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ABSTRACT

Aligning diffusion models with user preferences has been a key challenge. Existing
methods for aligning diffusion models either require retraining or are limited to dif-
ferentiable reward functions. To address these limitations, we propose a stochastic
optimization approach, dubbed Demon, to guide the denoising process at inference
time without backpropagation through reward functions or model retraining. Our
approach works by controlling noise distribution in denoising steps to concentrate
density on regions corresponding to high rewards through stochastic optimization.
We provide comprehensive theoretical and empirical evidence to support and val-
idate our approach, including experiments that use non-differentiable sources of
rewards such as Visual-Language Model (VLM) APIs and human judgements.
To the best of our knowledge, the proposed approach is the first inference-time,
backpropagation-free preference alignment method for diffusion models. Our
method can be easily integrated with existing diffusion models without further
training. Our experiments show that the proposed approach significantly improves
the average aesthetics scores for text-to-image generation. Implementation is
available at https://github.com/aiiu-lab/DemonSampling.

1 INTRODUCTION

Diffusion models have been the state-of-the-art for image generation (Sohl-Dickstein et al., 2015
Ho et al., |2020; [Song et al., [2021}; [Karras et al.,|2022; [Saharia et al., 2022} |Rombach et al., [2022),
but, commonly, the end users’ preferences and intention diverge from the data distribution on which
the model was trained. Aligning diffusion models with diverse user preferences is an ongoing and
critical area of research.

One approach to aligning diffusion models with user preferences is to fine-tune using reinforcement
learning (RL) to optimize the models based on rewards signals that reflect the user preferences (Black
et al., 2023} [Fan et al.| 2023)). However, retraining the model every time when the preference changes
is computationally expensive and time-consuming.

An alternative approach is to guide the denoising process using a differentiable reward function. This
can be done through classifier guidance at inference time (Dhariwal & Nicholl 2021; Wallace et al.,
2023b; Bansal et al.| |2024;|Yoon et al.,2023) or backpropagation at training time (Prabhudesai et al.
2024; (Clark et al., 2024} Xu et al.| [2023)). These methods are generally less resource-demanding
and more efficient. While these methods are generally more efficient, they require the reward
function to be differentiable. This limits the types of reward sources that can be used, as it excludes
the non-differentiable sources like third-party Visual-Language Model (VLM) APIs and human
judgements.

To address these limitations, we propose Demon, a novel stochastic optimization approach for
preference optimization of diffusion models at inference time. Demon is a metaphor from Maxwell’s
Demon, an imaginary manipulator of natural thermodynamic processes. The core ideas are: (1)
Quality of noises that seed different possible backward steps in a discretized reverse-time Stochastic
Differential Equation (SDE) can be evaluated given a reward source; (2) Such evaluation enables
us to synthesize “optimal” noises that theoretically and empirically improve the final reward of the
generated image through stochastic optimization. Specifically, we leverage Probability Flow Ordinary
Differential Equation (PF-ODE) (Song et al., 2021) or Consistency Model (CM) (Song et al., 2023}
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Figure 1:lllustration of Demon. Given a reverse-time SDE for denoising and an inteftyvaly; tminl,

we rst discretize it intoT stepStmax > >t>t > >t min . At every reverse-time
denoising step, fromtot , we synthesize an “optimal” noise from K i.i.d. noises w.r.t a

given reward source and use to seed the step. This enables guiding the denoising process towards
generating images that are more aligned with the reward source and the preference that the reward
source represents. More details are presented in S@Etion 4,

Luo et al.| 20233) to help us ef ciently evaluate the possible backward steps, seeded with different
Gaussian noises.

Our key contributions are summarized as follows:

« Our approach enables the use of reward signals in the denoising process regardless of
whether the reward function is differentiable. This allows for the incorporation of previously
inaccessible reward sources, such as VLM APIs. To the best of our knowledge, this is the

rst inference-time, backpropagation-free preference alignment method.

« Our method can be easily integrated with existing diffusion models in a plug-and-play
fashion without retraining or ne-tuning.

» We provide a theoretical explanation for why our approach can improve the given reward
function for image generation, which can be exploited for tuning hyperparameters.

* We demonstrate that our approach signicantly improves the average aesthetics
score|(LAION/ 2023) of Stable Diffusion models, achieving averages well above 8.0 com-
pared to the Best-of-N random sampling upper bounds of 6.5 for SD v1.4 and 7 for SDXL.
This improvement is achieved across various text-to-image generation tasks using prompts
from prior work [Black et al/, 2023), without relying on backpropagation-based preference
alignment or model retraining.

2 RELATED WORK

Diffusion Model. Diffusion models for data generation were rst proposed by Sohl-Dickstein|et al.
(2015), further developed for high- delity image generatiorf by Ho ét al. (2020), and generalized by
Song et a).[(2021) through the lens of SDEs. Karras et al. (2022) comprehensively studied the design
space of Diffusion SDEs. In this work, we base many of the derivations on theirs. Furthermore, we
focus on evaluating our method in the text-to-image generation setting (Rombach et all, 2022; Ho &
Salimans, 2021; Podell etldl., 2024)

Human Preference Alignment. Aligning models with human preferences has been studied with
several approaches:reinforcement learning-based policy optimization (Fen et al|, 2023; Yang et al.,
2024; Black et al., 2023); training with reward backpropagation (Clark et al., 2024; Xu et al., 2023);
backpropagation through the reward model and the diffusion chain (Prabhudesai et al., 2024; Wallace
et al., 2023b; Bansal et al., 2024; Yoon et al., 2023). Many metrics and benchmarks for evaluating
alignment has also been proposed, including those by Xu et al. (2023); Kirstain et al. (2023); LAION
(2023); Wu et al. (2023), and we use these either as optimization objectives or evaluation of the
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generated image. In Table 1, we further provide detailed comparisons of the proposed Demon
approach with relevant existing methods in the literature from different aspects.

Table 1: A detailed comparison of different methods along various dimensions, including the ability
to generalize to an open vocabulary, the necessity of a backpropagation signal for optimization, the
method's capacity to avoid mode collapse and ensure distributional guarantees (Divergence Control).
Our proposed method stands out for its zero-shot learning capabilities.

Open Non-Backprop Divergence

Type Methods Vocab Objective Control
Training DPOK (Fan et al., 2023) X X
Training  DDPO (Black et al., 2023) X

Inference  DOODL (Wallace et al., 2023b) X

Training DPO (Wallace et al., 2023a) X X X
Training  DRaFT (Clark et al., 2024) X
Inference  Demon X X X

3 PRELIMINARY

Score-Based Diffusion Model. We base our derivation on EDM (Karras et al., 2022). With a
sampling schedule; = t, we can write the reverse-time SDE sampling towards the diffusion
marginal distribution as follows.
— . 2 . p By |-
dx; = | tr , logp(x;;t) i ter Iogp(xt,t)} dt + l_{%_t} dl¢; (1)
f(xeit) g (1)

wherep(x¢;t) = p(x0;0) N 0;t?l, and denotes the convolution operatioxyg is a clean
sampleXo  Ppgata ; @NAX; iS @ Noisy sample at time  expresses the relative rate at which existing
noise is injected with new noise. In EDM,is a function oft, but in our study, we set to a
constant for alt for simplicity. Essentiallyf (x;t) corresponds to drift ang (t) corresponds to
diffusion. As common in diffusion models, sinpéx;;t) N (0;t?ly) for a large enough, we
samplex;,, N (0;t2., 1 n) as the initial sample.

A comprehensive list of the notations and conventions used in this paper is provided at Appendix A.

4 REWARD-GUIDED DENOISING WITH DEMONS

In this section, we describe how Demon works in two steps: Section 4.1 explains the process of
scoring Gaussian noises in reverse-time SDE with a reward function; Section 4.2 further explains
how the noise scoring allows us to guide the denoising process to align with the reward function,
which is what we refer to alSemon

4.1 SCORINGNOISES INREVERSETIME SDE

Let xo be the clean image corresponds to;aat time stef, say:
z 0
Xo = X¢ + f (xg;u)du+ g (u)d!y; (2)
t

where Equation (2) is denoted g X:; shorthanded asg j x;: For an arbitrary reward function
e.g. aesthetics score, we de ne the reward estimaxg at time stefd as

r(Xe;t) = Exojx, [r(X0)]: ®3)

This can be estimated with a Monte Carlo estimator by averaging over the reward of several SDE
samples, but it requires many sample evaluations for high accuracy. To address this weakness, we
introduce an alternative estimator for(x:;t) based on PF-ODE (Song et al., 2021).
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Figure 2: The illustration of the proximity between theandr c. In this gure, the is nonzero
andr is near harmonic (i.er, >r  0:). The red points indicate i.i.d. SDE samples and the purple
ODE approximation ok;. The greep line indicates the expectation of the rewards of the SDE samples

(e.g., an approximate estimatioh, -, r(x$")).

As shown in Song et al. (2021); Karras et al. (2022), the reversed-time SDE reduces to PF-ODE when
0: For eacht, a diffeomorphic relationship exists between a noisy samplend a clean sample
Xo generated by PF-ODE.

Similar to consistency models, witf denoting an ODE trajectory insteadf, we can denote this
deterministic mapping from the domainf to the domain ok asc(x;;t) as
z 0

c(x%t) = x§ = x2+ dx; where dx§ = ur o logp(x];u) du: (4)
t

Then, we can writ¢r ¢)(X¢;t) = r(c(x¢;t)) as the reward of the generated clean sample. This
approximates (xi;t) using only one evaluated sample. In fact, we can characterize the difference
between the approximate reward using OPE c)(X¢;t) and the exact reward estimate using SDE

r (x¢;t) asinLemma 1. The right hand side of Equation (5) shows that,'as0, the approximation
becomes exactim | o+ r (X¢;t) =(r c)(X¢;t): Intuitively, this result aligns with SDESs reducing

to ODEs when approaches zero in image domains (Song et al., 2021).

Lemma 1 (It6 Integral Representation of Reward Proximity Error. Proof is in Appendix.DL&}
the reward estimate functioh(x;t) = (r c¢)(x;;t), be shorthanded ds. We have:

Z g

r(xe;t) (1 o)(Xet) = Exgix, rx,h dJ (xg;u)  u?r?hdu : (5)
t

wherex is sampled from Equatiof®), r 2h is the Laplacian oh and

dJ (xq;u)=  u?r x, 10gp(Xy;u) du+ P 2u dy; (6)

As demonstrated in Appendix D.1, Lemma 1 implies that when the Laplacian of the reward function
is approximately zeror(>r  0), r r c. We also illustrated the idea in Figure 2. For better
presentation, we conveniently abbreviatéx;;t) asr (X{), c(x;t) asc(x;) and(r c)(x;;t) as

(r ¢)(xy) in this paper.

4.2 DEMONS FORREWARD-GUIDED DENOISING

In the section, we rst outline the general pipeline of the proposed algorithm. Then, we introduce
two approachesTanh Demorand Boltzmann Demagnto synthesize optimal noises for guiding
reverse-time SDE solution; we show that the proposed methods optimize the nal reward value with
theoretical guarantee, essentially achieving alignment.
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Algorithm 1 A Numerical Step with Demon
1: Input: x¢,t, ,K

2: Output: R

3:fork=1toK do

4: Drawz® N (0:1,)

5. M heun(®; z(K:t; )

6: Rk (r c)(kfk) ) {implementingr (kfk) )}

7: end for

8

9
0
1

» [b]  Demon([Ry])
Lz N normalized = f_; hz®

'3 heun(®¢;z ;t; )
: Return %,

Following Karras et al. (2022), an SDE numerical evaluatiofof sampled fronx; can be seeded
by noisez via a step of Heun'€"™ order method (Ascher & Petzold, 1998) as follows:

z N (0;1n) )
Rt =heun(x;z;t; ) 8
1 1 p_—
=xe SH e+ ot )+ Sle®+g Nz i (©
wherez is a Gaussian noise, aftun is the stochastic backward step fromto %, . The
intermediate approximatios,  isgivenbyx; = x; f (X¢;t) + g (t)z . While we use

Heun's method here, other solvers can work too.

For image generation, Gayssian naise usually high-dimensional. For a high-dimensionalve can

assume that it's likely on a N sphere (Lemma 5, Appendix). This allows us to weighted-combine
various noises into a new noige:

P X '
z = N normalized bz (10)
k=1

wherez(¥) are i.i.d. unit Gaussian noises, andare the search space. We outline the pseudocode of
a numerical step with our proposed method in Algorithm 1. In the following, we describe the details
of the proposedanh Demorand theBoltzmann Demoto determine the weights.

Tanh Demon. Intuitively, we may consideup-weighting the good noises that improve the reward
anddown-weighting the bad noises that harm the reward, compared to the average rewasd

shown in Figure 3, Tanh Demon assigns positive weights to the good noises and negative weights
to the bad noises with thanh function, based on the reward estimates of the noises (Equation (5))

relative to the average of (r c)(kgk) ):

| |
r k%) ~

p_ X '
z = N normalized gan z() . where H2™  tanh
k=1

(1)

where is the temperature plgrameteltamh, which can be adaptively tuned (as shown in Table 8).
The averagé is computeq% Ezl (r c)(kgk) ):

Under the assumption of our reward estimate proximity r ¢, the Tanh Demon method is
guaranteed to improve the nal results, formalized in the following lemma:

Lemma 2 (Improvement Guarantee of Tanh Demon. Proof in Appendix .DAZsume the truncation
error terms in Equatior{36) are negligible and r c.Letz be derived from EquatioiLl).
With probability1, r (R§™ ) > 1 (x); wheref 2" is derived by applying on every step.
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(a) Before (b) After (c) Final

Figure 3: An illustration of the Tanh Demon sampling method whére 4. (a) A SDE step
generates several samples, each determined by sampledpnole use Tanh Demon to classify

each noise sample as “low-reward” or “high-reward” w.r.(x;) based on their respective reward
estimates. (b) We penalize low-reward noise wéhh to multiply a negative weight which is
equivalent to ipping the noise, (c) It shows how the post-processed noises are averaged and projected
onto the high-dimensional sphere, resulting in a feasible noise represemtatiath high-reward
estimate.

Boltzmann Demon. Another intuitive approach, equivalent to the single-step cross entropy ap-
proach (De Boer et al., 2005), is to estimate the candidatematkimum reward. We propose the
Boltzmann Demon, which assigns noise weights as follows:

exp r c(k(k) )=
tﬂoltz = t : (12)

Kioexp r e )=

where the Boltzmann distribution (i.e¢ftmax function) approximatethe behavior of the maxi-
mum function as the temperatureapproaches to zero. The theoretical guarantee of improvement
inr in expectation is provided in Lemma 3, assuming r c: Although empirically, we nd

that Tanh Demon outperforms Boltzmann Demon, adjustingBoltzmann Demon provides control
over deviation from the original SDE distribution, as demonstrated in Lemma 4 (Appendix).

4.3 COMPUTATIONAL CONSIDERATIONS

Let's rst consider a Demon sampling trajectoxy, > X, > > Xt; Ofora xed number
T. Each Demon’s trajectory requir€{K T) evaluations ot, and each evaluation comes with
one reward estimation. The compute time is mainly in uenced by the implementation @f We
discuss two aspects of c—the temporal cost and the delity—which are vital to the algorithm's
time complexity and reward performance, respectively.

Note that Tanh or Boltzmann Demon itself does not strictly specify the implementation of

our default option uses Heun's ODE solver, but using a Consistency Model (CM) distilled from the
original diffusion model signi cantly accelerates computation. An alternative, which we refer as
Tanh-C, is to combine our Tanh Demon algorithm with an off-the-shelf CM to implemeat While

using Tanh-C may slightly degrade the results due to the delity loss from using a CM (see Table 2),
this approach is particularly effective when faster results are required since the computatisn of
much quicker. For a largér, however, the default Tanh Demon using Heun's method outperforms
Tanh-C in terms of reward performance.

As shown in Table 10, using the text-to-image generation task settings from Black et al. (2023), the
Demon algorithm achieves an aesthetics sco@#® 0:26 on SD v1.4, requiring 5 minutes (i.e.,

K =16;T =16) on an NVIDIA RTX 3090 GPU. Within the same 5-minute computation window,
the Tanh-C variant achieves an improved scoré&®2¥ 0:33(i.e.,K = 16;T = 64). Notably,

the upper bound for randomly sampled SD v1.4 is approximately 6.5, obtained after more than 10
minutes and 800 reward function queries. See Appendix B for parameter guidelines and settings.
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(a) Performance w.r.t Reward Query Number (b) Performance w.r.t Execution Time

Figure 4: Performance comparison of the proposed algorithm and other baseline methods in terms of
the number of reward queries and execution time; the dependent varidhle/igch is suggested to

be larger for SDE solver to reduce truncation error. Although DOODL can achieve similar results to
ours, it relies on reward backpropagation, whereas our backpropagation-free methods do not require
this. The shaded areas and the radii of solid circles represent the standard deviation of the evaluation
results.

5 EXPERIMENTS

In this section, we present both quantitative and qualitative evaluations of our methods. Due to the
page limit, we include the details of the implementation and experimental settings in Appendix | and
the subjective results in Appendix G.2.

Baseline Comparison. For the performance comparisons between our method and other baselines,
we use the LAION (2023) aesthetics scores (Aes) as the evaluation metric, and the scores are evaluated
on a set of various prompts for generating animal images, which were from the full set of 45 common
animals in ImageNet-1K (Deng et al., 2009), created by Black et al. (2023). We use 20-step Heun's
ODE for reward estimate for our methods and Best-of-N (SD v1.5).

In terms of reward queries, Tanh/Tanh-C outperforms other baseline methods in most cases, including
our Boltzmann method and Best-of-N. Our methods are even comparable to the backpropagation-
based DOODL (Wallace et al., 2023b), the state-of-the-art method optimized over the reward function.
In terms of execution time, Tanh/Tanh-C consistently outperforms DOODL due to the exclusion
of backpropagation; Tanh-C further bene ts from its effective computational cost, given limited
time. Moreover, our method's backpropagation-free nature makes it more resistant to reward hacking
(Table 3). For further comparison on PickScore (Kirstain et al., 2023), please refer to Appendix E.1.

Comparison of Reward Estimation Approaches. Figure 4 demonstrates a comparison of the
proposed methods with different ¢ implementations, including 20-step Heun's ODE (Tanh) and
1-step CM (Tanh-C)Tanh, which uses a 20-step ODE for accurfte c), consistently outperforms

the Best-of-N baseline given an equivalent number of reward quéldedh-C, which employs a
1-step CM for fast reward evaluation, outperforms Tanh when considering limited execution time.
These observations suggest that the quality of indeed plays a signi cant role in the effectiveness

of our method.

To further validate the importance of c, we conduct a comparative analysis based on Lemma 1

(r ¢ r ). Inthis analysis, we evaluate the accuracy and computational cost across three methods:
20-step Heun's ODE, 4-step Heun's ODE, and 1-step CM; both diffusion and consistency models
are based on the SD v1.5 and distilled by Luo et al. (2023). Experiments were performed with
t =0:5; 3:0; 1:0; 7:0; 14:0 ranging from 0.002 to 14.648. Accuracy was quanti ed using the standard
ofr (x¢) (r c)(x¢).Herex; is sampled fronN (0;t2_, 1) and integrated frory,ax tot using

a 200-step diffusion model ODE, performed on the full set of Black et al. (2023).

The results, presented in Table 2, support that the quality af in uences both the algorithm's
speed and reward performance. For the ODE methods, the trend follows our expectation: As
approache$, the standard deviation decreases, which can be attributed to the diminishing noise
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Table 2: Comparison of accuracy and time cost across differestimplementations using the full
set of animal prompts Black et al. (2023).

Implementation Time (s) Standard Deviation ofr r ¢

t=0:5 t=1:0 t=3:0 t=7:0 t=14:0
20-step ODE 194 81 10 2 153 10 ' 3:02 10 ' 325 10! 397 10 !
4-step ODE 0.41 8:3 10 2 1:82 10 ! 339 10 ! 352 10 ! 4:15 10 *
1-step Consistency ~ 0.18 1:717 10! 2:64 101 4:03 10 1! 385 10 ! 4:85 10 1!

as the posteriop(x; j Xo) becomes more sharply peaked; the number of ODE steps is crucial to

the quality of the generated outputs; more steps generally lead to higher delity results, although
this comes at the cost of increased computational time; using 1-step CM leads to inferior results
compared to using ODE, supposedly as the distillation gap and the limited model capacity result in
lower- delity reconstructions.

Table 3: Results using various reward functions and different generation methods. Each column
represents a speci ¢ reward objective, with the best performance highlighted in bold.

Generation method Aes' IR" Pick " HPSv2" Time
SDv1l4 534 056 -0.00 095 0.202 0.008 0.216 0.036 5s
DPO 5.36 0.72 0.03 0.84 0.203 0.007 0.229 0.027 5s
Uni (CLIP-guided) 411 074 -1.81 050 0.191 0.014 0.173 0.022 55min
Tanh + Aes 735 040 -0.03 124 0.211 0.010 0.257 0.041

Tanh + IR 596 0.28 195 0.07 0.216 0.012 0.286 0.033

Tanh + Pick 6.14 0.48 139 057 0245 0.010 0.312 0.033 18 min
Tanh + HPSv2 5.98 0.45 151 0.63 0.228 0.011 0.367 0.027

Tanh + Ensemble 6.53 0.50 1.81 0.15 0.236 0.014 0.356 0.030

Best-of-N 6.32 034 169 0.18 0.218 0.009 0.291 0.015 18 min
DOODL + Aes 559 029 -0.68 1.06 0.197 0.008 0.221 0.028 18 min
DOODL + Pick 521 046 -0.12 0.84 0.204 0.010 0.220 0.035 1.1hr

Table 4: Using Tanh Demons with various reward functions. The baseline, Stable Diffusion v1.4,
refers to the standard model without our proposed enhancements.

Baseline Best-of-N

Uni

DOODL

Aes

Ensemble

DPO

A demon exiting through a portal

A painting of a girl encountering a giant sun ower blocking her path in a hallway

Image Generation with Various Reward Functions. While our method optimizes a given reward
function, as shown in Figure 4, we also present qualitative results in Table 4 and cross-validation
results in Table 3. These results demonstrate perceptual preferences by averaging rewards derived

from prompts provided in Tables 12 and 15.

We employ our Tanh Demon with various reward functions, such as Aes (LAION, 2023), ImageRe-
ward (IR)(Xu et al., 2023), PickScore (Pick)(Kirstain et al., 2023), HPSv2 (Wu et al., 2023), and a
scaled sum (Ensemble) of Aes, IR, Pick, and HPSv2. For comparison, we include the best reward
during sampling under the same time condition (best-of-N) and DOODL (Wallace et al., 2023b),
which is optimized on Aes and Pick to modify results generated by PF-ODE using their recommended
settings. For reference, we also provide the performance of a training-based method, DPO Wallace
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et al. (2023a), and a backpropagation-based method, Universal Guidance (Uni) by Bansal et al.
(2024), guided by the CLIP condition.

Starting from the baseline SDv1.4 under similar computational conditions, Tanh exhibits improvement
across the four metrics demonstrating robustness even when acknowledging slight over-optimization
of the objective—in contrast to DOODL. By comparing best-of-N and Tanh with the Ensemble reward,
our method achieves superior performancesanhobjective using the Ensemble, demonstrating
not only the ability to integrate a mixture of rewards but also generatsyparior samplesthat
outperforms all individual best samples selected by best-of-N methods.

Alignment with preferences of VLMs (Non-differentiable). In Table 5, we present qualitative
results of aligning diffusion models SDXL to preferences of VLMs from API, as a demonstration of
using non-differentiable reward sources. In this experiment, we use Google Gemini Pro v1.0 (Gemini
Team Google, 2024) and GPT4 Turbo (OpenAl, 2024). In each step, the VLM receives a xed
prompt, e.g. “You are a journalist who wants to add a visual teaser for your article to grab attention
on social media or your news website”, and is asked to select the best-matching intermediate sample

from generated images. VLMs are presented ww(th ) andc(kfk) ) produced by PF-ODE. The
rewardd/*" is 0:5 if the VLM selectsc(kik) ) and 0:5otherwise. We also use PickScore (Kirstain

et al., 2023) to evaluate the results and nd that 14 out of 16 images generated with VLMs show
improvements compared to directly generating with PF-ODE.

Table 5: Using VLMs to generate images. PF-ODE (baseline) refers to a baseline without using our
method for alignment. Columns 3-6 indicate the role that the agent plays in the given prompt.

Model Baseline Teacher Artist Researcher Journalist

\/
@°+
&/

g
S

Manual Selection. We also explore using online interactive human judgements to guide diffusion.
That means, the users themselves would be (non-differentiable) reward functions. We let users directly
interact with our method to generate desired images. Figure 5a shows an example interface created
by us for an image resembling a given reference cat image. At each iterative stefptrom , we

sample 16 i.i.d. copies of; and compute(x; ) with PF-ODE. The user then manually select

their preferred image, assigning a reward-&fto it and 1 to the others. We continue this process

until there is no obvious preferred ones among the generated images. As shown in Figure 5b, the
image generated by our method more closely matches the target than the one produced by PF-ODE.
We also measure the improvement with DINOv2 (Oquab et al., 2023) embedding cosine similarity
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(b) (Top Left) Image generated by PF-ODE (0.622 cosine
(a) Our user interface for interacting with our ~ similarity). (Bottom Left) Image generated by our method
algorithm (0.594 cosine similarity). (0.708 cosine similarity). (Right) Reference image.

Figure 5: We design an application for manual interaction with our algorithm. Our author selects
the images, and the criteria are based on the author's preference (non-preferred images are kept
unselected), where the author tries to align the reference image. We evaluate performance by
measuring the cosine similarity of DINOv2 features between the targeted and reference images.

between the reference image and the generated image, and observe that the similarity improves from
0:594t0 0:708through online user interactions.

6 CONCLUSION

This work addresses the challenge of better aligning pre-trained diffusion models without training
or backpropagation. We rst demonstrate how to estimate noisy samples' rewards based on clean
samples using PF-ODE. Additionally, we introduce a novel inference-time sampling method, based
on stochastic optimization, to guide the denoising process with any reward sources, including non-
differentiable reward sources that includes VLMs and interactive human judgements. Theoretical
analysis and extensive experimental results validate the effectiveness of our proposed method for
improved image generation without requiring additional training. Through comprehensive empirical
and theoretical analysis, we observe that the quality and ef ciency of reward estimatiomre
essential for our algorithm, especially in balancing computational speed and reward performance.
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A NOTATIONS AND CONVENTIONS

Although we keep the main paper self-consistent, we provide this section to establish a consistent
notation and convention for this paper as an aid.

A.1 NOTATIONS

Table 6: Notations

Notation  Description

N State dimension

K Noise sample number

tmin ;tmax  Upper bound and Lower bound of the noise level in numerical integration
Number of time steps to solve SDE/ODE
Noise parameter

X State variable
z Noise from Gaussian
Time step
b Unnormalized weight of noise
f SDE policy drift
g SDE policy diffusion coef cient
fo PF-ODE policy drift
J Langevin diffusion SDE
Ty reversed time Brownian motion
r Reward
r Reward estimates of SDE policy
c Function to get expected ODE result
heun Heuns's method, SDE solver for Karras SDE

A.2 CONVENTIONS

Table 7: Conventions

Convention Details

r c ODE reward estimate approximatiar{c(x;t)) = (r c¢)(Xx¢;t)
f g For allx of our interestf (x) = g(x)

R Numerical approximation with SDE solver

x Intermediate value of Heun's method

x0 An ODE trajectory D

z Uniformly sampled from the sphere of radiudN

Z Optimal noise generated by our algorithm

n Mean of next state ODE reward estimatés, Ezl (r c)(kgk) )
r(X¢) Shorthand for (x¢; t) when the context is clear

c(Xy) Shorthand foc(x:;t) when the context is clear

(r c)(x¢) Shorthand for c)(x;;t) when the corl_Izext is clear

Xo | Xt Shorthand foxg j X¢; wherexg = X¢ + tof (Xy;u)du+ g (u)d!
~ Standard Brownian motion

Instead of ODE, we sometimes use PF-ODE to highlight Song et al. (2021)'s contribution or when
the context is unclear. They are equivalent in this paper.
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B GUIDELINE ON PARAMETER SETTING

We explore the optimal setting for parametewith respect to the Boltzmann Demon and the Tanh
Demon. For the Tanh Demon, the most effectivis neitherl nor0. We recommend settingto

the standard deviation of the estimatidiis c)(xﬁk) )d¥_, , rendering it an adaptive parameter

that is robust to scaling. For the Boltzmann Demon, optimal performance is achieved by sétting

0, as demonstrated in Table 8.

Table 8: Comparison of performance for different settings of the setting of Figure 4.

=1 =0:01 Adaptive

Tanh 740 030 724 031 7:45 033
Boltzmann 6:30 035 7:28 0:30 685 0:37

We also conduct an ablation study on the remaining paramiétensd . The base con guration
isK =16; = 0:1, with an adaptive temperaturefor the Tanh Demon. We sét = 32 for the
ablation study of andT =64 forK.

Figure 6: Comparison of our algorithm with respecktcand

We found a large makes the sampling unstable, given the number of stepsxed. Predictably,
sampling with a close to0 is reduced to ODE. From our theoretical result Lemma 1, the design
methodology, and empirical results, the guidelines Table 9 can assist users in setting parameters. We
provide a sparse parameter search in Table 10.

Parameter Description

K Controls the noise distribution bias, positively affecting nal quality and
linearly increasing computational time.

Adjusts the distribution’s proximity to the original PF-ODE. Set em-
pirically based om's characteristics. Lemma 1 suggests smalléwor
reward functions with Laplacian deviations.

T Inherit the properties of time stedsfrom diffusion models, scaling
computational time linearly. Karras's EDM recommerids 17.
Recommended values vary for Boltzmann and Tanh Demons, as detailed
in Table 8.

r c Accurate reward estimates are critical for ensuring high nal quality.

Table 9: Guidelines for Setting Hyperparameters
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Table 10: This table presents the experimental con gurations used to measure aesthetics score under
various animal prompts, presenting a sparse search of parameters. The time column represents the
duration required to generate each image. We alias adaptive temperature as Adaptive.

Demon Checkpoint K T Aes Time (min)
Adaptive 6.408 0.36 17.6
le-10  7.111 0.32 16.6
Boltzmann Adaptive 6.853 0.37 45.8

SDvl4 01 16 o4

005 16 32

SDXL le-02 7.276 0.30 45.4
1 6.300 0.35 46.1
01 16 64 Adaptive 6.990 0.38 94.2
le-10 7.501 0.31 93.1
16 Adaptive 6.723 0.26 5.0

0.05 16 :
SDv1.4 32 Adaptive 7.073 0.22 9.7
64 Adaptive 7.394 0.29 18.7
0.1 16 64 Adaptive 7.549 0.43 18.7

64 64 Adaptive 8566 0.33  79.1

Tanh  piffusion-DPO 0.1 16 64 Adaptive 7.5640.34 945
001 16 16 Adaptve 6.8760.40  22.0

16 Adaptive 6.866 035 219

0.05 16 Adaptive  7.459 0.33 46.0

SDXL 82 "1e02 7244 031 460

1 7398 030 462

8 64 Adaptive 7.446 037  47.0
16 64 Adaptive 7.841 0.32 94.4
32 64 Adaptive 8179 0.35  188.8
05 16 32 Adaptive 6.370 035  46.0

0.1

05 16 64 Adaptive 7.269 0.33 5.0
Tanh-C SDVL4 "51 16 64 Adaptive 6.710 0.34 5.0
SDXL 05 16 64 Adaptve 7.301 024  17.9
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C PSEUDOCODES

As an aid, we provide pseudocodes for the design of Demons Algorithm 2, Algorithm 3:

Algorithm 2 Tanh Demon with Adaptive Temperature

[EnY

: Input: A list of ODE reward estimatfRy]
: Output: Noise Weightgh]
: K length([Rk])
A i$gK R
o L K
17K R AY2
fork =1toK do
by tanh R ®

. end for
: Return [I]

Algorithm 3 Boltzmann Demon with Fixed Temperature

1: Input: A list of ODE reward estimatfR]
: Output: Noise Weightgh]
- K IerIEgth([Rk])
z L exp Re
K k=1

fork =1 toK do

b Zexp R
end for
: Return [k]

N R WM
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D MATHEMATICS

D.1 ERRORCOMPREHENSION FORREWARD ESTIMATE APPROXIMATION

In this section, we present the theoretical analysis and proof to better understand the error in our
reward estimate approximation.

D.1.1 ERRORTERM AS AN ITO INTEGRAL
Lemma 1. Let the reward estimate function(x;t) = (r c¢)(x¢;t), be shorthanded as. We have:
Z 0
r (xe;t) (1 ©)(Xe;t) = Exgjx, rx,h dJ (xg;u)  u?r2hdu : (13)

t

wherex is sampled from Equatiof®), r 2h is the Laplacian of and
. — 2 . P .
dJ (Xu;u)=  u“r x, logp(Xy;u)du+ 2u dl; (14)

Proof. We aim to prove:

z 0
r(xo) (r c)(x¢t)= ry,h dJ (xg;u) u?r?hduy; (15)
t
Recall that
VA 0
Xo=Xt+ f (Xxg;u)du+ g (u)d!y; (16)
Z,
c(xpit)= xP+  fo(xQ;u)du 17)
t
For an ODE trajectorx{t), notice that:
_d 0., _ @h dx® _ @h ]
O— ah(xt,t)— @t"'rxh E— @t+l’xh fo. (18)
We can write: z,
r(xo) (r c)(x¢;t)= h(xo;0) h(x¢;t)= dh; (29)

t

wherex, which is not an ODE trajectory (noted by), follows the SDE trajectory. Using Ito's
lemma Ito et al. (1951), we nd:

h 1

dh = %t+rth > g’r 2h dt+gr h d, (20)
h h 1

= %t+rxh f %t+rxh fo égzr 2h dt+grh diy (21)

= ryh (f  fo) %gzr 2h dt+grh dly (22)

=r h t2r Iogp(xt;t)dt+pﬁd!t t °r 2hdt: (23)

The sign of the It6 correction term is ipped due to reverse time Brownian Motion-—and the other is
followed by expansion. We thus derived Equation (15). O
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D.1.2 DISCUSSION

We interpret the error terms of the reward estimates approximation as follows:
* The estimate becomes more accurate akecreases, satisfying the intuition that SDE
trajectories will reduce to the ODE trajectory as 0.
o Ifr x,h?2r x, logp(Xy;u),thetermr , h dJ (xy;u) cancels out in expectation.
« If r 2h  0and the previous condition holds, thenc r .

For estimation purposes, we make the following assumptions to facilitate understanding and derivation
of Equation (5):

X
rylogpixit) 5 (24)
c(X;t)  Cixy (25)

rof 2 X (26)

whereC; is a time-dependent constant anid scale-invariant.

« Equation (24) is derived from the assumption tb@at;) N (0;t2l).

» Equation (25) stems from image preprocessing algorithms, such as those used in Stable
Diffusion, which normalize the image distribution. This normalization implies that images
in the dataset are often scaled to lie on a sphere. Therefore, we can reasonably assume that a
randomly generatex; is close to an image in the dataset in direction.

« Equation (26) is based on the intuition that minor changes in brightness do not signi cantly
affect the semantic interpretation of an image. Besides, many training algorithms incorporate
scaling as part of data augmentation, which aligns with the assumption that the gradient of
r xr is orthogonal tox.

Under these assumptions, we obtain:
p

dh=r 4h t2r x logp(xg;t)ydt+ 2t dly  t2r 2hdt (27)
P —
Cif «f xdt+ 2t dly t 2r 2hdt (28)
P —
21C (r xr dly t2C3r ?rdt (29)

If r is harmonic, i.e.r r 0, thendh becomes a martingale (Billingsley, 2017) and:
r (xe;t) (r o)(xe;t)  Exgix, 2tC ¢r yr dl'y =0: (30)
t

The mean value property, an equivalent statement of a harmonic function, states that the value of
a harmonic function at any point is the average of its values on any sphere centered at that point.
This property provides an intuitive explanation of our method:ig harmonic, the reward of the
ODE-generated image is the mean value of the reward of SDE-generated ones, while empirically, we
observe that the ODE generation resembles the SDE variants.

D.1.3 ILLUSTRATION OF MISMATCH

For better understanding, we provide an examplerthas far fromr c. We adopt assumptions
in Appendix D.1.2 to illustrate the intuition, and supposeis a noisy sample at time such
thatc(x.) is a sharp local maxima af, wherer °r 0 nearc(x;). Further, suppose thatis
small enough such that the generaxgds nearc(x;). In this caser (x{) (r c¢)(x;) < Oas

r (Xt) = Exojx, [r(Xo)] < (r c)(Xt) by intuition.

We can also verifyr (x;) (r c¢)(x;) < 0 using Equation (15). Under the assumptions in
Appendix D.1.2, we can write:
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Zy
p__
r(x) (r o)(X) Expjx, 2tC r xr d'y  u?r2hdu (31)
Z,
= Exojx, v 2CZr ?rdu (32)
<0 (33)

Note that the value of r is taken at(x;), uctuating with SDE.

D.2 MARTINGALE PROPERTY OFREWARD ESTIMATES.

A martingale is a sequence of random variables that maintains a certain property over time Billingsley
(2017): the expected future value, given all past values, is equal to the current value; for a xed SDE,
the current reward estimate is the expected value of the reward estimates at the next time step:

Fact 1. For any time step < Osuch that >t > 0
r(x)= Ex, jx [r (xe )l (34)

Intuitively speaking, this idea stems from the principles of conditional probability, which tell us
that our current prediction of the nal score should be the same as the average of all possible future
predictions.

Proof. This result follows directly from the foundational de nition of expectation. For variable
r (x¢), we have:

r(Xt) = Exgix, F(X0)] = Ex; jxe Exope  [F(X0)]l = Ex, i [r (e )]0 (39)
O

D.3 TANH DEMON

We provide the theoretical idea behind the development of the algorithm. To start with, there
exists a linear relationship between the reward estimate incremenkﬁrmfk) and the injected

noisez(®), which can be derived from Itd's lemma Ito et al. (1951) and Kolmogorov backward
equations Kolmogoroff (1931), as follows:

p_
r @Y%) rx)=gtr o r zZ® + o) ; where 2% =heun(x;z;t; ) ; (36)
which can be interpreted from an SDE with the following Lemma.

Claim 1. Letr (x;;t) = Ey,jx, [r(Xo0)] be the expected future reward at tifiegiven the current
statex; attimet. Then, under the SDE:

dx; = f dt+ g d'y; (37)
the differential ofr is:
dr =g rxr dy: (38)

Proof. We begin by introducing a change of variables. et tnax t, S0 that as decreases from
tmax t0 0, s increases frond to thax This allows us to consider a forward-time process with standard
Brownian motionks.

Given the original SDE, we can write:
dxs= f ds+ g dks; (39)

whereks is the standard Brownian motion.
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Now, applying Ité's lemmateo (Xs;S):

dr %rs Myl + %gzr 2r ds+ g ryr  dkg (40)
We aim to prove the Kolmogorov backward equation:
@r 1o 2
@s foorx.r 2g r<r =0 (42)

To do so, we integrate Ité's lemma frosto tmax:

tmax

r (Xtmax) r (XS): dr (42)
ZS
t
max @r 1
= . @t fory,or + Egzr 2r  ds®
tmax
+ grxor des: (43)

S

Sincer (Xt,,) iS a martingale, by taking the expectation (conditionedkghon both sides, we
obtain:

0= Expaixs [1_ Xtad T (Xs)] (44)
t
max @r 1 5 2 0
= Ex, _ixe —= [ rxer +50°r“r ds
X t maxd X . @% X0 2
tmax
+ Ex,,ixs grxol dhso (45)

S

The expectation of the stochastic integral is zero, as Itd integrals have a mean of zero:

tmax

EXtmaijs g r x,f dko =0: (46)
S
Thus, we are left with:
Z t
max @r 1 2 2 0
Ext X —= f ryr +Zg°r’r ds® =0: (47)
e @8 el T2

Since the expectation is zero for any interfgltmay], the integrand itself must be zero:

@r 1
“@s Myl + égzr ’r =0: (48)
Thus, the differential of is given by:
dr =grxr dks; (49)

Returning to the original time variabtewe substitutes = tnax  t yielding:
d =gryr dy; (50)
completing the proof.
O
Althoughg r &, r isinaccessible without distillation and thus an intractable static vector, we can still
leverage the linear relationship to derive applications. Using our standard approach of interpreting

r casr andrecognizing that (x; ) is an unbiased estimator of(x;) (from Appendix D.2),
we practically interpret Equation (36) as:
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_ X
r 9™ ) A g @r 1 2P © where A:Ki r o™ ) (51)
k=1

From Equation (36), ipping the sign af®) reverses its contribution to . Therefore, based on the

observatior(r c)(kfk) ) A, we ip z0 accordingly. We show the theoretical analysis and proof
for the error of the reward estimate of our Tanh Demon in the following.

Lemma 2. Assume the truncation error terms in Equati@®) are negligible and r c.letz
be derived from Equatio(lL1). With probabilityl, r (8™ ) > r (x); wherex ™ is derived by
applyingz on every step.

Let” = g r x,r . Recall that we assume

RS ERE L (52)
FREN) rx)= ozt (53)
2% = heun(x;z™;t; ) (54)
RN = heun(x¢;z ;t; ) | (55)

p_ X '
z = N normalized ganh z(k) (56)

i=1 |
r@™y o x)

B2 = tanh (57)

We aim to prove the suf cient conditiorr. (k{anh) >r (x{) for each numerical step. Under a
rotation of basis, without loss of generality, we assunoaly has value in the rst component, i.e.,
“=("1;0;:::;0)and’; > 0. We have:

rREMY ST (x) 0 ‘1z1p*> 0 (58)

Claim 2. With probabilityl, the rst componeng, of z is positive.

Proof. Since
I
ro g ro(xe)
e = tanh R7) &) (59)
!
=tanh —— (60)
. Z(k)p—!
=tanh 2L (61)

wherez{) is the rst component o£(¥).
Almost surelyz{*) 6 0, sob@™ will have the same sign as"’. This impliesb2™ z*) > 0;

: , . P :
gince the rst component af will have the same sign as the rst component of_, banh 2K je,
K_, 2" 2K > 0: We conclude that, > O:

O

In addition, we provide proof of the linear relationship presented in Equation (36).
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D.4 BOLTZMANN DEMON

Recall that -
Xi = X+ f (xg;u)du+ g (u)d!, (62)
X = X ft(xt;t) + g (t)zp* (63)
R =Xy %[f (xpt)+ f (5t )]+ %[g OM+g )l L (64)

We rst present the theoretical analysis and proof for the reward estimate error of the proposed
Boltzmann Demon as follows.

Lemma 3. Assumé is bounded byax andr is L-Lipschitz. Giverxy, if the truncation error per
Heun's SDE step in Equatioi4)isx; =% +o0o() as ! 0*,thenwe have:

Er(RP) 1 (x) oL tmax); (65)
where the expectation denotes that each step of the numerical approximation fromh @ty s

taken with the maximum value iof( ) among i.i.d. SDE sampldéi) , representing the Boltzmann
Demon with =0.

Lemma 3 establishes a lower bound based on the sample maximum and reward estimate accuracy,
providing an improvement guarantee of expected reward in expectation.

We rst claim the following statement.

Claim 3.
Er &) r (x) oL ): (66)
The rest is the induction of SDE time stegs= t > >tt »>t1 1>t1=0,li.e,
E r(¢°%) = E ! (#°"%). (67)
|
E r (R oL tr 1) (68)
h i
Er (Q?TO"ZZ oL (tt 1+(ty 2 tr 1)) (69)
(70)
Er (R0°"2) oL t) (71)
ro(RP2) oL tmax) (72)

Proof. We list the premise as the following:

2% = heun(x(;z;t; ) (73)
20 = x®0 o) (74)
r (@) =maxtr &Y ) ir @)y (75)
We can deduce that: h i
Er &) =& maxdr &Y ); r &) (76)
h i

Er@?) 77

h i
=er (xP) L o) (78)
=r (x) oL ) (79)

The last equation is followed by Equation (34). Harg(®; ) is the numerical estimation of the
underlying SDE value (x; ). O
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Lemma 4. When = 1 and the time step is small enough, the Boltzmann Demon sampling is
identically distributed as the SDE sampling.

By adjusting , we can smoothly transition from prioritizing high-reward noise samples to the
standard SDE sampling method, |galancing Demon and SDE strategies; note thatwHlenthe
weights ardy = exp(0) = 1 . Thus, E=l b zk results in a Gaussian distributidh(0; K Iy ). This
distrintion is identical distributed to drawing a Gaussian after both are projected onto a sphere of
radius N.

We justify replacing Gaussian sampling with uniform sampling from a sphere of rngUrsould
result in the same effect of SDE during the Euler-Maruyama discretization of SDEs. Assuming
constant driff and diffusiong for Euler-Maruyama step, the SDEds = f dt + gdwW . We aim to
demonstrate that this replacement yields an identical distribution under small step sizes. De ne:
r
X0 p_1 X
Y= f + g —z= f+ g p= 7 (80)
i=1 n n i=1
wherez; ape i.i.d. vectors uniformly sampled from the surface of a sphere with rzgdlhus'.e.
z Unif(C NSV 1). Also, de ne:
Y= f+ gp z (81)

Claim 4. Y , converges t& in distributionasn ! 1

Proof. To justify replacing Gaussian sampling with uniform sampling from the sphere, it is suf cient
to show that the normalized sum converges in distribution to a Gaussian zectar

p= &z (82)

Due to the symmetry of the uniform distribution, the expectation of each vector is zerg[#g.7 O.
Moreover, the distribution satis e8 2z = Iy.

By applying the Central Limit Theorem for vector-valued random variables (see, e.g., Rencher
(2005)), we conclude that as! 1 , the normalized sum converges in distribution to a Gaussian
vectorz with mean0 and covariance matrilky . It justi ed, in the limitof n ! 1, the uniform
sampling from the sphere replicates the statistical properties of Gaussian sampling in the diffusion
term of the original SDE. O

D.5 HIGH DIMENSIONAL GAUSSIAN ON SPHERE

The original statement is more general in the textbook, but we provide speci ¢ proof for Gaussian.

Lemma 5. (Vershynin, 2020, Chap. 3) Letbe independent and identically distributed (i.i.d.)
instances of a standard isotropic Gaussidr{O; | y ) in a high-dimensional spade . With a high
probability (e.g., 0.9999), it holds that

p__
kzk="N + O(1) (83)
Proof. Consider the norrkzk?, wherez is an instance of a standard isotropic Gaussld0; | v )

in N dimensions. The distribution d&zk? follows a Chi-squared distribution witN degrees of
freedom. The mean and variance of this distributionNirend2N , respectively.

Applying the central limit theorem argument, we approximate the distributiéaidf by a normal
distribution wherN is large, giving:

kzk? = N + cpﬁ (84)

for some constar€, whereC 2 O (1) represents uctHe@ns around the mean which are typically
on the order of the standard deviationkak?, which is™ 2N .
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To connect this with the norm af, we consider:

s_
q .
. P— P— . P C
NI|!£n N+C N N_N“!T N 1+pﬁ 1 (85)
N L
—'\p!rp N ﬁ (86)
C
=3 (87)

Here, we use the Taylor series expansionpfdr+ X, ap%roximated a% + 5 for smallx, to nd the
limit. This expansion leads to the conclusion tkak = = N + O(1). O

E COMPARISON ONPICKSCORE

E.1 RckScorReECOMPARISONS

Since PickScore Kirstain et al. (2023) is trained speci cally on generated images, we believe it is

a more reliable measure and objective than the aesthetics score. To emphasize the strength of our
method, we show how the median PickScore reward function improves across 20 different prompts
using our Tanh Demon, as shown in Figure 7a.

Our approach utilizes 1,440 reward queries per sample and achieves a PickScore of 0.253, outper-
forming other methods alongside reduced computation time (180 minutes for our method vs. 240
minutes for resampling methods due to shortened ODE trajectories). Speci cally, we compare our
method to:

» SDXL/SDXL-DPO Wallace et al. (2023a): A state-of-the-art method for direct preference
optimization in diffusion models, which achieves a PickScore of 0.226, while the baseline
SDXL reaches 0.222.

« Diffusion-DPO(1440x) A variant that selects the highest quality median PickScore from
1440 samples among 20 prompts, achieving a PickScore of 0.246.

» SDXL(1440x) Similar to the above, but without preference optimization, achieving a
PickScore of 0.243.

Additionally, resampling an ODE fromy,,,, is crucial in applications where the distributi®g,,, j
Xo plays a key role, such as in SDEdit Meng et al. (2022). Resampling methods fail to address such
applications, highlighting the advantage of our approach.

(a) A Trajectory of Tanh Demon. We plét
c)(xy) for differentt. (b) The performance of each method on PickScore.

Figure 7: Quantitative results for Tanh Demon.

E.2 QUALITATIVE RESULTS

In this section, we demonstrate the quantitative and qualitative results of PickScore in SDXL with
our Tanh Demon.
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Figure 8: Each row in the gure presents two pairs of images where the image of each pair on the
left illustrates results generated using the original PF-ODE method. The image on the right in each
pair showcases enhancements achieved by applying our Tanh Demon based on the PickScore metric
and SDXL. This gure demonstrates the improvements in visual delity and adherence to targeted
characteristics achieved through our proposed method.
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F COMPARISON ONHPSv2

(a) Performance w.r.t Reward Query Number (b) Performance w.r.t Execution Time

Figure 9: Comparison in HPSv2 and HPDv2. The performance comparison of the proposed algorithm
and the best-of-N baseline methods is presented in terms of the nhumber of reward queries and
execution time, with the dependent variable belngThe shaded areas and the solid circle radii
represent the evaluation results' standard deviations. If the computational bottleneck is the number of
reward queries, we recommend Tanh; if it is computational time, we recommend Tanh-C.

Table 11: We present qualitative results for various methods. For our method, We=s&P8,

= 0:5, andK = 16. The Best-of-N samples are generated using 2,336 (5,440 for CM) reward
gueries and 3.8k seconds, which is signi cantly more than our method's 1,424 reward queries and
1.8k seconds. Moreover, the presented image from Best-of-N possesses an inferior HPSv2 score
compared to ours.

Best-of-N

Best-of-N (CM)

Tanh-C Tanh Boltzmann

a castle is in the middle of a eurpean city

A motorcycle that is sitting in the dirt.

We present quantitative and qualitative results in Figure 9 and table 11, using 10 prompts sampled
from HPDv2 (Wu et al., 2023). Both the diffusion model and CM are implemented and distilled with
SD v1.5.

We observe similar results in Figure 4. Regarding reward queries, the Tanh Demon method outper-
forms Tanh-C, followed by the Boltzmann Demon method. Regarding execution time, however,
Tanh-C is recommended over the Tanh Demon if computational time is limited.
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G ADDITIONAL RESULTS WITH VARIOUS REWARD FUNCTIONS.

G.1 IMAGE GENERATION RESULTS WITHDIFFERENTREWARD FUNCTIONS

We show more image generation results in SDv1.4/SDXL with our Tanh Demon and other reward
functions in Tables 12 to 15, using the four reward as objective.

G.2 SUBJECTIVE TESTOVERVIEW

We surveyed with 101 participants via Google Forms, as shown in Figure 10. Participants evaluated
different image generation methods based on:

« Subjective Preference Visual aesthetics and image quality.
» Semantic Alignment Correspondence between generated images and text prompts.

Each participant ranked images across four sections, with rankings aggregated using the following
formula:

L%
— exp( (rank; 1)) (88)

ML
i=1 j=1

where:

« M =4 (number of sections),
e L =101 (participants),
» rank; is the ranking by participantfor methodi.

(a) Comparison across methods.

(b) Comparison across objectives.
Figure 10: Subjective test results: Preferences and prompt alignment across methods and objectives.
G.2.1 SJRVEY STRUCTURE
The subjective test comprised four sections: two comparing methods (DOODL, Baseline (SD

or SDXL), Ensemble) based on subjective preference and prompt alignment, each with 3 sets
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