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ABSTRACT

Aligning diffusion models with user preferences has been a key challenge. Existing
methods for aligning diffusion models either require retraining or are limited to dif-
ferentiable reward functions. To address these limitations, we propose a stochastic
optimization approach, dubbed Demon, to guide the denoising process at inference
time without backpropagation through reward functions or model retraining. Our
approach works by controlling noise distribution in denoising steps to concentrate
density on regions corresponding to high rewards through stochastic optimization.
We provide comprehensive theoretical and empirical evidence to support and val-
idate our approach, including experiments that use non-differentiable sources of
rewards such as Visual-Language Model (VLM) APIs and human judgements.
To the best of our knowledge, the proposed approach is the first inference-time,
backpropagation-free preference alignment method for diffusion models. Our
method can be easily integrated with existing diffusion models without further
training. Our experiments show that the proposed approach significantly improves
the average aesthetics scores for text-to-image generation. Implementation is
available at https://github.com/aiiu-lab/DemonSampling.

1 INTRODUCTION

Diffusion models have been the state-of-the-art for image generation (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Song et al., 2021; Karras et al., 2022; Saharia et al., 2022; Rombach et al., 2022),
but, commonly, the end users’ preferences and intention diverge from the data distribution on which
the model was trained. Aligning diffusion models with diverse user preferences is an ongoing and
critical area of research.

One approach to aligning diffusion models with user preferences is to fine-tune using reinforcement
learning (RL) to optimize the models based on rewards signals that reflect the user preferences (Black
et al., 2023; Fan et al., 2023). However, retraining the model every time when the preference changes
is computationally expensive and time-consuming.

An alternative approach is to guide the denoising process using a differentiable reward function. This
can be done through classifier guidance at inference time (Dhariwal & Nichol, 2021; Wallace et al.,
2023b; Bansal et al., 2024; Yoon et al., 2023) or backpropagation at training time (Prabhudesai et al.,
2024; Clark et al., 2024; Xu et al., 2023). These methods are generally less resource-demanding
and more efficient. While these methods are generally more efficient, they require the reward
function to be differentiable. This limits the types of reward sources that can be used, as it excludes
the non-differentiable sources like third-party Visual-Language Model (VLM) APIs and human
judgements.

To address these limitations, we propose Demon, a novel stochastic optimization approach for
preference optimization of diffusion models at inference time. Demon is a metaphor from Maxwell’s
Demon, an imaginary manipulator of natural thermodynamic processes. The core ideas are: (1)
Quality of noises that seed different possible backward steps in a discretized reverse-time Stochastic
Differential Equation (SDE) can be evaluated given a reward source; (2) Such evaluation enables
us to synthesize “optimal” noises that theoretically and empirically improve the final reward of the
generated image through stochastic optimization. Specifically, we leverage Probability Flow Ordinary
Differential Equation (PF-ODE) (Song et al., 2021) or Consistency Model (CM) (Song et al., 2023;
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Figure 1: Illustration of Demon. Given a reverse-time SDE for denoising and an interval [tmax, tmin],
we first discretize it into T steps, tmax > · · · > t > t − ∆ > · · · > tmin. At every reverse-time
denoising step, from t to t −∆, we synthesize an “optimal” noise z∗ from K i.i.d. noises w.r.t a
given reward source and use z∗ to seed the step. This enables guiding the denoising process towards
generating images that are more aligned with the reward source and the preference that the reward
source represents. More details are presented in Section 4.

Luo et al., 2023) to help us efficiently evaluate the possible backward steps, seeded with different
Gaussian noises.

Our key contributions are summarized as follows:

• Our approach enables the use of reward signals in the denoising process regardless of
whether the reward function is differentiable. This allows for the incorporation of previously
inaccessible reward sources, such as VLM APIs. To the best of our knowledge, this is the
first inference-time, backpropagation-free preference alignment method.

• Our method can be easily integrated with existing diffusion models in a plug-and-play
fashion without retraining or fine-tuning.

• We provide a theoretical explanation for why our approach can improve the given reward
function for image generation, which can be exploited for tuning hyperparameters.

• We demonstrate that our approach significantly improves the average aesthetics
score (LAION, 2023) of Stable Diffusion models, achieving averages well above 8.0 com-
pared to the Best-of-N random sampling upper bounds of 6.5 for SD v1.4 and 7 for SDXL.
This improvement is achieved across various text-to-image generation tasks using prompts
from prior work (Black et al., 2023), without relying on backpropagation-based preference
alignment or model retraining.

2 RELATED WORK

Diffusion Model. Diffusion models for data generation were first proposed by Sohl-Dickstein et al.
(2015), further developed for high-fidelity image generation by Ho et al. (2020), and generalized by
Song et al. (2021) through the lens of SDEs. Karras et al. (2022) comprehensively studied the design
space of Diffusion SDEs. In this work, we base many of the derivations on theirs. Furthermore, we
focus on evaluating our method in the text-to-image generation setting (Rombach et al., 2022; Ho &
Salimans, 2021; Podell et al., 2024)

Human Preference Alignment. Aligning models with human preferences has been studied with
several approaches:reinforcement learning-based policy optimization (Fan et al., 2023; Yang et al.,
2024; Black et al., 2023); training with reward backpropagation (Clark et al., 2024; Xu et al., 2023);
backpropagation through the reward model and the diffusion chain (Prabhudesai et al., 2024; Wallace
et al., 2023b; Bansal et al., 2024; Yoon et al., 2023). Many metrics and benchmarks for evaluating
alignment has also been proposed, including those by Xu et al. (2023); Kirstain et al. (2023); LAION
(2023); Wu et al. (2023), and we use these either as optimization objectives or evaluation of the
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generated image. In Table 1, we further provide detailed comparisons of the proposed Demon
approach with relevant existing methods in the literature from different aspects.

Table 1: A detailed comparison of different methods along various dimensions, including the ability
to generalize to an open vocabulary, the necessity of a backpropagation signal for optimization, the
method’s capacity to avoid mode collapse and ensure distributional guarantees (Divergence Control).
Our proposed method stands out for its zero-shot learning capabilities.

Open Non-Backprop Divergence
Type Methods Vocab Objective Control
Training DPOK (Fan et al., 2023) × ✓ ✓
Training DDPO (Black et al., 2023) × ✓ ×
Inference DOODL (Wallace et al., 2023b) ✓ × ×
Training DPO (Wallace et al., 2023a) ✓ ✓ ✓
Training DRaFT (Clark et al., 2024) ✓ × ×
Inference Demon ✓ ✓ ✓

3 PRELIMINARY

Score-Based Diffusion Model. We base our derivation on EDM (Karras et al., 2022). With a
sampling schedule σt = t, we can write the reverse-time SDE sampling towards the diffusion
marginal distribution as follows.

dxt =
[
−t∇xt log p (xt, t)− βt2∇xt log p (xt, t)

]︸ ︷︷ ︸
fβ(xt,t)

dt+
√
2βt︸ ︷︷ ︸

gβ(t)

dωt, (1)

where p(xt, t) = p(x0, 0) ⊗ N
(
0, t2In

)
and ⊗ denotes the convolution operation. x0 is a clean

sample, x0 ∼ pdata, and xt is a noisy sample at time t. β expresses the relative rate at which existing
noise is injected with new noise. In EDM, β is a function of t, but in our study, we set β to a
constant for all t for simplicity. Essentially, fβ(x, t) corresponds to drift and gβ(t) corresponds to
diffusion. As common in diffusion models, since p(xt, t) ≈ N (0, t2IN ) for a large enough t, we
sample xtmax

∼ N (0, t2maxIN ) as the initial sample.

A comprehensive list of the notations and conventions used in this paper is provided at Appendix A.

4 REWARD-GUIDED DENOISING WITH DEMONS

In this section, we describe how Demon works in two steps: Section 4.1 explains the process of
scoring Gaussian noises in reverse-time SDE with a reward function; Section 4.2 further explains
how the noise scoring allows us to guide the denoising process to align with the reward function,
which is what we refer to as Demon.

4.1 SCORING NOISES IN REVERSE-TIME SDE

Let x0 be the clean image corresponds to a xt at time step t, say:

x0 = xt +

∫ 0

t

fβ(xu, u) du+ gβ(u) dωu , (2)

where Equation (2) is denoted as x0 |β xt, shorthanded as x0 | xt. For an arbitrary reward function r
e.g. aesthetics score, we define the reward estimate of xt at time step t as

rβ(xt, t) := Ex0|xt
[r(x0)] . (3)

This can be estimated with a Monte Carlo estimator by averaging over the reward of several SDE
samples, but it requires many sample evaluations for high accuracy. To address this weakness, we
introduce an alternative estimator for rβ(xt, t) based on PF-ODE (Song et al., 2021).
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Figure 2: The illustration of the proximity between the rβ and r ◦ c. In this figure, the β is nonzero
and r is near harmonic (i.e., ∇2r ≈ 0.). The red points indicate i.i.d. SDE samples and the purple
ODE approximation of xt. The green line indicates the expectation of the rewards of the SDE samples
(e.g., an approximate estimation, 1

4

∑4
i=1 r(x

(i)
0 )).

As shown in Song et al. (2021); Karras et al. (2022), the reversed-time SDE reduces to PF-ODE when
β ≡ 0. For each t, a diffeomorphic relationship exists between a noisy sample xt and a clean sample
x0 generated by PF-ODE.

Similar to consistency models, with x′
t denoting an ODE trajectory instead of xt, we can denote this

deterministic mapping from the domain of xt to the domain of x0 as c(xt, t) as

c(x′
t, t) := x′

0 = x′
t +

∫ 0

t

dx′
u, where dx′

u = −u∇x′
u
log p (x′

u, u) du. (4)

Then, we can write (r ◦ c)(xt, t) = r(c(xt, t)) as the reward of the generated clean sample. This
approximates rβ(xt, t) using only one evaluated sample. In fact, we can characterize the difference
between the approximate reward using ODE (r ◦ c)(xt, t) and the exact reward estimate using SDE
rβ(xt, t) as in Lemma 1. The right hand side of Equation (5) shows that, as β → 0, the approximation
becomes exact: limβ→0+ rβ(xt, t) = (r ◦ c)(xt, t). Intuitively, this result aligns with SDEs reducing
to ODEs when β approaches zero in image domains (Song et al., 2021).

Lemma 1 (Itô Integral Representation of Reward Proximity Error. Proof is in Appendix D.1). Let
the reward estimate function, h(xt, t) = (r ◦ c)(xt, t), be shorthanded as h. We have:

rβ(xt, t)− (r ◦ c)(xt, t) = Ex0|xt

[∫ 0

t

∇xuh · dJβ(xu, u)− βu2∇2hdu

]
. (5)

where x0 is sampled from Equation (2),∇2h is the Laplacian of h and

dJβ(xu, u) = −βu2∇xu
log p (xu, u) du+

√
2βudωu, (6)

As demonstrated in Appendix D.1, Lemma 1 implies that when the Laplacian of the reward function
is approximately zero (∇2r ≈ 0), rβ ≈ r ◦ c. We also illustrated the idea in Figure 2. For better
presentation, we conveniently abbreviate rβ(xt, t) as rβ(xt), c(xt, t) as c(xt) and (r ◦ c)(xt, t) as
(r ◦ c)(xt) in this paper.

4.2 DEMONS FOR REWARD-GUIDED DENOISING

In the section, we first outline the general pipeline of the proposed algorithm. Then, we introduce
two approaches, Tanh Demon and Boltzmann Demon, to synthesize optimal noises for guiding
reverse-time SDE solution; we show that the proposed methods optimize the final reward value with
theoretical guarantee, essentially achieving alignment.
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Algorithm 1 A Numerical Step with Demon

1: Input: xt, t, ∆, K
2: Output: x̂t−∆

3: for k = 1 to K do
4: Draw z(k) ∼ N (0, In)

5: x̂
(k)
t−∆ ← heun(x̂t, z

(k), t,∆)

6: Rk ← (r ◦ c)(x̂(k)
t−∆) {implementing rβ(x̂

(k)
t−∆)}

7: end for
8: [bk]← Demon([Rk])
9: z∗ ←

√
N normalized

(∑K
k=1 bkz

(k)
)

10: x̂t−∆ ← heun(x̂t, z
∗, t,∆)

11: Return x̂t−∆

Following Karras et al. (2022), an SDE numerical evaluation of x̂t−∆ sampled from xt can be seeded
by noise z via a step of Heun’s 2nd order method (Ascher & Petzold, 1998) as follows:

z ∼ N (0, In) (7)
x̂t−∆ = heun(xt, z, t,∆) (8)

:= xt −
1

2
[fβ(xt, t) + fβ(x̃t−∆, t−∆)]∆ +

1

2
[gβ(t) + gβ(t−∆)] z

√
∆ , (9)

where z is a Gaussian noise, and heun is the stochastic backward step from xt to x̂t−∆. The
intermediate approximation x̃t−∆ is given by x̃t−∆ := xt − fβ(xt, t)∆+ gβ(t)z

√
∆ . While we use

Heun’s method here, other solvers can work too.

For image generation, Gaussian noise z is usually high-dimensional. For a high-dimensional z, we can
assume that it’s likely on a

√
N sphere (Lemma 5, Appendix). This allows us to weighted-combine

various noises into a new noise z∗:

z∗ =
√
N normalized

(
K∑

k=1

bkz
(k)

)
, (10)

where z(k) are i.i.d. unit Gaussian noises, and bk are the search space. We outline the pseudocode of
a numerical step with our proposed method in Algorithm 1. In the following, we describe the details
of the proposed Tanh Demon and the Boltzmann Demon to determine the weights bk.

Tanh Demon. Intuitively, we may consider up-weighting the good noises that improve the reward
and down-weighting the bad noises that harm the reward, compared to the average reward µ̂. As
shown in Figure 3, Tanh Demon assigns positive weights to the good noises and negative weights
to the bad noises with the tanh function, based on the reward estimates of the noises (Equation (5))
relative to the average µ̂ of (r ◦ c)(x̂(k)

t−∆):

z∗ =
√
N normalized

(
K∑

k=1

btanhk z(k)

)
, where btanhk ← tanh

(
(r ◦ c)(x̂(k)

t−∆)− µ̂

τ

)
, (11)

where τ is the temperature parameter to tanh, which can be adaptively tuned (as shown in Table 8).
The average µ̂ is computed 1

K

∑K
k=1(r ◦ c)(x̂

(k)
t−∆).

Under the assumption of our reward estimate proximity rβ ≡ r ◦ c, the Tanh Demon method is
guaranteed to improve the final results, formalized in the following lemma:
Lemma 2 (Improvement Guarantee of Tanh Demon. Proof in Appendix D.3). Assume the truncation
error terms in Equation (36) are negligible and rβ ≡ r ◦ c. Let z∗ be derived from Equation (11).
With probability 1, r(x̂tanh

0 ) > rβ(xt), where x̂tanh
0 is derived by applying z∗ on every step.
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(a) Before (b) After (c) Final

Figure 3: An illustration of the Tanh Demon sampling method where K = 4. (a) A SDE step
generates several samples, each determined by sampled noise zk. We use Tanh Demon to classify
each noise sample as “low-reward” or “high-reward” w.r.t rβ(xt) based on their respective reward
estimates. (b) We penalize low-reward noise with tanh to multiply a negative weight which is
equivalent to flipping the noise, (c) It shows how the post-processed noises are averaged and projected
onto the high-dimensional sphere, resulting in a feasible noise representation z∗ with high-reward
estimate.

Boltzmann Demon. Another intuitive approach, equivalent to the single-step cross entropy ap-
proach (De Boer et al., 2005), is to estimate the candidate with maximum reward. We propose the
Boltzmann Demon, which assigns noise weights as follows:

bboltzk ←
exp

(
r ◦ c(x̂(k)

t−∆)/τ
)

∑K
k=1 exp

(
r ◦ c(x̂(k)

t−∆)/τ
) , (12)

where the Boltzmann distribution (i.e., softmax function) approximates the behavior of the maxi-
mum function as the temperature τ approaches to zero. The theoretical guarantee of improvement
in rβ in expectation is provided in Lemma 3, assuming rβ ≡ r ◦ c. Although empirically, we find
that Tanh Demon outperforms Boltzmann Demon, adjusting τ in Boltzmann Demon provides control
over deviation from the original SDE distribution, as demonstrated in Lemma 4 (Appendix).

4.3 COMPUTATIONAL CONSIDERATIONS

Let’s first consider a Demon sampling trajectory xt1 > xt2 > · · · > xtT ≈ 0 for a fixed number
T . Each Demon’s trajectory requires O(K · T ) evaluations of c, and each evaluation comes with
one reward estimation. The compute time is mainly influenced by the implementation of r ◦ c. We
discuss two aspects of r ◦ c—the temporal cost and the fidelity—which are vital to the algorithm’s
time complexity and reward performance, respectively.

Note that Tanh or Boltzmann Demon itself does not strictly specify the implementation of r ◦ c;
our default option uses Heun’s ODE solver, but using a Consistency Model (CM) distilled from the
original diffusion model significantly accelerates computation. An alternative, which we refer as
Tanh-C, is to combine our Tanh Demon algorithm with an off-the-shelf CM to implement r ◦c. While
using Tanh-C may slightly degrade the results due to the fidelity loss from using a CM (see Table 2),
this approach is particularly effective when faster results are required since the computation of c is
much quicker. For a larger T , however, the default Tanh Demon using Heun’s method outperforms
Tanh-C in terms of reward performance.

As shown in Table 10, using the text-to-image generation task settings from Black et al. (2023), the
Demon algorithm achieves an aesthetics score of 6.72± 0.26 on SD v1.4, requiring 5 minutes (i.e.,
K = 16, T = 16) on an NVIDIA RTX 3090 GPU. Within the same 5-minute computation window,
the Tanh-C variant achieves an improved score of 7.27 ± 0.33 (i.e., K = 16, T = 64). Notably,
the upper bound for randomly sampled SD v1.4 is approximately 6.5, obtained after more than 10
minutes and 800 reward function queries. See Appendix B for parameter guidelines and settings.
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(b) Performance w.r.t Execution Time

Figure 4: Performance comparison of the proposed algorithm and other baseline methods in terms of
the number of reward queries and execution time; the dependent variable is T , which is suggested to
be larger for SDE solver to reduce truncation error. Although DOODL can achieve similar results to
ours, it relies on reward backpropagation, whereas our backpropagation-free methods do not require
this. The shaded areas and the radii of solid circles represent the standard deviation of the evaluation
results.

5 EXPERIMENTS

In this section, we present both quantitative and qualitative evaluations of our methods. Due to the
page limit, we include the details of the implementation and experimental settings in Appendix I and
the subjective results in Appendix G.2.

Baseline Comparison. For the performance comparisons between our method and other baselines,
we use the LAION (2023) aesthetics scores (Aes) as the evaluation metric, and the scores are evaluated
on a set of various prompts for generating animal images, which were from the full set of 45 common
animals in ImageNet-1K (Deng et al., 2009), created by Black et al. (2023). We use 20-step Heun’s
ODE for reward estimate for our methods and Best-of-N (SD v1.5).

In terms of reward queries, Tanh/Tanh-C outperforms other baseline methods in most cases, including
our Boltzmann method and Best-of-N. Our methods are even comparable to the backpropagation-
based DOODL (Wallace et al., 2023b), the state-of-the-art method optimized over the reward function.
In terms of execution time, Tanh/Tanh-C consistently outperforms DOODL due to the exclusion
of backpropagation; Tanh-C further benefits from its effective computational cost, given limited
time. Moreover, our method’s backpropagation-free nature makes it more resistant to reward hacking
(Table 3). For further comparison on PickScore (Kirstain et al., 2023), please refer to Appendix E.1.

Comparison of Reward Estimation Approaches. Figure 4 demonstrates a comparison of the
proposed methods with different r ◦ c implementations, including 20-step Heun’s ODE (Tanh) and
1-step CM (Tanh-C). Tanh, which uses a 20-step ODE for accurate (r ◦ c), consistently outperforms
the Best-of-N baseline given an equivalent number of reward queries. Tanh-C, which employs a
1-step CM for fast reward evaluation, outperforms Tanh when considering limited execution time.
These observations suggest that the quality of r ◦ c indeed plays a significant role in the effectiveness
of our method.

To further validate the importance of r ◦ c, we conduct a comparative analysis based on Lemma 1
(r ◦ c ≈ rβ). In this analysis, we evaluate the accuracy and computational cost across three methods:
20-step Heun’s ODE, 4-step Heun’s ODE, and 1-step CM; both diffusion and consistency models
are based on the SD v1.5 and distilled by Luo et al. (2023). Experiments were performed with
t = 0.5, 3.0, 1.0, 7.0, 14.0 ranging from 0.002 to 14.648. Accuracy was quantified using the standard
of rβ(xt)− (r ◦ c)(xt). Here, xt is sampled fromN (0, t2maxIn) and integrated from tmax to t using
a 200-step diffusion model ODE, performed on the full set of Black et al. (2023).

The results, presented in Table 2, support that the quality of r ◦ c influences both the algorithm’s
speed and reward performance. For the ODE methods, the trend follows our expectation: As t
approaches 0, the standard deviation decreases, which can be attributed to the diminishing noise
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Table 2: Comparison of accuracy and time cost across different r ◦ c implementations using the full
set of animal prompts Black et al. (2023).

Implementation Time (s) Standard Deviation of rβ − r ◦ c

t = 0.5 t = 1.0 t = 3.0 t = 7.0 t = 14.0

20-step ODE 1.94 8.1 × 10−2 1.53 × 10−1 3.02 × 10−1 3.25 × 10−1 3.97 × 10−1

4-step ODE 0.41 8.3 × 10−2 1.82 × 10−1 3.39 × 10−1 3.52 × 10−1 4.15 × 10−1

1-step Consistency 0.18 1.71 × 10−1 2.64 × 10−1 4.03 × 10−1 3.85 × 10−1 4.85 × 10−1

as the posterior p(xt | x0) becomes more sharply peaked; the number of ODE steps is crucial to
the quality of the generated outputs; more steps generally lead to higher fidelity results, although
this comes at the cost of increased computational time; using 1-step CM leads to inferior results
compared to using ODE, supposedly as the distillation gap and the limited model capacity result in
lower-fidelity reconstructions.

Table 3: Results using various reward functions and different generation methods. Each column
represents a specific reward objective, with the best performance highlighted in bold.

Generation method Aes ↑ IR ↑ Pick ↑ HPSv2 ↑ Time

SD v1.4 5.34 ± 0.56 -0.00 ± 0.95 0.202 ± 0.008 0.216 ± 0.036 5 s
DPO 5.36 ± 0.72 0.03 ± 0.84 0.203 ± 0.007 0.229 ± 0.027 5 s
Uni (CLIP-guided) 4.11 ± 0.74 -1.81 ± 0.50 0.191 ± 0.014 0.173 ± 0.022 55 min

Tanh + Aes 7.35 ± 0.40 -0.03 ± 1.24 0.211 ± 0.010 0.257 ± 0.041

18 min
Tanh + IR 5.96 ± 0.28 1.95 ± 0.07 0.216 ± 0.012 0.286 ± 0.033
Tanh + Pick 6.14 ± 0.48 1.39 ± 0.57 0.245 ± 0.010 0.312 ± 0.033
Tanh + HPSv2 5.98 ± 0.45 1.51 ± 0.63 0.228 ± 0.011 0.367 ± 0.027
Tanh + Ensemble 6.53 ± 0.50 1.81 ± 0.15 0.236 ± 0.014 0.356 ± 0.030

Best-of-N 6.32 ± 0.34 1.69 ± 0.18 0.218 ± 0.009 0.291 ± 0.015 18 min
DOODL + Aes 5.59 ± 0.29 -0.68 ± 1.06 0.197 ± 0.008 0.221 ± 0.028 18 min
DOODL + Pick 5.21 ± 0.46 -0.12 ± 0.84 0.204 ± 0.010 0.220 ± 0.035 1.1 hr

Table 4: Using Tanh Demons with various reward functions. The baseline, Stable Diffusion v1.4,
refers to the standard model without our proposed enhancements.

Baseline Best-of-N Uni DOODL Aes Ensemble DPO

A demon exiting through a portal

A painting of a girl encountering a giant sunflower blocking her path in a hallway

Image Generation with Various Reward Functions. While our method optimizes a given reward
function, as shown in Figure 4, we also present qualitative results in Table 4 and cross-validation
results in Table 3. These results demonstrate perceptual preferences by averaging rewards derived
from prompts provided in Tables 12 and 15.

We employ our Tanh Demon with various reward functions, such as Aes (LAION, 2023), ImageRe-
ward (IR)(Xu et al., 2023), PickScore (Pick)(Kirstain et al., 2023), HPSv2 (Wu et al., 2023), and a
scaled sum (Ensemble) of Aes, IR, Pick, and HPSv2. For comparison, we include the best reward
during sampling under the same time condition (best-of-N) and DOODL (Wallace et al., 2023b),
which is optimized on Aes and Pick to modify results generated by PF-ODE using their recommended
settings. For reference, we also provide the performance of a training-based method, DPO Wallace
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et al. (2023a), and a backpropagation-based method, Universal Guidance (Uni) by Bansal et al.
(2024), guided by the CLIP condition.

Starting from the baseline SDv1.4 under similar computational conditions, Tanh exhibits improvement
across the four metrics, demonstrating robustness even when acknowledging slight over-optimization
of the objective—in contrast to DOODL. By comparing best-of-N and Tanh with the Ensemble reward,
our method achieves superior performance on each objective using the Ensemble, demonstrating
not only the ability to integrate a mixture of rewards but also generating a superior samples that
outperforms all individual best samples selected by best-of-N methods.

Alignment with preferences of VLMs (Non-differentiable). In Table 5, we present qualitative
results of aligning diffusion models SDXL to preferences of VLMs from API, as a demonstration of
using non-differentiable reward sources. In this experiment, we use Google Gemini Pro v1.0 (Gemini
Team Google, 2024) and GPT4 Turbo (OpenAI, 2024). In each step, the VLM receives a fixed
prompt, e.g. “You are a journalist who wants to add a visual teaser for your article to grab attention
on social media or your news website”, and is asked to select the best-matching intermediate sample
from generated images. VLMs are presented with c(xt) and c(x̂

(k)
t−∆) produced by PF-ODE. The

reward bVLM
k is 0.5 if the VLM selects c(x̂(k)

t−∆) and−0.5 otherwise. We also use PickScore (Kirstain
et al., 2023) to evaluate the results and find that 14 out of 16 images generated with VLMs show
improvements compared to directly generating with PF-ODE.

Table 5: Using VLMs to generate images. PF-ODE (baseline) refers to a baseline without using our
method for alignment. Columns 3-6 indicate the role that the agent plays in the given prompt.

Model Baseline Teacher Artist Researcher Journalist

Gem
ini

-S
D

v1
.4

Gem
ini

-S
DXL

GPT-S
D

v1
.4

GPT-S
DXL

Manual Selection. We also explore using online interactive human judgements to guide diffusion.
That means, the users themselves would be (non-differentiable) reward functions. We let users directly
interact with our method to generate desired images. Figure 5a shows an example interface created
by us for an image resembling a given reference cat image. At each iterative step from t to t−∆, we
sample 16 i.i.d. copies of xt−∆ and compute c(xt−∆) with PF-ODE. The user then manually select
their preferred image, assigning a reward of +1 to it and −1 to the others. We continue this process
until there is no obvious preferred ones among the generated images. As shown in Figure 5b, the
image generated by our method more closely matches the target than the one produced by PF-ODE.
We also measure the improvement with DINOv2 (Oquab et al., 2023) embedding cosine similarity

9
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(a) Our user interface for interacting with our
algorithm (0.594 cosine similarity).

(b) (Top Left) Image generated by PF-ODE (0.622 cosine
similarity). (Bottom Left) Image generated by our method
(0.708 cosine similarity). (Right) Reference image.

Figure 5: We design an application for manual interaction with our algorithm. Our author selects
the images, and the criteria are based on the author’s preference (non-preferred images are kept
unselected), where the author tries to align the reference image. We evaluate performance by
measuring the cosine similarity of DINOv2 features between the targeted and reference images.

between the reference image and the generated image, and observe that the similarity improves from
0.594 to 0.708 through online user interactions.

6 CONCLUSION

This work addresses the challenge of better aligning pre-trained diffusion models without training
or backpropagation. We first demonstrate how to estimate noisy samples’ rewards based on clean
samples using PF-ODE. Additionally, we introduce a novel inference-time sampling method, based
on stochastic optimization, to guide the denoising process with any reward sources, including non-
differentiable reward sources that includes VLMs and interactive human judgements. Theoretical
analysis and extensive experimental results validate the effectiveness of our proposed method for
improved image generation without requiring additional training. Through comprehensive empirical
and theoretical analysis, we observe that the quality and efficiency of reward estimation r ◦ c are
essential for our algorithm, especially in balancing computational speed and reward performance.

ACKNOWLEDGEMENT

This research is supported by National Science and Technology Council, Taiwan (R.O.C), under the
grant number of NSTC-113-2634-F-002-007, NSTC-112-2222-E-001-001-MY2, NSTC-113-2634-F-
001-002-MBK and Academia Sinica under the grant number of AS-CDA-110-M09. We specially
thank Sirui Xie, I-Sheng Fang, and Jia-Wei Liao for the insightful discussions. We also extend our
gratitude to Prof. Lam Wai-Kit, National Taiwan University, for his courses MATH7509, MATH7510,
and MATH5269, which have significantly influenced this paper.

REFERENCES

Uri M Ascher and Linda R Petzold. Computer methods for ordinary differential equations and
differential-algebraic equations. SIAM, 1998.

Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip Sengupta, Micah Goldblum, Jonas
Geiping, and Tom Goldstein. Universal guidance for diffusion models. In International Conference
on Learning Representations, 2024.

10



Published as a conference paper at ICLR 2025

Patrick Billingsley. Probability and measure. John Wiley & Sons, 2017.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models
with reinforcement learning. In International Conference on Machine Learning, 2023.

Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly fine-tuning diffusion models on
differentiable rewards. In International Conference on Learning Representations, 2024.

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial on the
cross-entropy method. Annals of operations research, 2005.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image synthesis. In
Advances in Neural Information Processing Systems, 2021.

Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
fine-tuning text-to-image diffusion models. In Advances in Neural Information Processing Systems,
2023.

Gemini Team Google. Gemini: A family of highly capable multimodal models, 2024.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS Workshop on Deep
Generative Models and Downstream Applications, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in
Neural Information Processing Systems, 2020.

Charles AR Hoare. Quicksort. The computer journal, 1962.

Kiyosi Ito, Kiyosi Itô, Kiyosi Itô, Japon Mathématicien, Kiyosi Itô, and Japan Mathematician. On
stochastic differential equations. American Mathematical Society New York, 1951.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In Advances in Neural Information Processing Systems, 2022.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations, 2014.

Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
a-pic: An open dataset of user preferences for text-to-image generation. In Advances in Neural
Information Processing Systems, 2023.

Andrei Kolmogoroff. Über die analytischen methoden in der wahrscheinlichkeitsrechnung. Springer,
1931.

LAION. Laion aesthetic score predictor. https://laion.ai/blog/laion-aesthetics/,
2023.

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models:
Synthesizing high-resolution images with few-step inference, 2023.

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
SDEdit: Guided image synthesis and editing with stochastic differential equations. In International
Conference on Learning Representations, 2022.

OpenAI. Gpt-4 technical report, 2024.

Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Russell Howes, Po-Yao
Huang, Hu Xu, Vasu Sharma, Shang-Wen Li, Wojciech Galuba, Mike Rabbat, Mido Assran,
Nicolas Ballas, Gabriel Synnaeve, Ishan Misra, Herve Jegou, Julien Mairal, Patrick Labatut,
Armand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision,
2023.

11

https://laion.ai/blog/laion-aesthetics/


Published as a conference paper at ICLR 2025

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
synthesis. In International Conference on Learning Representations, 2024.

Mihir Prabhudesai, Anirudh Goyal, Deepak Pathak, and Katerina Fragkiadaki. Aligning text-to-image
diffusion models with reward backpropagation, 2024. URL https://openreview.net/
forum?id=Vaf4sIrRUC.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, 2021.

Alvin C Rencher. A review of “methods of multivariate analysis, ”, 2005.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Computer Vision and Pattern Recogni-
tion, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kam-
yar Seyed Ghasemipour, Raphael Gontijo-Lopes, Burcu Karagol Ayan, Tim Salimans, Jonathan
Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion models with
deep language understanding. In Advances in Neural Information Processing Systems, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learning,
2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In International
Conference on Machine Learning, 2023.

Roman Vershynin. High-dimensional probability. University of California, Irvine, 2020.

Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
direct preference optimization, 2023a.

Bram Wallace, Akash Gokul, Stefano Ermon, and Nikhil Naik. End-to-end diffusion latent optimiza-
tion improves classifier guidance. In International Conference on Computer Vision, 2023b.

Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
Human preference score v2: A solid benchmark for evaluating human preferences of text-to-image
synthesis, 2023.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation. In
Advances in Neural Information Processing Systems, 2023.

Kai Yang, Jian Tao, Jiafei Lyu, Chunjiang Ge, Jiaxin Chen, Qimai Li, Weihan Shen, Xiaolong Zhu,
and Xiu Li. Using human feedback to fine-tune diffusion models without any reward model, 2024.

TaeHo Yoon, Kibeom Myoung, Keon Lee, Jaewoong Cho, Albert No, and Ernest K. Ryu. Cen-
sored sampling of diffusion models using 3 minutes of human feedback. In Advances in Neural
Information Processing Systems, 2023.

12

https://openreview.net/forum?id=Vaf4sIrRUC
https://openreview.net/forum?id=Vaf4sIrRUC


Published as a conference paper at ICLR 2025

A NOTATIONS AND CONVENTIONS

Although we keep the main paper self-consistent, we provide this section to establish a consistent
notation and convention for this paper as an aid.

A.1 NOTATIONS

Table 6: Notations

Notation Description
N State dimension
K Noise sample number
tmin, tmax Upper bound and Lower bound of the noise level in numerical integration
T Number of time steps to solve SDE/ODE
β Noise parameter
x State variable
z Noise from Gaussian
∆ Time step
bk Unnormalized weight of noise
fβ SDE policy drift
gβ SDE policy diffusion coefficient
f0 PF-ODE policy drift
Jβ Langevin diffusion SDE
ωt reversed time Brownian motion
r Reward
rβ Reward estimates of SDE policy
c Function to get expected ODE result
heun Heuns’s method, SDE solver for Karras SDE

A.2 CONVENTIONS

Table 7: Conventions

Convention Details
r ◦ c ODE reward estimate approximation, r(c(xt, t)) = (r ◦ c)(xt, t)
f ≡ g For all x of our interest, f(x) = g(x)
x̂ Numerical approximation with SDE solver
x̃ Intermediate value of Heun’s method
x′ An ODE trajectory
z̃ Uniformly sampled from the sphere of radius

√
N

z∗ Optimal noise generated by our algorithm
µ̂ Mean of next state ODE reward estimates, 1

K

∑K
k=1(r ◦ c)(x̂

(k)
t−∆)

r(xt) Shorthand for r(xt, t) when the context is clear
c(xt) Shorthand for c(xt, t) when the context is clear
(r ◦ c)(xt) Shorthand for (r ◦ c)(xt, t) when the context is clear
x0 | xt Shorthand for x0 |β xt, where x0 = xt +

∫ 0

t
fβ(xu, u) du+ gβ(u) dωu

ω̃t Standard Brownian motion

Instead of ODE, we sometimes use PF-ODE to highlight Song et al. (2021)’s contribution or when
the context is unclear. They are equivalent in this paper.
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B GUIDELINE ON PARAMETER SETTING

We explore the optimal setting for parameter τ with respect to the Boltzmann Demon and the Tanh
Demon. For the Tanh Demon, the most effective τ is neither∞ nor 0. We recommend setting τ to
the standard deviation of the estimations {(r ◦ c)(x(k)

t−∆)}Kk=1, rendering it an adaptive parameter
that is robust to scaling. For the Boltzmann Demon, optimal performance is achieved by setting τ to
0, as demonstrated in Table 8.

Table 8: Comparison of performance for different settings of τ in the setting of Figure 4.

τ = 1 τ = 0.01 Adaptive τ

Tanh 7.40± 0.30 7.24± 0.31 7.45± 0.33
Boltzmann 6.30± 0.35 7.28± 0.30 6.85± 0.37

We also conduct an ablation study on the remaining parameters K and β. The base configuration
is K = 16, β = 0.1, with an adaptive temperature τ for the Tanh Demon. We set T = 32 for the
ablation study of β and T = 64 for K.

Figure 6: Comparison of our algorithm with respect to K and β

We found a large β makes the sampling unstable, given the number of steps T is fixed. Predictably,
sampling with a β close to 0 is reduced to ODE. From our theoretical result Lemma 1, the design
methodology, and empirical results, the guidelines Table 9 can assist users in setting parameters. We
provide a sparse parameter search in Table 10.

Parameter Description

K
Controls the noise distribution bias, positively affecting final quality and
linearly increasing computational time.

β
Adjusts the distribution’s proximity to the original PF-ODE. Set em-
pirically based on r’s characteristics. Lemma 1 suggests smaller β for
reward functions with Laplacian deviations.

T
Inherit the properties of time steps T from diffusion models, scaling
computational time linearly. Karras’s EDM recommends T > 17.

τ
Recommended values vary for Boltzmann and Tanh Demons, as detailed
in Table 8.

r ◦ c Accurate reward estimates are critical for ensuring high final quality.

Table 9: Guidelines for Setting Hyperparameters

14
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Table 10: This table presents the experimental configurations used to measure aesthetics score under
various animal prompts, presenting a sparse search of parameters. The time column represents the
duration required to generate each image. We alias adaptive temperature as Adaptive.

Demon Checkpoint β K T τ Aes Time (min)

Boltzmann

SD v1.4 0.1 16 64 Adaptive 6.408 ± 0.36 17.6

1e-10 7.111 ± 0.32 16.6

SDXL
0.05 16 32

Adaptive 6.853 ± 0.37 45.8

1e-02 7.276 ± 0.30 45.4

1 6.300 ± 0.35 46.1

0.1 16 64 Adaptive 6.990 ± 0.38 94.2

1e-10 7.501 ± 0.31 93.1

Tanh

SD v1.4
0.05 16

16 Adaptive 6.723 ± 0.26 5.0

32 Adaptive 7.073 ± 0.22 9.7

64 Adaptive 7.394 ± 0.29 18.7

0.1 16 64 Adaptive 7.549 ± 0.43 18.7

64 64 Adaptive 8.566 ± 0.33 79.1

Diffusion-DPO 0.1 16 64 Adaptive 7.564 ± 0.34 94.5

SDXL

0.01 16 16 Adaptive 6.876 ± 0.40 22.0

0.05 16

16 Adaptive 6.866 ± 0.35 21.9

32
Adaptive 7.459 ± 0.33 46.0

1e-02 7.244 ± 0.31 46.0

1 7.398 ± 0.30 46.2

0.1
8 64 Adaptive 7.446 ± 0.37 47.0

16 64 Adaptive 7.841 ± 0.32 94.4

32 64 Adaptive 8.179 ± 0.35 188.8

0.5 16 32 Adaptive 6.370 ± 0.35 46.0

Tanh-C SD v1.4
0.5 16 64 Adaptive 7.269 ± 0.33 5.0

0.1 16 64 Adaptive 6.710 ± 0.34 5.0

SDXL 0.5 16 64 Adaptive 7.301 ± 0.24 17.9
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C PSEUDOCODES

As an aid, we provide pseudocodes for the design of Demons Algorithm 2, Algorithm 3:

Algorithm 2 Tanh Demon with Adaptive Temperature

1: Input: A list of ODE reward estimate [Rk]
2: Output: Noise Weights [bk]
3: K ← length([Rk])
4: µ̂← 1

K

∑K
k=1 Rk

5: τ ←
√

1
K

∑K
k=1(Rk − µ̂)2

6: for k = 1 to K do
7: bk ← tanh

(
Rk−µ̂

τ

)
8: end for
9: Return [bk]

Algorithm 3 Boltzmann Demon with Fixed Temperature τ

1: Input: A list of ODE reward estimate [Rk]
2: Output: Noise Weights [bk]
3: K ← length([Rk])
4: Z ← 1

K

∑K
k=1 exp

(
Rk

τ

)
5: for k = 1 to K do
6: bk ← 1

Z exp
(
Rk

τ

)
7: end for
8: Return [bk]
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D MATHEMATICS

D.1 ERROR COMPREHENSION FOR REWARD ESTIMATE APPROXIMATION

In this section, we present the theoretical analysis and proof to better understand the error in our
reward estimate approximation.

D.1.1 ERROR TERM AS AN ITÔ INTEGRAL

Lemma 1. Let the reward estimate function, h(xt, t) = (r ◦ c)(xt, t), be shorthanded as h. We have:

rβ(xt, t)− (r ◦ c)(xt, t) = Ex0|xt

[∫ 0

t

∇xu
h · dJβ(xu, u)− βu2∇2hdu

]
. (13)

where x0 is sampled from Equation (2),∇2h is the Laplacian of h and

dJβ(xu, u) = −βu2∇xu
log p (xu, u) du+

√
2βudωu, (14)

Proof. We aim to prove:

r(x0)− (r ◦ c)(xt, t) =

∫ 0

t

∇xu
h · dJβ(xu, u)− βu2∇2hdu, (15)

Recall that

x0 = xt +

∫ 0

t

fβ(xu, u) du+ gβ(u) dωu, (16)

c (x′
t, t) = x′

t +

∫ 0

t

f0(x
′
u, u) du. (17)

For an ODE trajectory x′(t), notice that:

0 =
d

dt
h(x′

t, t) =
∂h

∂t
+∇xh ·

dx′

dt
=

∂h

∂t
+∇xh · f0. (18)

We can write:

r(x0)− (r ◦ c)(xt, t) = h(x0, 0)− h(xt, t) =

∫ 0

t

dh, (19)

where xt, which is not an ODE trajectory (noted by x′
t), follows the SDE trajectory. Using Itô’s

lemma Ito et al. (1951), we find:

dh =

(
∂h

∂t
+∇xh · fβ −

1

2
· g2β∇2h

)
dt+ gβ∇xh · dωt (20)

=

(
∂h

∂t
+∇xh · fβ −

(
∂h

∂t
+∇xh · f0

)
− 1

2
g2β∇2h

)
dt+ gβ∇xh · dωt (21)

=

(
∇xh · (fβ − f0)−

1

2
g2β∇2h

)
dt+ gβ∇xh · dωt (22)

= ∇xh ·
(
−βt2∇xt

log p(xt, t) dt+
√
2βtdωt

)
− βt2∇2hdt. (23)

The sign of the Itô correction term is flipped due to reverse time Brownian Motion-—and the other is
followed by expansion. We thus derived Equation (15).
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D.1.2 DISCUSSION

We interpret the error terms of the reward estimates approximation as follows:

• The estimate becomes more accurate as β decreases, satisfying the intuition that SDE
trajectories will reduce to the ODE trajectory as β → 0.

• If ∇xu
h ⊥ ∇xu

log p (xu, u), the term∇xu
h · dJβ(xu, u) cancels out in expectation.

• If ∇2h ≡ 0 and the previous condition holds, then r ◦ c ≡ rβ .

For estimation purposes, we make the following assumptions to facilitate understanding and derivation
of Equation (5):

∇xt log p(xt, t) ≈ −
xt

t2
(24)

c(xt, t) ≈ Ctxt (25)
∇xr ⊥ x (26)

where Ct is a time-dependent constant and r is scale-invariant.

• Equation (24) is derived from the assumption that p(xt) ≈ N (0, t2I).

• Equation (25) stems from image preprocessing algorithms, such as those used in Stable
Diffusion, which normalize the image distribution. This normalization implies that images
in the dataset are often scaled to lie on a sphere. Therefore, we can reasonably assume that a
randomly generated xt is close to an image in the dataset in direction.

• Equation (26) is based on the intuition that minor changes in brightness do not significantly
affect the semantic interpretation of an image. Besides, many training algorithms incorporate
scaling as part of data augmentation, which aligns with the assumption that the gradient of
∇xr is orthogonal to x.

Under these assumptions, we obtain:

dh = ∇xh ·
(
−βt2∇xt log p (xt, t) dt+

√
2βtdωt

)
− βt2∇2hdt (27)

≈ Ct∇xr ·
(
−βxt dt+

√
2βtdωt

)
− βt2∇2hdt (28)

≈
√
2βtCt∇xr · dωt − βt2C2

t∇2r dt (29)

If r is harmonic, i.e.,∇2r ≡ 0, then dh becomes a martingale (Billingsley, 2017) and:

rβ(xt, t)− (r ◦ c)(xt, t) ≈ Ex0|xt

[∫ 0

t

√
2βtCt∇xr · dωt

]
= 0. (30)

The mean value property, an equivalent statement of a harmonic function, states that the value of
a harmonic function at any point is the average of its values on any sphere centered at that point.
This property provides an intuitive explanation of our method: if r is harmonic, the reward of the
ODE-generated image is the mean value of the reward of SDE-generated ones, while empirically, we
observe that the ODE generation resembles the SDE variants.

D.1.3 ILLUSTRATION OF MISMATCH

For better understanding, we provide an example that rβ is far from r ◦ c. We adopt assumptions
in Appendix D.1.2 to illustrate the intuition, and suppose xt is a noisy sample at time t such
that c(xt) is a sharp local maxima of r, where ∇2r ≪ 0 near c(xt). Further, suppose that β is
small enough such that the generated x0 is near c(xt). In this case, rβ(xt) − (r ◦ c)(xt) < 0 as
rβ(xt) = Ex0|xt

[r(x0)] < (r ◦ c)(xt) by intuition.

We can also verify rβ(xt) − (r ◦ c)(xt) < 0 using Equation (15). Under the assumptions in
Appendix D.1.2, we can write:
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rβ(xt)− (r ◦ c)(xt) ≈ Ex0|xt

[∫ 0

t

√
2βtCt∇xr · dωt − βu2∇2hdu

]
(31)

= Ex0|xt

[∫ 0

t

−βu2C2
t∇2r du

]
(32)

< 0. (33)

Note that the value of∇2r is taken at c(xt), fluctuating with SDE.

D.2 MARTINGALE PROPERTY OF REWARD ESTIMATES.

A martingale is a sequence of random variables that maintains a certain property over time Billingsley
(2017): the expected future value, given all past values, is equal to the current value; for a fixed SDE,
the current reward estimate is the expected value of the reward estimates at the next time step:

Fact 1. For any time step ∆ < 0 such that t > t−∆ > 0:

rβ(xt) = Ext−∆|xt
[rβ(xt−∆)] . (34)

Intuitively speaking, this idea stems from the principles of conditional probability, which tell us
that our current prediction of the final score should be the same as the average of all possible future
predictions.

Proof. This result follows directly from the foundational definition of expectation. For variable
rβ(xt), we have:

rβ(xt) = Ex0|xt
[r(x0)] = Ext−∆|xt

[
Ex0|xt−∆

[r(x0)]
]
= Ext−∆|xt

[rβ(xt−∆)] . (35)

D.3 TANH DEMON

We provide the theoretical idea behind the development of the algorithm. To start with, there
exists a linear relationship between the reward estimate increment from xt to x̂

(k)
t−∆ and the injected

noise z(k), which can be derived from Itô’s lemma Ito et al. (1951) and Kolmogorov backward
equations Kolmogoroff (1931), as follows:

rβ(x̂
(k)
t−∆)−rβ(xt) = g(t)∇xtrβ ·z(k)

√
∆+o(∆), where x̂

(k)
t−∆ = heun(xt, z

(k), t,∆), (36)

which can be interpreted from an SDE with the following Lemma.

Claim 1. Let rβ(xt, t) = Ex0|xt
[r(x0)] be the expected future reward at time 0, given the current

state xt at time t. Then, under the SDE:

dxt = fβ dt+ gβ dωt, (37)

the differential of rβ is:
drβ = gβ ∇xt

rβ · dωt. (38)

Proof. We begin by introducing a change of variables. Let s = tmax − t, so that as t decreases from
tmax to 0, s increases from 0 to tmax. This allows us to consider a forward-time process with standard
Brownian motion ω̃s.

Given the original SDE, we can write:

dxs = −fβ ds+ gβ dω̃s, (39)

where ω̃s is the standard Brownian motion.
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Now, applying Itô’s lemma to rβ(xs, s):

drβ =

(
∂rβ
∂s
− fβ · ∇xsrβ +

1

2
g2β∇2rβ

)
ds+ gβ∇xsrβ · dω̃s. (40)

We aim to prove the Kolmogorov backward equation:

∂rβ
∂s
− fβ · ∇xs

rβ +
1

2
g2β∇2rβ = 0. (41)

To do so, we integrate Itô’s lemma from s to tmax:

rβ(xtmax)− rβ(xs) =

∫ tmax

s

drβ (42)

=

∫ tmax

s

(
∂rβ
∂s′
− fβ · ∇xs′ rβ +

1

2
g2β∇2rβ

)
ds′

+

∫ tmax

s

gβ∇xs′ rβ · dω̃s′ . (43)

Since rβ(xtmax) is a martingale, by taking the expectation (conditioned on xs) on both sides, we
obtain:

0 = Extmax |xs
[rβ(xtmax)− rβ(xs)] (44)

= Extmax |xs

[∫ tmax

s

(
∂rβ
∂s′
− fβ · ∇xs′ rβ +

1

2
g2β∇2rβ

)
ds′
]

+ Extmax |xs

[∫ tmax

s

gβ∇xs′ rβ · dω̃s′

]
. (45)

The expectation of the stochastic integral is zero, as Itô integrals have a mean of zero:

Extmax |xs

[∫ tmax

s

gβ∇xs′ rβ · dω̃s′

]
= 0. (46)

Thus, we are left with:

Extmax |xs

[∫ tmax

s

(
∂rβ
∂s′
− fβ · ∇xs′ rβ +

1

2
g2β∇2rβ

)
ds′
]
= 0. (47)

Since the expectation is zero for any interval [s, tmax], the integrand itself must be zero:

∂rβ
∂s
− fβ · ∇xsrβ +

1

2
g2β∇2rβ = 0. (48)

Thus, the differential of rβ is given by:

drβ = gβ∇xs
rβ · dω̃s, (49)

Returning to the original time variable t, we substitute s = tmax − t yielding:

drβ = gβ∇xtrβ · dωt, (50)

completing the proof.

Although gβ∇xt
rβ is inaccessible without distillation and thus an intractable static vector, we can still

leverage the linear relationship to derive applications. Using our standard approach of interpreting
r ◦ c as rβ and recognizing that rβ(xt−∆) is an unbiased estimator of rβ(xt) (from Appendix D.2),
we practically interpret Equation (36) as:
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(r ◦ c)(x̂(k)
t−∆)− µ̂ ≈ gβ(t)∇xt

rβ · z(k)
√
∆, where µ̂ =

1

K

K∑
k=1

(r ◦ c)(x̂(k)
t−∆). (51)

From Equation (36), flipping the sign of z(k) reverses its contribution to rβ . Therefore, based on the
observation (r ◦ c)(x̂(k)

t−∆)− µ̂, we flip z(k) accordingly. We show the theoretical analysis and proof
for the error of the reward estimate of our Tanh Demon in the following.

Lemma 2. Assume the truncation error terms in Equation (36) are negligible and rβ ≡ r ◦ c. Let z∗

be derived from Equation (11). With probability 1, r(x̂tanh
0 ) > rβ(xt), where x̂tanh

0 is derived by
applying z∗ on every step.

Let ℓ = gβ∇xtrβ . Recall that we assume

rβ(x̂
(k)
t−∆)− rβ(xt) = ℓ · z(k)

√
∆ (52)

rβ(x̂
tanh
t−∆)− rβ(xt) = ℓ · z∗

√
∆ (53)

x̂
(k)
t−∆ = heun(xt, z

(k), t,∆) (54)

x̂tanh
t−∆ = heun(xt, z

∗, t,∆) (55)

z∗ =
√
N normalized

(
K∑
i=1

btanhk z(k)

)
(56)

btanhk = tanh

(
rβ(x̂

(k)
t−∆)− rβ(xt)

τ

)
. (57)

We aim to prove the sufficient condition: rβ(x̂
tanh
t−∆) > rβ(xt) for each numerical step. Under a

rotation of basis, without loss of generality, we assume ℓ only has value in the first component, i.e.,
ℓ = (ℓ1, 0, . . . , 0) and ℓ1 > 0. We have:

rβ(x̂
tanh
t−∆) > rβ(xt) ⇐⇒ ℓ1z

∗
1

√
∆ > 0 (58)

Claim 2. With probability 1, the first component z∗1 of z∗ is positive.

Proof. Since

btanhk = tanh

(
rβ(x̂

(k)
t−∆)− rβ(xt)

τ

)
(59)

= tanh

(
ℓ · z(k)

√
∆

τ

)
(60)

= tanh

(
ℓ1z

(k)
1

√
∆

τ

)
, (61)

where z
(k)
1 is the first component of z(k).

Almost surely, z(k)1 ̸= 0, so btanhk will have the same sign as z(k)1 . This implies btanhk z
(k)
1 > 0.

Since the first component of z∗ will have the same sign as the first component of
∑K

k=1 b
tanh
k z(k) i.e.∑K

k=1 b
tanh
k z

(k)
1 > 0. We conclude that z∗1 > 0.

In addition, we provide proof of the linear relationship presented in Equation (36).
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D.4 BOLTZMANN DEMON

Recall that

xt−∆ := xt +

∫ t−∆

t

fβ(xu, u) du+ gβ(u) dωu (62)

x̃t−∆ := xt − fβ(xt, t)∆ + gβ(t)z
√
∆ (63)

x̂t−∆ := xt −
1

2
[fβ(xt, t) + fβ(x̃t−∆, t−∆)]∆ +

1

2
[gβ(t) + gβ(t−∆)] z

√
∆ (64)

We first present the theoretical analysis and proof for the reward estimate error of the proposed
Boltzmann Demon as follows.
Lemma 3. Assume t is bounded by tmax and rβ is L-Lipschitz. Given xt, if the truncation error per
Heun’s SDE step in Equation (64) is xt−∆ = x̂t−∆ + o(∆) as ∆→ 0+, then we have:

E
[
r(x̂boltz

0 )
]
≥ rβ(xt)− o(L · tmax), (65)

where the expectation denotes that each step of the numerical approximation from every t to t+∆ is
taken with the maximum value of rβ(·) among i.i.d. SDE samples x̂(k)

t+∆, representing the Boltzmann
Demon with τ = 0.

Lemma 3 establishes a lower bound based on the sample maximum and reward estimate accuracy,
providing an improvement guarantee of expected reward in expectation.

We first claim the following statement.
Claim 3.

E
[
rβ(x̂

boltz
t−∆ )

]
≥ rβ(xt)− o(L ·∆). (66)

The rest is the induction of SDE time steps t0 = t > · · · > tT−2 > tT−1 > tT = 0, i.e.,

E
[
r(x̂boltz

0 )
]
= E

[
rβ(x̂

boltz
0 )

]
(67)

≥ E
[
rβ(x̂

boltz
tT−1

)
]
− o(L · tT−1) (68)

≥ E
[
rβ(x̂

boltz
tT−2

)
]
− o(L · (tT−1 + (tT−2 − tT−1))) (69)

... (70)

≥ E
[
rβ(x̂

boltz
t )

]
− o(L · t) (71)

≥ rβ(x̂
boltz
t )− o(L · tmax) (72)

Proof. We list the premise as the following:

x̂
(k)
t−∆ = heun(xt, z

(k), t,∆) (73)

x̂
(k)
t−∆ = x

(k)
t−∆ − o(∆) (74)

rβ(z
boltz) = max{rβ(x̂(1)

t−∆), · · · , rβ(x̂
(K)
t−∆)}. (75)

We can deduce that:

E
[
rβ(x̂

boltz
t−∆ )

]
= E

[
max{rβ(x̂(1)

t−∆), · · · , rβ(x̂
(K)
t−∆)}

]
(76)

≥ E
[
rβ(x̂

(1)
t−∆)

]
(77)

= E
[
rβ(x

(1)
t−∆)− L · o(∆)

]
(78)

= rβ(xt)− o(L ·∆) (79)

The last equation is followed by Equation (34). Here, rβ(x̂t−∆) is the numerical estimation of the
underlying SDE value rβ(xt−∆).
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Lemma 4. When τ = ∞ and the time step is small enough, the Boltzmann Demon sampling is
identically distributed as the SDE sampling.

By adjusting τ , we can smoothly transition from prioritizing high-reward noise samples to the
standard SDE sampling method, balancing Demon and SDE strategies; note that when τ =∞, the
weights are bk = exp(0) = 1. Thus,

∑K
k=1 bkzk results in a Gaussian distributionN (0,KIN ). This

distribution is identical distributed to drawing a Gaussian after both are projected onto a sphere of
radius

√
N .

We justify replacing Gaussian sampling with uniform sampling from a sphere of radius
√
N could

result in the same effect of SDE during the Euler-Maruyama discretization of SDEs. Assuming
constant drift f and diffusion g for Euler-Maruyama step, the SDE is dx = f dt+ g dW. We aim to
demonstrate that this replacement yields an identical distribution under small step sizes. Define:

Yn = −f∆+

n∑
i=1

g

√
∆

n
z̃i = −f∆+ g

√
∆

1√
n

n∑
i=1

z̃i (80)

where z̃i are i.i.d. vectors uniformly sampled from the surface of a sphere with radius
√
N i.e.

z̃i ∼ Unif(
√
NSN−1). Also, define:

Y = −f∆+ g
√
∆z (81)

Claim 4. Yn converges to Y in distribution as n→∞.

Proof. To justify replacing Gaussian sampling with uniform sampling from the sphere, it is sufficient
to show that the normalized sum converges in distribution to a Gaussian vector z, i.e.

1√
n

n∑
i=1

z̃i
d−→ z (82)

Due to the symmetry of the uniform distribution, the expectation of each vector is zero, i.e., E[z̃i] = 0.
Moreover, the distribution satisfies E

[
z̃iz̃

⊤
i

]
= IN .

By applying the Central Limit Theorem for vector-valued random variables (see, e.g., Rencher
(2005)), we conclude that as n → ∞, the normalized sum converges in distribution to a Gaussian
vector z with mean 0 and covariance matrix IN . It justified, in the limit of n → ∞, the uniform
sampling from the sphere replicates the statistical properties of Gaussian sampling in the diffusion
term of the original SDE.

D.5 HIGH DIMENSIONAL GAUSSIAN ON SPHERE

The original statement is more general in the textbook, but we provide specific proof for Gaussian.

Lemma 5. (Vershynin, 2020, Chap. 3) Let z be independent and identically distributed (i.i.d.)
instances of a standard isotropic Gaussian N (0, IN ) in a high-dimensional space N . With a high
probability (e.g., 0.9999), it holds that

∥z∥ =
√
N +O(1) (83)

Proof. Consider the norm ∥z∥2, where z is an instance of a standard isotropic Gaussian N (0, IN )
in N dimensions. The distribution of ∥z∥2 follows a Chi-squared distribution with N degrees of
freedom. The mean and variance of this distribution are N and 2N , respectively.

Applying the central limit theorem argument, we approximate the distribution of ∥z∥2 by a normal
distribution when N is large, giving:

∥z∥2 = N + C
√
N (84)

for some constant C, where C ∈ O(1) represents fluctuations around the mean which are typically
on the order of the standard deviation of ∥z∥2, which is

√
2N .
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To connect this with the norm of z, we consider:

lim
N→∞

√
N + C

√
N −

√
N = lim

N→∞

√
N

(√
1 +

C√
N
− 1

)
(85)

= lim
N→∞

√
N

(
C

2
√
N

)
(86)

=
C

2
(87)

Here, we use the Taylor series expansion for
√
1 + x, approximated as 1 + x

2 for small x, to find the
limit. This expansion leads to the conclusion that ∥z∥ =

√
N +O(1).

E COMPARISON ON PICKSCORE

E.1 PICKSCORE COMPARISONS.

Since PickScore Kirstain et al. (2023) is trained specifically on generated images, we believe it is
a more reliable measure and objective than the aesthetics score. To emphasize the strength of our
method, we show how the median PickScore reward function improves across 20 different prompts
using our Tanh Demon, as shown in Figure 7a.

Our approach utilizes 1,440 reward queries per sample and achieves a PickScore of 0.253, outper-
forming other methods alongside reduced computation time (180 minutes for our method vs. 240
minutes for resampling methods due to shortened ODE trajectories). Specifically, we compare our
method to:

• SDXL/SDXL-DPO Wallace et al. (2023a): A state-of-the-art method for direct preference
optimization in diffusion models, which achieves a PickScore of 0.226, while the baseline
SDXL reaches 0.222.

• Diffusion-DPO(1440x): A variant that selects the highest quality median PickScore from
1440 samples among 20 prompts, achieving a PickScore of 0.246.

• SDXL(1440x): Similar to the above, but without preference optimization, achieving a
PickScore of 0.243.

Additionally, resampling an ODE from xtmax
is crucial in applications where the distribution xtmax

|
x0 plays a key role, such as in SDEdit Meng et al. (2022). Resampling methods fail to address such
applications, highlighting the advantage of our approach.

(a) A Trajectory of Tanh Demon. We plot (r ◦
c)(xt) for different t. (b) The performance of each method on PickScore.

Figure 7: Quantitative results for Tanh Demon.

E.2 QUALITATIVE RESULTS

In this section, we demonstrate the quantitative and qualitative results of PickScore in SDXL with
our Tanh Demon.
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Figure 8: Each row in the figure presents two pairs of images where the image of each pair on the
left illustrates results generated using the original PF-ODE method. The image on the right in each
pair showcases enhancements achieved by applying our Tanh Demon based on the PickScore metric
and SDXL. This figure demonstrates the improvements in visual fidelity and adherence to targeted
characteristics achieved through our proposed method.
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F COMPARISON ON HPSV2
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Figure 9: Comparison in HPSv2 and HPDv2. The performance comparison of the proposed algorithm
and the best-of-N baseline methods is presented in terms of the number of reward queries and
execution time, with the dependent variable being T . The shaded areas and the solid circle radii
represent the evaluation results’ standard deviations. If the computational bottleneck is the number of
reward queries, we recommend Tanh; if it is computational time, we recommend Tanh-C.

Table 11: We present qualitative results for various methods. For our method, we set T = 128,
β = 0.5, and K = 16. The Best-of-N samples are generated using 2,336 (5,440 for CM) reward
queries and 3.8k seconds, which is significantly more than our method’s 1,424 reward queries and
1.8k seconds. Moreover, the presented image from Best-of-N possesses an inferior HPSv2 score
compared to ours.

Best-of-N Best-of-N
(CM) Tanh-C Tanh Boltzmann

a castle is in the middle of a eurpean city

A motorcycle that is sitting in the dirt.

We present quantitative and qualitative results in Figure 9 and table 11, using 10 prompts sampled
from HPDv2 (Wu et al., 2023). Both the diffusion model and CM are implemented and distilled with
SD v1.5.

We observe similar results in Figure 4. Regarding reward queries, the Tanh Demon method outper-
forms Tanh-C, followed by the Boltzmann Demon method. Regarding execution time, however,
Tanh-C is recommended over the Tanh Demon if computational time is limited.

26



Published as a conference paper at ICLR 2025

G ADDITIONAL RESULTS WITH VARIOUS REWARD FUNCTIONS.

G.1 IMAGE GENERATION RESULTS WITH DIFFERENT REWARD FUNCTIONS

We show more image generation results in SDv1.4/SDXL with our Tanh Demon and other reward
functions in Tables 12 to 15, using the four reward as objective.

G.2 SUBJECTIVE TEST OVERVIEW

We surveyed with 101 participants via Google Forms, as shown in Figure 10. Participants evaluated
different image generation methods based on:

• Subjective Preference: Visual aesthetics and image quality.
• Semantic Alignment: Correspondence between generated images and text prompts.

Each participant ranked images across four sections, with rankings aggregated using the following
formula:

1

ML

M∑
i=1

L∑
j=1

exp(−(rankij − 1)) (88)

where:

• M = 4 (number of sections),
• L = 101 (participants),
• rankij is the ranking by participant j for method i.

(a) Comparison across methods.

(b) Comparison across objectives.

Figure 10: Subjective test results: Preferences and prompt alignment across methods and objectives.

G.2.1 SURVEY STRUCTURE

The subjective test comprised four sections: two comparing methods (DOODL, Baseline (SD
or SDXL), Ensemble) based on subjective preference and prompt alignment, each with 3 sets
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Table 12: Generative Results using SDXL

SDXL Aes IR Pick HPSv2 Ensemble

An Octopus Playing Chess with a Robot Underwater

A Samurai Gardening on a Floating Island in the Sky

Insanely detailed portrait, wise man

A painting of a girl encountering a giant sunflower blocking her path in a hallway

A demon exiting through a portal

A butterfly flying above an ocean
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Table 13: Generative Results using SDXL (Cont)

SDXL Aes IR Pick HPSv2 Ensemble

Two-faced biomechanical cyborg

Highway to hell

A Jazz Band of Different Alien Species Performing on an Exoplanet

A Victorian Inventor Testing Her Flying Bicycle Above a Steampunk City

A Time Traveler’s Picnic at the Edge of a Volcano During the Mesozoic Era

jedi duck holding a lightsaber
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Table 14: More Qualitative Results of SD1.4

Baseline DOODL Aes IR Pick HPSv2 Ensemble

An Octopus Playing Chess with a Robot Underwater

Two-faced biomechanical cyborg

Highway to hell

jedi duck holding a lightsaber

A demon exiting through a portal

A Samurai Gardening on a Floating Island in the Sky
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Table 15: More Qualitative Results of SD1.4 (cont)

Baseline Aes IR Pick HPSv2 Ensemble DOODL

A Victorian Inventor Testing Her Flying Bicycle Above a Steampunk City

A Time Traveler’s Picnic at the Edge of a Volcano During the Mesozoic Era

Insanely detailed portrait, wise man

A butterfly flying above an ocean

A Jazz Band of Different Alien Species Performing on an Exoplanet

A painting of a girl encountering a giant sunflower blocking her path in a hallway
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containing one image per method; and two comparing methods applied to different objectives
(Baseline, Ensemble, IR, Pick, HPSv2, Aes) also based on preference and prompt alignment, each
with 3 sets containing six images per set.

G.2.2 EVALUATION RESULT OVERVIEW

Methods Comparison Figure 10a shows that DOODL slightly outperforms the Baseline in aesthetic
preference and prompt alignment. The Ensemble method significantly surpasses both, indicating
superior visual quality and semantic accuracy.

Objectives Comparison As seen in Figure 10b, all objectives outperform the Baseline in prompt
alignment, with the HPSv2 method leading. In subjective preference, methods applied to different
objectives show varied improvements, with some achieving substantial gains over the Baseline.

G.2.3 ANALYSIS

We compared DOODL, Baseline, and Ensemble based on aesthetics and prompt alignment. DOODL
marginally improves over the Baseline in both criteria, while the Ensemble method consistently
outperforms both DOODL and Baseline, excelling in image quality and semantic accuracy. The
Ensemble method demonstrates significant enhancements, particularly in tasks requiring visual
refinement.

Evaluating different objectives (IR, Pick, HPSv2, Aes) against Baseline and Ensemble revealed that
almost all objectives surpass the Baseline in both preference and prompt alignment. However, Aes,
an objective without explicit text guidance, shows weaker prompt alignment. Among the objectives,
HPSv2 achieves the best performance on both criteria.

The Ensemble method provides the most substantial improvements in visual aesthetics and seman-
tic alignment among method comparisons. Among the factors of the Ensemble method, HPSv2
outperforms other objectives, even the Ensemble method, highlighting its effectiveness in aligning
preference for a real human.

H MORE DETAILS OF VLM AS DEMON

In this section, we provide more details of experiments and quantitative results of utilizing VLM
during generation.

H.1 GENERATION WITH THE LATEST MODEL

In Table 16, we present an experiment aligning diffusion models to preferences of VLMs from
APIs—Google Gemini Flash v1.5 (Gemini Team Google, 2024) and GPT-4o (OpenAI, 2024)—as a
demonstration of using non-differentiable reward sources. In each setting, the VLM receives a given
scenario, e.g., “You are a journalist who wants to add a visual teaser for your article to grab attention
on social media or your news website,” and is asked to select the best-matching state vector x(k)

t−∆
based on generated images. Each scenario is assigned a prompt. In a generation, we apply Tanh
Demon with K = 16 on SDXL. For scenarios and quantitative results, please refer to Appendix H.

Empirically, VLMs achieve better accuracy when selecting 1 out of 2 options rather than 8 out of 16.
We, hence, utilize binary comparisons by applying the Quicksort partition (Hoare, 1962) twice on the
array of c(x(k)

t−∆) derived from xt. The first application partitions the entire array, and the second
partitions the larger subset resulting from the first step. This process allows us to identify roughly the
top 8 images within 2K comparison.

We assign a +1 reward on the roughly top 8 images and −1 on the rest for each Demon step.
Using PickScore (Kirstain et al., 2023), trained based on image comparisons, we convert logits to
probabilities and assess the effectiveness of our method. The results indicate improvements with this
metric on every image in any degree.

32



Published as a conference paper at ICLR 2025

Table 16: Using VLMs to generate images. PF-ODE (baseline) refers to a baseline without using our
method for alignment. The top row of each set indicates the agent’s role in the given prompt. The
hyperparameters are set to β = 0.1, τ = 0.0001, K = 16, and T = 128 using Tanh Demon. We
apply ODE after applying 15 Demon steps.

Teacher Artist
PF-ODE GPT Gemini PF-ODE GPT Gemini

13.7% 17.7% 68.6% 24.3% 27.2% 48.5%

Researcher Journalist
PF-ODE GPT Gemini PF-ODE GPT Gemini

9.3% 69.4% 21.3% 32.7% 33.1% 34.2%

Role Prompts

Teacher A colorful, labeled educational illustration with simple, engaging visuals.
Artist A detailed, cinematic concept art of unique characters or scenes for games or movies.

Researcher A realistic, vivid visualization of scientific data with a professional style.
Journalist A bold, vibrant illustration with dynamic design for digital platforms.

H.2 EXPERIMENTS SETTINGS

We provide the prompt template we used in Table 5 to VLMs. The following are the full system
prompts for the scenarios:

Table 17: Roles and System Prompts

Role System Prompt
Teacher You are a teacher looking to create custom illustrations for your educational

materials to make learning more engaging for your students.

Artist You are a game or movie concept artist tasked with creating concept art for
characters, settings, and scenes to speed up the pre-production process.

Researcher You are a researcher needing to visualize complex data, such as molecular struc-
tures in chemistry or weather patterns in meteorology, for better understanding
or presentation.

Journalist You are a journalist who wants to add a visual teaser for your article to grab
attention on social media or your news website.

Listing 1: Prompt template used in the Gemini image selection task. This template guides the
decision-making process for choosing between two images generated from a fixed prompt. For the
prompt used in GPT selection, we replace the output format by asking it to return JSON.

1 Scenario: {scenario}
2

3 You are presented with two images generated from the prompt "{
prompt}." Examine both images carefully to decide which one
best matches the given scenario. Consider how each image
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relates to the scenario, including its relevance and how well
it captures the intended theme and concept.

4

5 Choose the image that you believe is the most appropriate for the
scenario. Each image has an id: 0 or 1.

6

7 Please share your thought process or any observations you made
while making your decision. This reflection helps in
understanding your choice.

8

9 Respond with the id of the image you’ve chosen in a JSON format.
For example, if you choose the first image, your response
should look like this:

10

11 ‘‘‘json
12 [0]
13 ‘‘‘
14

15 Or, if you choose the second image:
16

17 ‘‘‘json
18 [1]
19 ‘‘‘
20

21

22

23 Please response in the following format:
24

25 < Here write down your argument >
26

27 < Here write down your decision, either [0] or [1], the [] is
necessary >

28

29 Take a deep breath and work on this problem step-by-step. Ensure
your choice truly aligns with the intended scenario.

Listing 2: An example of GPT generated output

1 {
2 "justification": "Considering the scenario described, the

first image is a better choice. This image effectively
showcases a mysterious, illuminated object that instantly
attracts the viewer’s curiosity. The background hints at
an academic or historical setting, with architectural
elements and various artifacts that seem like elements
from different times and places. This diverse and
enigmatic setup aligns well with the theme of
transformation and curiosity across different realms like
education, history, literature, and science. The glowing
object in a seemingly ancient, cluttered environment truly
sparks wonder, making it ideal for grabbing attention on

social media or a news website.",
3 "chosen_image": [
4 0
5 ]
6 }
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H.3 QUANTITATIVE MEASUREMENT OF EFFECTIVENESS

For VLMs as reward functions, we use Pickscore Kirstain et al. (2023), which is trained from
CLIP Radford et al. (2021), to evaluate the effectiveness of VLM in aligning designed scenarios during
image generation. For each scenario, we create a corresponding prompt that partially describes the
scenario: “For education” for Teacher, “For entertainment” for Artist, “For research” for Researcher,
and “For Journalism” for Journalist. Then, we assess the PickScore between the prompt and the
scenario. The results are presented in Table 18, Table 19, Table 20 and Table 21, where the highest
score for each prompt is highlighted in bold. Our observations indicate that 14 out of our VLM-
generated 16 images demonstrate better PickScore alignment with the corresponding prompt than
PF-ODE. Given that all images are generated using the same prompt and initial noisy sample in the
same table, these results demonstrate the effectiveness of our approach employing VLM in aligning
the scenarios.

Table 18: GPT-SDXL generation, validated by PickScore on related prompts

Prompt Teacher Artist Researcher Journalist PF-ODE

For education 0.2050 0.2069 0.2080 0.2071 0.2073
For entertainment 0.2042 0.2073 0.2061 0.2058 0.2032
For research 0.1980 0.1989 0.1996 0.1985 0.1971
For journalism 0.1994 0.1957 0.1978 0.1946 0.1970

Table 19: Gemini-SDXL generation, validated by PickScore on related prompts

Prompt Teacher Artist Researcher Journalist PF-ODE

For education 0.2111 0.2042 0.2102 0.2072 0.2073
For entertainment 0.2057 0.2058 0.2062 0.2013 0.2032
For research 0.2018 0.1979 0.2035 0.1986 0.1971
For journalism 0.2011 0.1991 0.1978 0.2049 0.1970

Table 20: GPT-SD v1.4 generation, validated by PickScore on related prompts

Prompt Teacher Artist Researcher Journalist PF-ODE

For education 0.1978 0.2008 0.1996 0.1988 0.1941
For entertainment 0.2026 0.2018 0.1991 0.2004 0.1966
For research 0.1896 0.1936 0.1912 0.1935 0.1878
For journalism 0.1930 0.1951 0.1918 0.1942 0.1901

Table 21: Gemini-SD v1.4 generation, validated by PickScore on related prompts

Prompt Teacher Artist Researcher Journalist PF-ODE

For education 0.1997 0.1945 0.1961 0.1961 0.1941
For entertainment 0.1954 0.1973 0.1982 0.1989 0.1966
For research 0.1910 0.1910 0.1897 0.1895 0.1878
For journalism 0.1935 0.1936 0.1927 0.1914 0.1901

I GENERAL IMPLEMENTATION DETAILS

In this section, we show the details of the implementation and experimental settings of the proposed
approach as follows.
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I.1 ADAPTING STABLE DIFFUSION TO EDM FRAMEWORK

In this paper, we tailor the existing text-to-image Stable Diffusion v1.4/v1.5/XL v1.0 (SDXL)
(i.e., we use fp16 SD v1.4/SDXL v1.0 for generation.) to the SDE formulation proposed in
EDM Karras et al. (2022) by Karras et al. for image generation since its reparameterized time
domain, t ∈ [tmin, tmax], improves numerical stability and sample quality during image generation.
We realize the modification through the equation, ∇x log p(x, t) = (D(x, t)− x) /t2, where the
function D(x, t) = x − tF(s(t)x, u(t)) derived from the original model F. In addition, s(t) and
u(t) represent the scaling schedule and the original temporal domain of the reparameterized temporal
domain t, respectively.

I.2 NUMERICAL METHODS FOR IMAGE GENERATION

Moreover, for image sampling with ODE/SDE, our approach follows Karras et al. (2022), adopting

Heun’s method and time intervals determined by ti =
(
t
1/ρ
max +

i−1
T−1 (t

1/ρ
min − t

1/ρ
max)

)ρ
, setting

ρ = 7, T ≥ 20 and ln tmax ≈ 2.7, ln tmin ≈ −6.2. The classifier-free guidance parameter is set to 2
throughout this paper. Across all temporal steps t of image generation, we keep K and β constant.
We have found that when t is less than 0.11, i.i.d. samples from SDE all appear similar to human
perception. For the remaining evaluations, we will directly use ODE. As a result, the actual number
of samples will be slightly smaller than K · T .

I.3 SIMPLIFICATIONS IN DIFFUSION PROCESS MODIFICATION

It is worth noting that in our work, since our main focus is on the modification of the diffusion process,
without loss of generality, we omit the VAEs (Kingma & Welling (2014)) of Stable Diffusion models,
the prompt c, and η of classifier-free guidance (CFG) Ho & Salimans (2021) in our formulation for
simplicity (i.e., using p(x) to denote the unnormalized p(x)p(c | x)η for conciseness).

I.4 BATCH SIZE AND MEMORY CONSTRAINTS

When we generate many SDE samples, the batch size for solving ODE/SDE is 8 for both Stable
Diffusion v1.4, v1.5, and SDXL models. However, due to memory limitations on the RTX 3090,
the batch size for evaluating the VAE in SDXL is restricted to 1. This memory bottleneck prevents
any further acceleration from using larger batch sizes, as it limits the parallelization during VAE
evaluation.

Due to memory limitations, DOODL was run on an Nvidia RTX A6000, which is slightly slower
(0.92x) than the RTX 3090 used for the other experiments.

I.5 EXPERIMENTAL SETUP AND HYPERPARAMETERS

Among all the discussed methods, DOODL is the only one that utilizes the differentiation of the
reward function. Due to memory limitations, DOODL was run on an Nvidia RTX A6000, which is
slightly slower (0.92x) than the RTX 3090 used for the other experiments. We present the detailed
hyperparameter settings of different experiments as follows:

Baseline Comparison. The hyperparameters for generation are set to β = 0.5, K = 16, η = 2 and
τ adaptive for Tanh, 10−5 for Boltzmann.

Reward Estimate Approximation Comparison. We set β = 0.5 and use SD v1.5 and its distilled
CM. The CFG parameter is ignored in CM(set to 1). The reward estimate rβ is obtained by averaging
over 200 Monte Carlo i.i.d. SDE samples—each with 200 SDE steps.

Generation with Various Reward Functions. We use Tanh Demon for sampling with adaptive
temperature. The hyperparameters for generation are set to β = 0.05, K = 16, T = 64 as shown in
Tables 4, 12 to 14 and 15 on SD v1.4/SDXL.
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For reward scaling in the ensemble setting, the PickScore was multiplied by 98.86, and HPSv2 was
multiplied by 40.

The interaction step of DOODL is used as suggested by their implementation, 25 iteration for Aes
and 100 iteration for Pick.

Non-differentiable Reward. In Table 5, the hyperparameters are set to β = 0.05, τ = 0.0001,
K = 16, and T = 32 using Tanh Demon.

Manual Selection. In Figure 5, the parameters are β = 0.1,K = 16, T = 128 but terminate
manually, using Tanh Demon with adaptive temperature. We terminate the iteration after ten rounds
of operating the UI.

J LIMITATIONS

We present the theoretical result in Equation (5), which demonstrates that r ◦ c ≈ rβ . This result
relies on the assumption that the reward function r is near harmonic near the ODE sample ourput, as
detailed in Appendix D.1.2.

In practice, implementing r ◦ c faces challenges related to time complexity and accuracy bottlenecks,
thoroughly discussed in Section 4.

K FUTURE WORKS

The only difference between Tanh-C and Tanh Demon lies in how r ◦ c is implemented. Analysis
of the data in Table 2 and Figure 4 indicates that Tanh-C’s reward performance can be enhanced
by mitigating the fidelity in r ◦ c without compromising Tanh-C’s speed performance. Potential
strategies for improvement include increasing the fidelity of CM distillation or training a dedicated
distilled model for r ◦ c. We propose these enhancements as future work.

L CODE OF ETHICS

The experiments involving human judgment are fully compliant with established ethical standards.
Approval is obtained from the Institutional Review Board (IRB) of Academia Sinica under IRB
number AS-IRB-HS 02-24031 to ensure that the research meets all necessary guidelines for the
ethical treatment of human subjects.

M SOCIETAL IMPACT

Our method has the potential to both discourage and encourage harmful content. Users can generate
images through manual selections with malicious intentions (Figure 5). This increases accessibility
but also raises concerns about misuse. We implement safeguards provided by Stable Diffusion;
end-users are responsible for employing them, as recommended in prior works OpenAI (2024);
Gemini Team Google (2024); Rombach et al. (2022); Podell et al. (2024), to mitigate potential risks.
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