3.1. Preliminaries

In UniDA, there exist a labeled source domain Ds =
{(xs

i , ys
i )}ns

i=1 and an unlabeled target domain Dt = {(xt
j)}nt

j=1.
Here, ys

i represents the label of sample xs
i , and ns, nt denote

the sample numbers of source and target domains, respec-
tively. UniDA aims to generalize the model trained on the
source domain to the target domain with problems of do-
main shift (Ps ̸= Pt) and category shift (Ys ̸= Yt), where
ys ⊂ Ys and yt ⊂ Yt. We denote the common label space
between the two domains as Ỹ = Ys ∩ Yt, while private
ones as Ys

= Ys \ Ỹ and Yt
= Yt \ Ỹ. Notably, we regard

Yt
as unknown class, while Ys as known class. The category

numbers in Ys, Ys
, and Ỹ are Cs = |Ys|, C

s
= |Ys|, and

C̃ = |Ỹ|, respectively.

3.2. Proposed BSP-WSA

The whole pipeline of our proposed BSP-WSA is depicted in
Fig. 2, and we will provide detailed explanations of various
modules in the following subsections.

3.3. Adversarial Classifier

Inspired by an open-set DA study (Saito et al., 2018), we
devise an adversarial classifier with an output dimensionality
of C+1. Specifically, the classifier aims to categorize target
samples into unknown class, while the feature generator
endeavors to prevent the classifier from assigning target
samples to unknown class. The corresponding loss for this
adversarial learning process can be defined as follows,

argmin
C

Ladv

(
C
(
F(Dt)

))
,

argmax
F

Ladv

(
C
(
F(Dt)

))
,

(1)

Ladv(ŷt
i) = −θ log

(
ŷt
(i,Cs+1)

)
− (1− θ) log

(
1− ŷt

(i,Cs+1)

)
.

(2)

Optimizing the first term in Eq. (1) encourages the classi-
fier to categorize target samples into unknown class, while
optimizing the second term enables the feature generator
to hinder the classifier from assigning target samples to un-
known class. In Eq. (2), we calculate the adversarial loss
using only the probability of predicted target samples be-
longing to the unknown class, denoted as ŷ(i,Cs+1). Notably,
θ ∈ [0,1] controls the strength of the classifier in pushing tar-
get samples to the unknown class, and a larger θ will bring
more target samples into the unknown class. Through the
adversarial learning process, we are not only able to iden-
tify unknown class in the target domain, but also achieve
alignment of feature distributions between the two domains.

3.4. Batch Singular Value Polarization

In the adversarial classifier, as the feature extractor reduces
the distribution disparity between the two domains, more
target samples will closely resemble the source feature dis-
tribution. However, this may cause target samples to be
misclassified into source private categories, which is called
error-t. Specifically, when the probability of a target sam-
ple being classified as unknown decreases, the probabilities
of being classified into all source categories will increase.
Since target samples cannot belong to any source private cat-
egories, we only want the probabilities to increase for those
common categories. This could promote feature alignment
for common classes during the adversarial classifier process,
thereby enhancing the performance of UniDA. However, we
do not know which categories are source private.

Cui et al. have shown that maximizing the sum of singular
values on classifier outputs can enhance the class diversity
of prediction results, addressing the long-tailed distribution
problem. Inspired by this, in contrast, we aim to diminish
the class diversity of prediction results for the given issue in
UniDA discussed above. Specifically, we intend to prevent

3



Batch Singular Value Polarization and Weighted Semantic Augmentation for Universal Domain Adaptation

source 
domain

target 
domain ba

ck
bo

ne
ℱ 
∙ 

cla
ssi

fie
r

� 
∙ 

known 

unknown

k

k

adversarial classifier
�adv

2

[��…�Cs]
memory bank

��

predicted as
 �-th class

update

[��…�Cs]

SVD

� �⏉

step1 step2

maximize

minimize

singular value polarization
����

3

target

ℱ ∙ 

� ∙ 

known

known

unknown

augmentation

weighted augmentation
����

1

1

2

3

prediction

1
2
3

grad flipbackpropagation

source domain
target domain

unknown class
known class

Overall Network

u

u

k k

u u

Figure 2. The whole pipeline of our proposed BSP-WSA, which could be decomposed into three parts: i) identifying unknown class
using adversarial classifier; ii) preventing target samples from being mistakenly assigned to source private classes through singular value
polarization; iii) closing the domain gap using weighted semantic augmentation. Specifically, an input sample xi is first passed through
F(·) to extract feature of zi = F(xi) ∈ Rd. Afterward, zi goes through C(·) and obtains the predicted label ŷi = C(zi) ∈ RCs+1, where
an extra component denotes probability belonging to the unknown class. Finally, the predicted labels from one batch are fed into three
losses: adversarial loss, batch singular value polarization loss, and weighted semantic augmentation loss.

the classifier from assigning target samples to source private
classes. As we have observed that the likelihood of target
samples being assigned to source private classes is lower
compared to common classes, it corresponds to the “tail” of
the long-tailed distribution. Building upon this observation,
we propose a batch singular value polarization approach
tailored for UniDA problem, which maximizes the larger
singular values while minimizing the smaller ones.

To better understand our motivation, as depicted in Eq. 3, we
consider a prediction matrix P with three samples and three
classes (two shared classes, one private class), where the
row represents a sample. In Fig. 3, we depict the changes in
the entropy and confidence score for the predicted label of
the third sample (p3), and their impact on the smallest and
largest singular values of matrix P. Notably, the confidence
score is the probability of the third sample belonging to the
third class, ranging between 0 and 1. Then, we have the
following observations according to Fig. 3.

P =

0.6 0.2 0.2
0.2 0.6 0.2
p31 p32 p33

← p1
← p2
← p3

, P = UΣPV⊤,

entropy = −
∑

i=1,2,3

p3i log p3i.

(3)

Observation 1. Fu et al. suggest that when the confidence
corresponding to the predicted category of a target sample
is lower, and the label entropy is higher, the sample is more
likely to be an error-t. However, this intuition is not entirely
accurate. As shown in Fig. 3 (a), for points C (0.1, 0.4,
0.5) and D (0.25, 0.25, 0.5), although both of them have a
confidence score of 0.5 for being classified into the third
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Figure 3. The changes of the smallest (largest) singular value with
confidence&entropy of the sample p3. The sickle-like area between
boundary 2 and boundary 3 represents the entire possible value
range. This region consists of two parts: the right-colored area
is the current region where the samples are labeled as 3. The left
gray area is the category shift zone, where when a sample crosses
boundary 1 and enters this region, it changes its category from the
3-th class to the other two classes.

category, due to the bimodal distribution in point C, the
point C with lower entropy is more likely to be an error-
t (Chen et al., 2022b). This paper suggests that when a
point is closer to boundary 1, it is more likely to be an error-
t. This is because the closer a point is to boundary 1, the
sample label is more likely to undergo category shift. From
Fig. 3 (a), it can be observed that point C is indeed closer
to boundary 1 compared to point D. Therefore, if we need
to determine whether a category in the source domain is a
private class, we only need to calculate the average of labels
for all target domain samples assigned to that class. Then,
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we can use this average label to assess whether it is a private
class based on how close it is to boundary 1.

Observation 2. According to the density of the contour
lines in the colored region of Fig. 3 (a), it can be observed
that when the confidence score p33 for the third sample
belonging to the third class is high, the change gradient of
the smallest singular value (σs) is small. However, when
the sample is close to boundary 1, the change gradient is
large. Therefore, the impact of minimizing σs on error-
t samples is greater than on non-error-t samples. This is
because smallest singular values often correspond to noisy
patterns in a matrix (Gu et al., 2014; Xu et al., 2017), and
error-t samples could be considered as noisy pattern due to
their higher uncertainty and lower quantity.

Observation 3. When the third sample starts at point A
(0.07, 0.39, 0.54) near boundary 1 and is moved towards the
low-σs region, the confidence of this sample belonging to
the third class will decrease and the entropy will decrease.
As such, it may eventually reach the endpoint B. At this
point, the sample has been pushed out of the third class and
reclassified into other categories. Notably, it will strive to
push it towards higher-confidence category (in the direction
of increasing confidence and decreasing entropy).

Observation 4. In Fig. 3 (b), our goal is to increase the
largest singular value, thus moving towards the yellow re-
gion. Similarly, when maximizing the largest singular value,
it will push error-t samples towards category shift from C
to D. However, for non-error-t samples, it will push them
towards the lower right corner (in the direction of increasing
confidence and decreasing entropy). This is because for
samples with a high probability of belonging to the common
class, we encourage pushing them towards common class.

Based on the above analysis, we can prevent target sam-
ples from being misclassified into source private classes, by
minimizing smaller singular values but maximizing larger
singular values. Due to the lack of global context informa-
tion in batch sampling, the computed singular values often
struggle to capture information about common and private
classes. In light of this, we employ a sliding window up-
dated memory bank to smooth the prediction matrix of the
current batch. We denote the predicted label matrix for a
batch as Ŷ ∈ RCs×nb

where we discard the last component
that is the probability belonging to unknown class. Sub-
sequently, for each class, we utilize the mean of all label
vectors belonging to that class within this batch as the label
representation, as depicted by the following equation,

yj =
1
|Sj|

∑
Sj, (4)

where Sj is the set of sample labels that are predicted as j-th
class. Notably, we ignore those classes with |Sj| = 0. Then,

we utilize {yj}Cs

j=1 to update memory bank {bj}Cs

j=1.

bj ← λ · yj + bj, |Sj| ≠ 0, (5)

where λ represents the update ratio. Then, we conduct
SVD on {bj}Cs

j=1, and our proposed batch singular value
polarization could be formulated as follows,

B = [b1, . . . , bCs
], B = UΣBV⊤,

argmin
C,F

Lbsp(B) =
r∑

m=1

σs
m − σl

m,
(6)

where σs
m and σl

m refer to the m-th smallest and m-th largest
singular values in ΣB, respectively. r controls the degree of
polarization, with higher values leading to increased polar-
ization and reduced diversity of predicted results.

3.5. Weighted Semantic Augmentation

Li et al. introduce a semantic augmentation strategy that
implicitly generates augmented samples between the source
and target domains, which could bridge the domain gap
effectively and could be regarded as a supplement to exist-
ing feature distribution alignment strategies. Specifically,
this involves estimating the mean and variance informa-
tion for each class in both the source and target domains.
Subsequently, using the calculated mean, a semantic direc-
tion for data augmentation from the source to the target
domain is determined, and the amplitude of augmentation
is determined based on the variance of the target domain.
Consequently, for each sample in the source domain, an in-
finite number of augmented samples can be obtained using
this augmentation approach, and these augmented samples
maintain the same labels as the corresponding source sam-
ples. Based on theoretical analysis and derivation, Li et al.
integrate these augmented samples along with their corre-
sponding labels into the cross-entropy loss of the source
domain. This integration leads to a concise loss function.
However, this method equally generates samples for each
class in the source domain including the private classes. As
a result, employing this method directly in UniDA could
lead to significant adverse effects. To address this problem,
we introduce a weighted semantic augmentation tailored to
UniDA, which is formally defined as below,

Lwsa = −
1
ns

ns∑
i=1

log
ezs

i,g∑Cs

j=1 ezs
i,j
,

zs
i,j = ŷs

i,j + γj(w⊤
j − w⊤

g )∆µg +
ρs

i,j

2
,

ρs
i,j = γj(w⊤

j − w⊤
g )Σt

g(wj − wg),

γj =
n̂t

j/ns
j∑Cs

k=1(n̂
t
k/ns

k)
.

(7)
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where ŷs
i,j represents the probability that the i-th sample in

the source domain is predicted as the j-th class. ‘g’ rep-
resents the ground-truth. W = [w⊤

1 , · · · ,w⊤
Cs ] ∈ RCs×K

represents the weight matrix in the last fully connected layer
of the network, where K is the number of feature embed-
ding dimension. ∆µg = µs

g − µt
g where µs

g and µt
g are the

sample means of g-th category in the source domain and
target domain, respectively. Σt

g represents the covariance
matrix of class ‘g’ in the target domain. More details could
be referred to (Li et al., 2021b).

The definition of Eq. (7) is essentially consistent with (Li
et al., 2021b), but they use a fixed constant for γj, which is
the same for each class. In contrast, this paper reformulates
γj in order to emphasize the semantic augmentation of com-
mon classes. Based on the adversarial classifier and batch
singular value polarization introduced above, the feature
distributions of common classes between the source domain
and the target domain continuously align, and the number
of target domain samples assigned to source domain private
classes decreases. As shown in the third row of Eq. (7),
when a class in the source domain has more target domain
samples assigned to it, it is more likely to belong to the
common classes, denoted as n̂t

j. Furthermore, to mitigate the
impact of class imbalance problem, we consider dividing n̂t

j
by the number of samples from the j-th class in the source
domain (i.e., ns

j ). As such, the strength of data augmenta-
tion for source private classes is reduced, and the negative
effect are mitigated. The objective of weighted semantic
augmentation is shown as below,

min
C,F
Lwsa

(
C
(
F(Ds)

))
. (8)

4. Experiments
To validate the superiority of our BSP-WSA, we compare it
with 7 state-of-the-art UniDA models, including UAN (You
et al., 2019a), CMU (Fu et al., 2020), DANCE (Saito et al.,
2020), DCC (Li et al., 2021a), OVANet (Saito & Saenko,
2021), GATE (Chen et al., 2022c), GLC (Qu et al., 2023).

4.1. Experimental Setups

Datasets. We conduct extensive experiments on 3 cross-
domain object recognition datasets: Office-31 (Saenko et al.,
2010), Office-Home (Venkateswara et al., 2017), and VisDA-
2017 (Peng et al., 2018). Office-31 consists of three do-
mains: Amazon (A), DSLR (D), and Webcam (W), and
they contain a total of 4,110 images from 31 common cat-
egories. Office-Home is a more challenging benchmark
dataset, comprising 15,588 images from 65 common cate-
gories, which has four domains: Artistic (A), Clipart (C),
Product (P), and Real-World (R). VisDA-2017 is a large-
scale dataset consisting of 207,785 images from 12 common

categories. Following You et al., we choose the synthetic
domain (S) as the source domain and the realistic domain
(R) as the target domain. Following Saito et al., we conduct
class splits for each dataset to construct UniDA scenario,
which includes source and target private classes Ys

, Yt
, and

the common classes between the two domains Ỹ.

Evaluation Details. Following Fu et al., we adopt H-score
as the evaluation metric as below,

Hscore =
2 · accc · accu

accc + accu
, (9)

where accc denotes the average accuracy of target samples
in common classes, and accu denotes the accuracy of target
samples in unknown class. This evaluation metric is the
harmonic mean of the accuracy on common and unknown,
which is higher only when both accc and accu are high.

Implementation Details. All experiments are imple-
mented with Pytorch. Following Saito et al., we employ
ResNet50 (He et al., 2016) pre-trained on ImageNet (Deng
et al., 2009) as our backbone for feature extraction, and the
classifier consists of two fully connected layers with batch
normalization. Moreover, we train our model for 40K itera-
tions using the mini-batch SGD optimizer with a momentum
of 0.9 and a weight decay of 5e-4, and set batch size to 36.
In the comparison results, we set the adversarial classifier
parameter θ to 0.2 and the polarization strength r to 3.

4.2. Comparison Results

In Table 1, we set Ỹ, Ys
, and Yt

to be non-empty (OPDA),
and their class numbers are 10,10,11; 10,5,50; 6,3,3 for the
three datasets, respectively. It could be observed that our
proposed BSP-WSA shows average improvements of 0.7%,
1.4%, and 0.7% compared to the second-best approach
GATE (underlined) on the three datasets, respectively. In
Table 2, we set Ỹ and Ys

to be non-empty, while Yt
is

empty (PDA), and their class numbers are 10,21,0; 25,40,0;
6,6,0 for the three datasets, respectively. It could be seen
that our proposed BSP-WSA achieves average increases
of 1.3%, 0.7%, and 2.4% compared to the second-best ap-
proach GATE (underlined) on the three datasets, respec-
tively. In Table 3, we set Ỹ and Yt

to be non-empty, while
Ys

is empty (ODA), and their class numbers are 10,0,11;
25,0,40; 6,0,6 for the three datasets, respectively. As ODA
does not include source private classes and our main con-
tribution is to prevent the assignment of target samples to
source private classes, the improvements are slightly lower
compared to OPDA and PDA settings. Additionally, no im-
provement is observed on Office-31, while its performance
is the closest to that of the best method, i.e., OVANet. These
results could validate the effectiveness of our method for
UniDA, especially when source private classes exist.
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Table 1. H-score (%) on Office-31 (10/10/11), Office-Home (10/5/50) and VisDA-2017 (6/3/3) in OPDA setting.

Methods Venue
Office-31 Office-Home VisDA-2017

A2W D2W W2D A2D D2A W2A Avg. A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg. S2R

UAN CVPR’19 58.6 70.6 71.4 59.7 60.1 60.3 63.5 51.6 51.7 54.3 61.7 57.6 61.9 50.4 47.6 61.5 62.9 52.6 65.2 56.6 30.5

CMU ECCV’20 67.3 79.3 80.4 68.1 71.4 72.2 73.1 56.0 56.9 59.2 67.0 64.3 67.8 54.7 51.1 66.4 68.2 57.9 69.7 61.6 34.6

DANCE NeurIPS’20 75.8 90.9 87.1 79.6 82.9 77.6 82.3 61.0 60.4 64.9 65.7 58.8 61.8 73.1 61.2 66.6 67.7 62.4 63.7 63.9 42.8

DCC CVPR’21 78.5 79.3 88.6 88.5 70.2 75.9 80.2 58.0 54.1 58.0 74.6 70.6 77.5 64.3 73.6 74.9 81.0 75.1 80.4 70.2 43.0

OVANet ICCV’21 78.4 95.9 95.5 83.8 80.7 82.7 86.2 63.4 77.8 79.7 69.5 70.6 76.4 73.5 61.4 80.6 76.5 64.3 78.9 72.7 53.1

GATE CVPR’22 81.6 94.8 94.1 87.7 84.2 83.4 87.6 63.8 75.9 81.4 74.0 72.1 79.8 74.7 70.3 82.7 79.1 71.5 81.7 75.6 56.4

BSP-WSA - 78.6 97.1 96.4 86.6 85.8 85.1 88.3 65.1 79.2 82.3 75.3 74.2 81.6 72.9 70.0 81.6 82.8 77.4 82.1 77.0 57.1

Table 2. H-score (%) on Office-31 (10/21/0), Office-Home (25/40/0) and VisDA-2017 (6/6/0) in PDA setting.

Methods Venue
Office-31 Office-Home VisDA-2017

A2W A2D D2W W2D D2A W2A Avg. A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg. S2R

UAN CVPR’19 76.8 79.7 93.4 98.3 82.7 83.7 85.8 24.5 35.0 41.5 34.7 32.3 32.7 32.7 21.1 43.0 39.7 26.6 46.0 34.2 39.7

CMU ECCV’20 84.2 84.1 97.2 98.8 69.2 66.8 83.4 50.9 74.2 78.4 62.2 64.1 72.5 63.5 47.9 78.3 72.4 54.7 78.9 66.5 65.5

DANCE NeurIPS’20 71.2 77.1 94.6 96.8 83.7 92.6 86.0 53.6 73.2 84.9 70.8 67.3 82.6 70.0 50.9 84.8 77.0 55.9 81.8 71.1 73.7

DCC CVPR’21 81.3 87.3 100.0 100.0 95.4 95.5 93.3 54.2 47.5 57.5 83.8 71.6 86.2 63.7 65.0 75.2 85.5 78.2 82.6 70.9 72.4

OVANet ICCV’21 61.7 69.4 90.2 98.7 61.4 66.4 74.6 34.1 54.6 72.1 42.4 47.3 55.9 38.2 26.2 61.7 56.7 35.8 68.9 49.5 34.3

GATE CVPR’22 86.2 89.5 100.0 98.6 93.5 94.4 93.7 55.8 75.9 85.3 73.6 70.2 83.0 72.1 59.5 84.7 79.6 63.9 83.8 73.9 75.6

BSP-WSA - 86.8 89.6 99.2 99.6 97.7 97.0 95.0 49.8 77.2 80.5 81.3 69.9 87.2 75.3 60.1 83.6 83.5 60.8 85.8 74.6 78.0

Table 3. H-score (%) on Office-31 (10/0/11), Office-Home (25/0/40) and VisDA-2017 (6/0/6) in ODA setting.

Methods Venue
Office-31 Office-Home VisDA-2017

A2W A2D D2W W2D D2A W2A Avg. A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg. S2R

UAN CVPR’19 46.8 38.9 68.8 53.0 68.0 54.9 55.1 40.3 41.5 46.1 53.2 48.0 53.7 40.6 39.8 52.5 53.6 43.7 56.9 47.5 51.9

CMU ECCV’20 55.7 52.6 75.9 64.7 76.5 65.8 65.2 45.1 48.3 51.7 58.9 55.4 61.2 46.5 43.8 58.0 58.6 50.1 61.8 53.3 54.2

DANCE NeurIPS’20 78.8 84.9 78.8 88.9 79.1 68.3 79.8 61.9 61.3 63.7 64.2 58.6 62.6 67.4 61.0 65.5 65.9 61.3 64.2 63.0 67.5

DCC CVPR’21 54.8 58.3 89.4 80.9 67.2 85.3 72.6 56.1 67.5 66.7 49.6 66.5 64.0 55.8 53.0 70.5 61.6 57.2 71.9 61.7 59.6

OVANet ICCV’21 88.3 90.5 98.2 98.4 86.7 88.3 91.7 58.9 66.0 70.4 62.2 65.7 67.8 60.0 52.6 69.7 68.2 59.1 67.6 64.0 66.1

GATE CVPR’22 86.5 88.4 95.0 96.7 84.2 86.1 89.5 63.8 70.5 75.8 66.4 67.9 71.7 67.3 61.5 76.0 70.4 61.8 75.1 69.1 70.8

BSP-WSA - 87.7 89.4 97.2 96.1 89.8 87.2 91.2 59.5 76.6 79.8 68.4 66.7 75.3 66.6 62.2 78.0 68.7 63.8 79.2 70.4 71.1

Table 4. Ablation study on Office-31 (10/10/11), Office-Home
(10/5/50), and VisDA-2017 (6/3/3) in OPDA setting.

Module Office-31 Office-Home VisDA-2017

Lbsp Lwsa Avg. Avg. S2R

- - 70.5 63.2 44.9

✓ - 86.3 67.8 55.1

- ✓ 80.1 66.3 50.5

✓ ✓ 88.3 77.0 57.1

4.3. Model Analysis

Ablation Study. To verify the effectiveness of two pivotal
components, i.e., BSP and WSA, we conduct experiments
by removing either one or both of them from BSP-WSA.
Subsequently, we evaluate their performances on the three

Table 5. Ablation study on Office-31 (10/21/0), Office-Home
(25/40/0), and VisDA-2017 (6/6/0) in PDA setting.

Module Office-31 Office-Home VisDA-2017

Lbsp Lwsa Avg. Avg. S2R

- - 90.7 69.8 64.8

✓ - 94.7 73.6 75.7

- ✓ 91.3 70.2 70.0

✓ ✓ 95.0 74.6 78.0

datasets and record the results in Tables 4∼ 6. We employ
the average results of the three datasets in three different
settings. From Tables 4 and 5, we observe that consider-
ing either of these two components individually enhances
the performance of the baseline model, and simultaneously
considering both of them results in a more substantial im-
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Figure 4. With different UniDA setting, we utilize different methods to predict the numbers (all prediction) of target samples belonging to
common classes (a, f), unknown class (b, g), and source private classes (c, h). Additionally, we also report the ground-truth numbers (GT)
of target samples belonging to common, unknown, and source private classes and the numbers (correct prediction) correctly predicted.
We plot the H-score curves of different methods with varying numbers of source private classes (d, i) and target unknown classes (e, j).

Table 6. Ablation study on Office-31 (10/0/11), Office-Home
(25/0/40), and VisDA-2017 (6/0/6) in ODA setting.

Module Office-31 Office-Home VisDA-2017

Lbsp Lwsa Avg. Avg. S2R

- - 78.4 62.1 63.4

✓ - 77.2 61.9 59.8

- ✓ 92.3 71.2 73.3
✓ ✓ 91.2 70.4 71.1

Table 7. Plug-and-Play of BSP on Office-31 (10/10/11), Office-
Home (10/5/50), and VisDA-2017 (6/3/3) in OPDA setting.

Methods Venue Office-31 Office-Home VisDA-2017

- - Avg. Avg. S2R

GLC CVPR’23 87.8 75.6 65.3⋆

GLC+BSP - 88.7 76.9 68.5

provement. Furthermore, focusing on BSP proves to be
more effective than WSA. However, since the source do-
main does not contain private classes under ODA setting,
forcibly using BSP will degrade the model’s performance,
and only WSA is effective in this case (as shown in Table 6).
This observation aligns with the conclusion from the subsec-
tion of 4.2, which shows that the improvements on ODA are
not as significant as in the other two settings compared to
state-of-the-art UniDA approaches. These results could ver-
ify the effectiveness of the two pivotal components within
the proposed model.

Table 8. Plug-and-Play of BSP on Office-31 (10/21/0), Office-
Home (25/40/0), and VisDA-2017 (6/6/0) in PDA setting.

Methods Venue Office-31 Office-Home VisDA-2017

- - Avg. Avg. S2R

GLC CVPR’23 94.1 72.5 76.2

GLC+BSP - 94.8 73.7 76.8

In Fig. 4, we compare the performance of different methods
under various UniDA settings by setting varying numbers
of source private classes (Ys

), common classes (Ỹ), and
target unknown classes (Yt

). These methods include not
only mainstream UniDA methods like DANCE and DCC
but also variants of our model with different components
removed. From Fig. 4 (a), (b), (c), (f), (g), (h), it can be
observed that our method achieves higher accuracy while
ensuring that the numbers of target domain predictions and
ground-truth numbers are as close as possible. Please note
that the dashed line for GT is not shown in (c, h), as target
domain samples cannot belong to source domain private
classes. Furthermore, from Fig. 4 (d), (e), (i), (j), it can be
seen that our method consistently performs the best across
different UniDA settings. These observations not only vali-
date the effectiveness of our proposed approach compared
to mainstream methods but also highlight the effectiveness
of the two key proposed components.

Plug-and-Play of BSP. As a plug-and-play module, the
proposed BSP module can be applied to many domain adap-
tation frameworks where the source domain has private
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classes. To this end, we incorporate our BSP module into
the latest method of GLC (Qu et al., 2023). As illustrated in
Tables 7 and 8, we record the reproduction results of GLC
and the results of GLC with our BSP module dubbed as
GLC+BSP. Notably, we only record the results under OPDA
and PDA settings, which could reflect the effectiveness of
our BSP module in scenarios where the source domain con-
tains private classes. We can observe From the two tables
that employing BSP brings significant performance improve-
ments across different datasets on both settings. Moreover,
the result we reported on VisDA-2017 and OPDA setting is
not the same as the original paper but rather our reproduced
result, which we denote with a superscript ‘⋆’.

Feature Visualization. In Fig. 5, we present feature vi-
sualizations for all source samples as well as those target
samples predicted as known classes. This visualization ex-
periment is conducted on the A2C task of Office-Home. In
Fig. 5 (a), the feature visualization is shown after removing
Lbsp. It can be observed that numerous blue and red points
are intertwined, indicating that many target samples have
been predicted as source private classes. In contrast, Fig. 5
(b) depicts the feature visualization with Lbsp considered.
In this case, the overlap between blue and red points dimin-
ishes, and more blue points are observed to align with the
green points. This is a consequence of the introduced Lbsp
preventing the classifier from misclassifying target domain
samples as source private classes and promoting the feature
distribution alignment between common classes.

source common source private target knownsource common source private target known

(a) BSP-WSA w/o Lbsp

source common source private target known

(b) BSP-WSA full

Figure 5. Feature visualization. Green dots are source common
samples, red dots are source private samples, and blue dots are
target samples predicted as known classes. For clarity, we remove
target samples predicted as unknown class. The red circles indicate
target samples are wrongly assigned into source private categories.

Hyper-Parameter Sensitivity. To demonstrate the per-
formance influence of hyper-parameters in BSP-WSA, we
conduct sensitivity analysis on three UniDA tasks of Office-
Home, i.e., A2C, A2P, and C2R. As shown in Fig. 6 (a), the
parameter θ corresponds to a trend in the curve of different
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Figure 6. Sensitivity analysis for hyper-parameters on Office-
Home (10/5/50) and OPDA setting.

H-score values, showing an initial increase followed by a de-
crease. The optimal θ range is approximately within [0.15,
0.25], indicating that this parameter exhibits relatively low
sensitivity to the model within a certain range. As shown
in Fig. 6 (b), the magnitude of r reflects the intensity of
singular value polarization. It can be observed that the curve
corresponding to different H-score values for this parameter
shows a gradual rise followed by a gradual decline. The
selection range for r is relatively robust, and it is generally
found that using a value of 3 yields favorable results.

5. Conclusion and Future Work
Conclusion. This paper proposes a novel UniDA approach
dubbed BSP-WSA. Specifically, BSP-WSA utilizes an ad-
versarial classifier to detect the target unknown class and
align feature distributions between the two domains simul-
taneously. To prevent target samples from being wrongly
assigned to source private classes, we perform SVD on the
classifier’s outputs to maximize larger singular values while
minimizing those smaller ones. To better bridge the do-
main gap, we introduce a weighted semantic augmentation
tailored for UniDA to generate data on common classes.
Extensive experiments on three cross-domain object recog-
nition benchmarks could verify the superiority of BSP-WSA
compared to some state-of-the-art UniDA approaches.

Future Work. The success of BSP relies on the assumption
that the probability of target domain samples being assigned
to private classes of the source domain is small, which re-
quires a high discriminative ability among different classes,
and the adversarial classifier can accurately distinguish un-
known classes of the target domain. These factors may
affect the performance of BSP. Additionally, the proposed
approach treats the unknown classes in the target domain
as a single category. It is a challenging problem to enhance
the performance of UniDA task by exploiting the clustering
structure within the unknown classes, as done in GLC (Qu
et al., 2023) using clustering methods. The shortcomings in
these aspects will be the focus of our future efforts.
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