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A PROOF OF PROPOSITION 1

Let X = {x0, x1, . . .}. For i ≥ 0 let ri be a random number sampled uniformly from the interval
[0, 1]. Define φ(xi) := ri. Let x = {ai : xi|i ∈ J},x′ = {a′h : xh|h ∈ J ′} be two finite
multisets with elements from X , where J, J ′ are finite index sets, and ai, a′h denote the multiplicity
with which elements xi, xh appear in x, respectively x′. Now assume that x 6= x′, but∑

i∈J
aiφ(xi) =

∑
h∈J′

a′hφ(xh), (A.1)

i.e., ∑
j∈J∪J′

(aj − a′j)rj = 0, (A.2)

where now aj , respectively a′j is defined as 0 if j ∈ J ′\J , respectively j ∈ J \J ′. Since x 6= x′, the
left side of this equation is not identical zero. Without loss of generality, we may actually assume
that all coefficients aj−a′j are nonzero. The event that the randomly sampled values {rj |j ∈ J∪J ′}
satisfy the linear constraint (A.2) has probability zero. Since the set of pairs of finite multisets over
X is countable, also the probability that there exists any pair x 6= x′ for which (A.1) holds is zero.
Thus, with probability one, the mapping from multisets x to their sum-aggregation

∑
x∈x φ(x) is

injective. In particular, there exists a set of fixed values r0, r1, . . ., such that the (deterministic)
mapping xi 7→ ri has the desired properties. The existence of the “decoding” function ρ is now
guaranteed as in the proofs of Zaheer et al. (2017); Wagstaff et al. (2019).

Clearly, due to the randomized construction, the theorem and its proof have limited implications in
practice. This however, already is true for previous results along these lines, where at least for the
decoding function ρ, not much more than pure existence could be demonstrated.

B LEARNING

We study here the difficulty of solving the optimization problem when varying the number of LAF
units, aiming to show that the use of multiple units helps finding a better solution. We formulate
as learning tasks some of the target functions described in Table 1. Additionally, we aim to inspect
the parameters of the learned model. We construct a simple architecture similar to the aggregation
layer presented in Section 4, in which the aggregation is performed using one or more LAF units
and, in the case of multiple aggregators, their outputs are combined together using a linear layer.
We also discard any non-linear activation function prior to the aggregation because the input sets
are composed of real numbers in the range [0, 1], with a maximum of 10 elements for each set.
We consider 1,3,6,9,12,15,18 and 21 LAF units in this setting. For each function and for each
number of units we performed 500 random restarts. The results are shown in Figure B.1, where we
report the MAE error distributions. Let’s initially consider the cases when a single unit performs the
aggregation. Note first that the functions listed in Table 1 can be paremeterized in an infinite number
of alternative ways. For instance, consider the sum function. A possible solution is obtained if La,b

learns the sum, Le,f = 1 and α = γ. If instead La,b = sum and Le,f = Lg,h = 1, it is sufficient that
γ+δ = α to still obtain the sum. This is indeed what we found when inspecting the best performing
models among the various restarts, as shown in the following:

sum :
1.751(

∑
x1.000)1.000 + 0.000(

∑
(1− x)0.000)0.560

0.909(
∑
x0.244)0.000 + 0.841(

∑
(1− x)0.364)0.000
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Figure B.1: Trend of the MAE error obtained with an increasing number of LAF units for most
of the functions reported in Table 1. The error distribution is obtained performing 500 runs with
different random parameter initializations. A linear layer is stacked on top of the LAF layer with
more than 1 unit. The y axis is plot in logaritmic scale.

count :
1.010(

∑
x0.000)0.995 + 0.944(

∑
(1− x)0.000)1.006

1.076(
∑
x0.466)0.000 + 0.878(

∑
(1− x)1.021)0.000

mean :
1.515(

∑
x1.000)1.000 + 0.000(

∑
(1− x)0.618)0.000

0.000(
∑
x0.296)0.000 + 1.515(

∑
(1− x)0.000)1.000

On the other hand, the evaluation clearly shows that learning a function with just one LAF unit
is not trivial. In some cases LAF was able to almost perfectly match the target function, but to
be reasonably confident to learn a good representation many random restarts are needed, since the
variance among different runs is quite large. The error variance reduces when more than one LAF
unit is adopted, drastically dropping when six units are used in parallel, still maintaining a reasonable
average error. Jointly learning multiple LAF units and combining their outputs can lead to two
possible behaviours giving rise to an accurate approximation of the underlying function: in the first
case, it is possible that one “lucky” unit learns a parametrization close to the target function, leaving
the linear layer after the aggregation to learn to choose that unit or to rescale its output. In the second
case the target function representation is “distributed” among the different units, here the linear layer
is responsible to obtain the function by combining the LAF aggregation outputs. In the following we
show another example of a learnt model, for a setting with three LAF units. Here the target function
is count.

unit1 :
0.809(

∑
x0.875)0.372 + 0.799(

∑
(1− x)0.736)0.721

1.189(
∑
x0.192)0.719 + 1.177(

∑
(1− x)0.000)0.619

unit2 :
1.426(

∑
x0.000)1.102 + 1.308(

∑
(1− x)0.010)0.739

0.636(
∑
x0.848)0.000 + 0.622(

∑
(1− x)0.456)0.000

unit3 :
0.835(

∑
x0.866)0.374 + 0.767(

∑
(1− x)0.122)0.000

1.167(
∑
x0.692)0.859 + 1.216(

∑
(1− x)0.000)0.165

linear : 0.0175 + (−0.1265 ∗ unit1) + (0.5027 ∗ unit2) + (−0.0681 ∗ unit3)
In this case, the second unit learns a function that counts twice the elements of the set. The output of
this unit is then halved by the linear layer, which gives very little weights to the outputs of the other
units.
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C DETAILS OF SECTIONS 4.1 - EXPERIMENTS ON SCALARS

We used mini-batches of 64 sets and trained the models for 100 epochs. We use Adam as parameter
optimizer, setting the initial learning rate to 1e−3 and apply adaptive decay based on the validation
loss.

Each element in the dataset is a set x = {x1, . . . , xN}, xi ∈ R.

Network architecture:

x→ EMBEDDING(10,10) → SIGMOID

→ LAF(9) → DENSE(10 × 9, 1)

D DETAILS OF SECTIONS 4.2 - MNIST DIGITS

We used mini-batches of 64 sets and trained the models for 100 epochs. We use Adam as parameter
optimizer, setting the initial learning rate to 1e−3 and apply adaptive decay based on the validation
loss.

Each element in the dataset is a set x = {x1, . . . , xN}, xi ∈ R784.

Network architecture:

x→ DENSE(784,300) → TANH

→ DENSE(300,100) → TANH

→ DENSE(100,30) → SIGMOD

→ LAF(9) → DENSE(30 × 9, 1000) → TANH

→ DENSE(1000,100) → TANH → DENSE(100,1)
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