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ABSTRACT

Aligning diffusion models with user preferences has been a key challenge. Existing
methods for aligning diffusion models either require retraining or are limited to dif-
ferentiable reward functions. To address these limitations, we propose a stochastic
optimization approach, dubbed Demon, to guide the denoising process at inference
time without backpropagation through reward functions or model retraining. Our
approach works by controlling noise distribution in denoising steps to concentrate
density on regions corresponding to high rewards through stochastic optimization.
We provide comprehensive theoretical and empirical evidence to support and val-
idate our approach, including experiments that use non-differentiable sources of
rewards such as Visual-Language Model (VLM) APIs and human judgements.
To the best of our knowledge, the proposed approach is the first inference-time,
backpropagation-free preference alignment method for diffusion models. Our
method can be easily integrated with existing diffusion models without further
training. Our experiments show that the proposed approach significantly improves
the average aesthetics scores for text-to-image generation. Implementation is
available at https://github.com/aiiu-lab/DemonSampling.

1 INTRODUCTION

Diffusion models have been the state-of-the-art for image generation (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Song et al., 2021; Karras et al., 2022; Saharia et al., 2022; Rombach et al., 2022),
but, commonly, the end users’ preferences and intention diverge from the data distribution on which
the model was trained. Aligning diffusion models with diverse user preferences is an ongoing and
critical area of research.

One approach to aligning diffusion models with user preferences is to fine-tune using reinforcement
learning (RL) to optimize the models based on rewards signals that reflect the user preferences (Black
et al., 2023; Fan et al., 2023). However, retraining the model every time when the preference changes
is computationally expensive and time-consuming.

An alternative approach is to guide the denoising process using a differentiable reward function. This
can be done through classifier guidance at inference time (Dhariwal & Nichol, 2021; Wallace et al.,
2023b; Bansal et al., 2024; Yoon et al., 2023) or backpropagation at training time (Prabhudesai et al.,
2024; Clark et al., 2024; Xu et al., 2023). These methods are generally less resource-demanding
and more efficient. While these methods are generally more efficient, they require the reward
function to be differentiable. This limits the types of reward sources that can be used, as it excludes
the non-differentiable sources like third-party Visual-Language Model (VLM) APIs and human
judgements.

To address these limitations, we propose Demon, a novel stochastic optimization approach for
preference optimization of diffusion models at inference time. Demon is a metaphor from Maxwell’s
Demon, an imaginary manipulator of natural thermodynamic processes. The core ideas are: (1)
Quality of noises that seed different possible backward steps in a discretized reverse-time Stochastic
Differential Equation (SDE) can be evaluated given a reward source; (2) Such evaluation enables
us to synthesize “optimal” noises that theoretically and empirically improve the final reward of the
generated image through stochastic optimization. Specifically, we leverage Probability Flow Ordinary
Differential Equation (PF-ODE) (Song et al., 2021) or Consistency Model (CM) (Song et al., 2023;
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Figure 1:Illustration of Demon. Given a reverse-time SDE for denoising and an interval[tmax; tmin],
we �rst discretize it intoT steps,tmax > � � � > t > t � � > � � � > t min . At every reverse-time
denoising step, fromt to t � � , we synthesize an “optimal” noisez� from K i.i.d. noises w.r.t a
given reward source and usez� to seed the step. This enables guiding the denoising process towards
generating images that are more aligned with the reward source and the preference that the reward
source represents. More details are presented in Section 4.

Luo et al., 2023) to help us ef�ciently evaluate the possible backward steps, seeded with different
Gaussian noises.

Our key contributions are summarized as follows:

• Our approach enables the use of reward signals in the denoising process regardless of
whether the reward function is differentiable. This allows for the incorporation of previously
inaccessible reward sources, such as VLM APIs. To the best of our knowledge, this is the
�rst inference-time, backpropagation-free preference alignment method.

• Our method can be easily integrated with existing diffusion models in a plug-and-play
fashion without retraining or �ne-tuning.

• We provide a theoretical explanation for why our approach can improve the given reward
function for image generation, which can be exploited for tuning hyperparameters.

• We demonstrate that our approach signi�cantly improves the average aesthetics
score (LAION, 2023) of Stable Diffusion models, achieving averages well above 8.0 com-
pared to the Best-of-N random sampling upper bounds of 6.5 for SD v1.4 and 7 for SDXL.
This improvement is achieved across various text-to-image generation tasks using prompts
from prior work (Black et al., 2023), without relying on backpropagation-based preference
alignment or model retraining.

2 RELATED WORK

Diffusion Model. Diffusion models for data generation were �rst proposed by Sohl-Dickstein et al.
(2015), further developed for high-�delity image generation by Ho et al. (2020), and generalized by
Song et al. (2021) through the lens of SDEs. Karras et al. (2022) comprehensively studied the design
space of Diffusion SDEs. In this work, we base many of the derivations on theirs. Furthermore, we
focus on evaluating our method in the text-to-image generation setting (Rombach et al., 2022; Ho &
Salimans, 2021; Podell et al., 2024)

Human Preference Alignment. Aligning models with human preferences has been studied with
several approaches:reinforcement learning-based policy optimization (Fan et al., 2023; Yang et al.,
2024; Black et al., 2023); training with reward backpropagation (Clark et al., 2024; Xu et al., 2023);
backpropagation through the reward model and the diffusion chain (Prabhudesai et al., 2024; Wallace
et al., 2023b; Bansal et al., 2024; Yoon et al., 2023). Many metrics and benchmarks for evaluating
alignment has also been proposed, including those by Xu et al. (2023); Kirstain et al. (2023); LAION
(2023); Wu et al. (2023), and we use these either as optimization objectives or evaluation of the
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generated image. In Table 1, we further provide detailed comparisons of the proposed Demon
approach with relevant existing methods in the literature from different aspects.

Table 1: A detailed comparison of different methods along various dimensions, including the ability
to generalize to an open vocabulary, the necessity of a backpropagation signal for optimization, the
method's capacity to avoid mode collapse and ensure distributional guarantees (Divergence Control).
Our proposed method stands out for its zero-shot learning capabilities.

Open Non-Backprop Divergence
Type Methods Vocab Objective Control

Training DPOK (Fan et al., 2023) � X X
Training DDPO (Black et al., 2023) � X �
Inference DOODL (Wallace et al., 2023b) X � �
Training DPO (Wallace et al., 2023a) X X X
Training DRaFT (Clark et al., 2024) X � �

Inference Demon X X X

3 PRELIMINARY

Score-Based Diffusion Model. We base our derivation on EDM (Karras et al., 2022). With a
sampling schedule� t = t, we can write the reverse-time SDE sampling towards the diffusion
marginal distribution as follows.

dx t =
�
� tr x t logp(x t ; t) � �t 2r x t logp(x t ; t)

�

| {z }
f � (x t ;t )

dt +
p

2�t
| {z }
g� ( t )

d! t ; (1)

wherep(x t ; t) = p(x0; 0) 
 N
�
0; t2I n

�
and
 denotes the convolution operation.x0 is a clean

sample,x0 � pdata , andx t is a noisy sample at timet. � expresses the relative rate at which existing
noise is injected with new noise. In EDM,� is a function oft, but in our study, we set� to a
constant for allt for simplicity. Essentially,f � (x ; t) corresponds to drift andg� (t) corresponds to
diffusion. As common in diffusion models, sincep(x t ; t) � N (0; t2I N ) for a large enought, we
samplex t max � N (0; t2

max I N ) as the initial sample.

A comprehensive list of the notations and conventions used in this paper is provided at Appendix A.

4 REWARD-GUIDED DENOISING WITH DEMONS

In this section, we describe how Demon works in two steps: Section 4.1 explains the process of
scoring Gaussian noises in reverse-time SDE with a reward function; Section 4.2 further explains
how the noise scoring allows us to guide the denoising process to align with the reward function,
which is what we refer to asDemon.

4.1 SCORING NOISES INREVERSE-TIME SDE

Let x0 be the clean image corresponds to ax t at time stept, say:

x0 = x t +
Z 0

t
f � (xu ; u) du + g� (u) d! u ; (2)

where Equation (2) is denoted asx0 j � x t ; shorthanded asx0 j x t : For an arbitrary reward functionr
e.g. aesthetics score, we de�ne the reward estimate ofx t at time stept as

r � (x t ; t) := Ex 0 j x t [r (x0)] : (3)

This can be estimated with a Monte Carlo estimator by averaging over the reward of several SDE
samples, but it requires many sample evaluations for high accuracy. To address this weakness, we
introduce an alternative estimator forr � (x t ; t) based on PF-ODE (Song et al., 2021).
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Figure 2: The illustration of the proximity between ther � andr � c. In this �gure, the� is nonzero
andr is near harmonic (i.e.,r 2r � 0:). The red points indicate i.i.d. SDE samples and the purple
ODE approximation ofx t . The green line indicates the expectation of the rewards of the SDE samples
(e.g., an approximate estimation,1

4

P 4
i =1 r (x ( i )

0 )).

As shown in Song et al. (2021); Karras et al. (2022), the reversed-time SDE reduces to PF-ODE when
� � 0: For eacht, a diffeomorphic relationship exists between a noisy samplex t and a clean sample
x0 generated by PF-ODE.

Similar to consistency models, withx0
t denoting an ODE trajectory instead ofx t , we can denote this

deterministic mapping from the domain ofx t to the domain ofx0 asc(x t ; t) as

c(x0
t ; t) := x0

0 = x0
t +

Z 0

t
dx0

u ; where dx0
u = � ur x 0

u
logp(x0

u ; u) du: (4)

Then, we can write(r � c)(x t ; t) = r (c(x t ; t)) as the reward of the generated clean sample. This
approximatesr � (x t ; t) using only one evaluated sample. In fact, we can characterize the difference
between the approximate reward using ODE(r � c)(x t ; t) and the exact reward estimate using SDE
r � (x t ; t) as in Lemma 1. The right hand side of Equation (5) shows that, as� ! 0, the approximation
becomes exact:lim � ! 0+ r � (x t ; t) = ( r � c)(x t ; t): Intuitively, this result aligns with SDEs reducing
to ODEs when� approaches zero in image domains (Song et al., 2021).

Lemma 1(Itô Integral Representation of Reward Proximity Error. Proof is in Appendix D.1). Let
the reward estimate function,h(x t ; t) = ( r � c)(x t ; t), be shorthanded ash. We have:

r � (x t ; t) � (r � c)(x t ; t) = Ex 0 j x t

� Z 0

t
r x u h � dJ � (xu ; u) � �u 2r 2h du

�
: (5)

wherex0 is sampled from Equation(2), r 2h is the Laplacian ofh and

dJ � (xu ; u) = � �u 2r x u logp(xu ; u) du +
p

2�u d! u ; (6)

As demonstrated in Appendix D.1, Lemma 1 implies that when the Laplacian of the reward function
is approximately zero (r 2r � 0), r � � r � c. We also illustrated the idea in Figure 2. For better
presentation, we conveniently abbreviater � (x t ; t) asr � (x t ), c(x t ; t) asc(x t ) and(r � c)(x t ; t) as
(r � c)(x t ) in this paper.

4.2 DEMONS FORREWARD-GUIDED DENOISING

In the section, we �rst outline the general pipeline of the proposed algorithm. Then, we introduce
two approaches,Tanh DemonandBoltzmann Demon, to synthesize optimal noises for guiding
reverse-time SDE solution; we show that the proposed methods optimize the �nal reward value with
theoretical guarantee, essentially achieving alignment.
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Algorithm 1 A Numerical Step with Demon

1: Input: x t , t, � , K
2: Output: x̂ t � �
3: for k = 1 to K do
4: Drawz(k ) � N (0; I n )
5: x̂ (k )

t � �  heun(x̂ t ; z(k ) ; t; �)

6: Rk  (r � c)( x̂ (k )
t � � ) {implementingr � (x̂ (k )

t � � )}
7: end for
8: [bk ]  Demon([Rk ])

9: z�  
p

N normalized
� P K

k=1 bk z(k )
�

10: x̂ t � �  heun(x̂ t ; z� ; t; �)
11: Return x̂ t � �

Following Karras et al. (2022), an SDE numerical evaluation ofx̂ t � � sampled fromx t can be seeded
by noisez via a step of Heun's2nd order method (Ascher & Petzold, 1998) as follows:

z � N (0; I n ) (7)
x̂ t � � = heun(x t ; z; t; �) (8)

:= x t �
1
2

[f � (x t ; t) + f � (~x t � � ; t � �)] � +
1
2

[g� (t) + g� (t � �)] z
p

� ; (9)

wherez is a Gaussian noise, andheun is the stochastic backward step fromx t to x̂ t � � . The
intermediate approximation~x t � � is given by~x t � � := x t � f � (x t ; t)� + g� (t)z

p
� . While we use

Heun's method here, other solvers can work too.

For image generation, Gaussian noisez is usually high-dimensional. For a high-dimensionalz, we can
assume that it's likely on a

p
N sphere (Lemma 5, Appendix). This allows us to weighted-combine

various noises into a new noisez� :

z� =
p

N normalized

 
KX

k=1

bk z(k )

!

; (10)

wherez(k ) are i.i.d. unit Gaussian noises, andbk are the search space. We outline the pseudocode of
a numerical step with our proposed method in Algorithm 1. In the following, we describe the details
of the proposedTanh Demonand theBoltzmann Demonto determine the weightsbk .

Tanh Demon. Intuitively, we may considerup-weighting the good noises that improve the reward
anddown-weighting the bad noises that harm the reward, compared to the average reward�̂ . As
shown in Figure 3, Tanh Demon assigns positive weights to the good noises and negative weights
to the bad noises with thetanh function, based on the reward estimates of the noises (Equation (5))
relative to the averagê� of (r � c)( x̂ (k )

t � � ):

z� =
p

N normalized

 
KX

k=1

btanh
k z(k )

!

; where btanh
k  tanh

 
(r � c)( x̂ (k )

t � � ) � �̂

�

!

; (11)

where� is the temperature parameter totanh, which can be adaptively tuned (as shown in Table 8).
The averagê� is computed1

K

P K
k=1 (r � c)( x̂ (k )

t � � ):

Under the assumption of our reward estimate proximityr � � r � c, the Tanh Demon method is
guaranteed to improve the �nal results, formalized in the following lemma:
Lemma 2(Improvement Guarantee of Tanh Demon. Proof in Appendix D.3). Assume the truncation
error terms in Equation(36) are negligible andr � � r � c. Letz� be derived from Equation(11).
With probability1, r (x̂ tanh

0 ) > r � (x t ); wherex̂ tanh
0 is derived by applyingz� on every step.
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(a) Before (b) After (c) Final

Figure 3: An illustration of the Tanh Demon sampling method whereK = 4 . (a) A SDE step
generates several samples, each determined by sampled noisezk . We use Tanh Demon to classify
each noise sample as “low-reward” or “high-reward” w.r.tr � (x t ) based on their respective reward
estimates. (b) We penalize low-reward noise withtanh to multiply a negative weight which is
equivalent to �ipping the noise, (c) It shows how the post-processed noises are averaged and projected
onto the high-dimensional sphere, resulting in a feasible noise representationz� with high-reward
estimate.

Boltzmann Demon. Another intuitive approach, equivalent to the single-step cross entropy ap-
proach (De Boer et al., 2005), is to estimate the candidate withmaximum reward. We propose the
Boltzmann Demon, which assigns noise weights as follows:

bboltz
k  

exp
�

r � c(x̂ (k )
t � � )=�

�

P K
k=1 exp

�
r � c(x̂ (k )

t � � )=�
� ; (12)

where the Boltzmann distribution (i.e.,softmax function) approximatesthe behavior of the maxi-
mum function as the temperature� approaches to zero. The theoretical guarantee of improvement
in r � in expectation is provided in Lemma 3, assumingr � � r � c: Although empirically, we �nd
that Tanh Demon outperforms Boltzmann Demon, adjusting� in Boltzmann Demon provides control
over deviation from the original SDE distribution, as demonstrated in Lemma 4 (Appendix).

4.3 COMPUTATIONAL CONSIDERATIONS

Let's �rst consider a Demon sampling trajectoryx t 1 > x t 2 > � � � > x t T � 0 for a �xed number
T. Each Demon's trajectory requiresO(K � T) evaluations ofc, and each evaluation comes with
one reward estimation. The compute time is mainly in�uenced by the implementation ofr � c. We
discuss two aspects ofr � c—the temporal cost and the �delity—which are vital to the algorithm's
time complexity and reward performance, respectively.

Note that Tanh or Boltzmann Demon itself does not strictly specify the implementation ofr � c;
our default option uses Heun's ODE solver, but using a Consistency Model (CM) distilled from the
original diffusion model signi�cantly accelerates computation. An alternative, which we refer as
Tanh-C, is to combine our Tanh Demon algorithm with an off-the-shelf CM to implementr � c. While
using Tanh-C may slightly degrade the results due to the �delity loss from using a CM (see Table 2),
this approach is particularly effective when faster results are required since the computation ofc is
much quicker. For a largerT, however, the default Tanh Demon using Heun's method outperforms
Tanh-C in terms of reward performance.

As shown in Table 10, using the text-to-image generation task settings from Black et al. (2023), the
Demon algorithm achieves an aesthetics score of6:72� 0:26on SD v1.4, requiring 5 minutes (i.e.,
K = 16; T = 16) on an NVIDIA RTX 3090 GPU. Within the same 5-minute computation window,
the Tanh-C variant achieves an improved score of7:27 � 0:33 (i.e., K = 16; T = 64). Notably,
the upper bound for randomly sampled SD v1.4 is approximately 6.5, obtained after more than 10
minutes and 800 reward function queries. See Appendix B for parameter guidelines and settings.
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(a) Performance w.r.t Reward Query Number (b) Performance w.r.t Execution Time

Figure 4: Performance comparison of the proposed algorithm and other baseline methods in terms of
the number of reward queries and execution time; the dependent variable isT, which is suggested to
be larger for SDE solver to reduce truncation error. Although DOODL can achieve similar results to
ours, it relies on reward backpropagation, whereas our backpropagation-free methods do not require
this. The shaded areas and the radii of solid circles represent the standard deviation of the evaluation
results.

5 EXPERIMENTS

In this section, we present both quantitative and qualitative evaluations of our methods. Due to the
page limit, we include the details of the implementation and experimental settings in Appendix I and
the subjective results in Appendix G.2.

Baseline Comparison. For the performance comparisons between our method and other baselines,
we use the LAION (2023) aesthetics scores (Aes) as the evaluation metric, and the scores are evaluated
on a set of various prompts for generating animal images, which were from the full set of 45 common
animals in ImageNet-1K (Deng et al., 2009), created by Black et al. (2023). We use 20-step Heun's
ODE for reward estimate for our methods and Best-of-N (SD v1.5).

In terms of reward queries, Tanh/Tanh-C outperforms other baseline methods in most cases, including
our Boltzmann method and Best-of-N. Our methods are even comparable to the backpropagation-
based DOODL (Wallace et al., 2023b), the state-of-the-art method optimized over the reward function.
In terms of execution time, Tanh/Tanh-C consistently outperforms DOODL due to the exclusion
of backpropagation; Tanh-C further bene�ts from its effective computational cost, given limited
time. Moreover, our method's backpropagation-free nature makes it more resistant to reward hacking
(Table 3). For further comparison on PickScore (Kirstain et al., 2023), please refer to Appendix E.1.

Comparison of Reward Estimation Approaches. Figure 4 demonstrates a comparison of the
proposed methods with differentr � c implementations, including 20-step Heun's ODE (Tanh) and
1-step CM (Tanh-C).Tanh, which uses a 20-step ODE for accurate(r � c), consistently outperforms
the Best-of-N baseline given an equivalent number of reward queries.Tanh-C, which employs a
1-step CM for fast reward evaluation, outperforms Tanh when considering limited execution time.
These observations suggest that the quality ofr � c indeed plays a signi�cant role in the effectiveness
of our method.

To further validate the importance ofr � c, we conduct a comparative analysis based on Lemma 1
(r � c � r � ). In this analysis, we evaluate the accuracy and computational cost across three methods:
20-step Heun's ODE, 4-step Heun's ODE, and 1-step CM; both diffusion and consistency models
are based on the SD v1.5 and distilled by Luo et al. (2023). Experiments were performed with
t = 0 :5; 3:0; 1:0; 7:0; 14:0 ranging from 0.002 to 14.648. Accuracy was quanti�ed using the standard
of r � (x t ) � (r � c)(x t ). Here,x t is sampled fromN (0; t2

max I n ) and integrated fromtmax to t using
a 200-step diffusion model ODE, performed on the full set of Black et al. (2023).

The results, presented in Table 2, support that the quality ofr � c in�uences both the algorithm's
speed and reward performance. For the ODE methods, the trend follows our expectation: Ast
approaches0, the standard deviation decreases, which can be attributed to the diminishing noise
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Table 2: Comparison of accuracy and time cost across differentr � c implementations using the full
set of animal prompts Black et al. (2023).

Implementation Time (s) Standard Deviation of r � � r � c

t = 0 :5 t = 1 :0 t = 3 :0 t = 7 :0 t = 14 :0

20-step ODE 1.94 8:1 � 10 � 2 1:53 � 10 � 1 3:02 � 10 � 1 3:25 � 10 � 1 3:97 � 10 � 1

4-step ODE 0.41 8:3 � 10� 2 1:82 � 10� 1 3:39 � 10� 1 3:52 � 10� 1 4:15 � 10� 1

1-step Consistency 0.18 1:71 � 10� 1 2:64 � 10� 1 4:03 � 10� 1 3:85 � 10� 1 4:85 � 10� 1

as the posteriorp(x t j x0) becomes more sharply peaked; the number of ODE steps is crucial to
the quality of the generated outputs; more steps generally lead to higher �delity results, although
this comes at the cost of increased computational time; using 1-step CM leads to inferior results
compared to using ODE, supposedly as the distillation gap and the limited model capacity result in
lower-�delity reconstructions.

Table 3: Results using various reward functions and different generation methods. Each column
represents a speci�c reward objective, with the best performance highlighted in bold.

Generation method Aes" IR " Pick " HPSv2" Time

SD v1.4 5.34� 0.56 -0.00� 0.95 0.202� 0.008 0.216� 0.036 5 s
DPO 5.36� 0.72 0.03� 0.84 0.203� 0.007 0.229� 0.027 5 s
Uni (CLIP-guided) 4.11� 0.74 -1.81� 0.50 0.191� 0.014 0.173� 0.022 55 min

Tanh + Aes 7.35� 0.40 -0.03� 1.24 0.211� 0.010 0.257� 0.041

18 min
Tanh + IR 5.96� 0.28 1.95� 0.07 0.216� 0.012 0.286� 0.033
Tanh + Pick 6.14� 0.48 1.39� 0.57 0.245� 0.010 0.312� 0.033
Tanh + HPSv2 5.98� 0.45 1.51� 0.63 0.228� 0.011 0.367� 0.027
Tanh + Ensemble 6.53� 0.50 1.81� 0.15 0.236� 0.014 0.356� 0.030

Best-of-N 6.32� 0.34 1.69� 0.18 0.218� 0.009 0.291� 0.015 18 min
DOODL + Aes 5.59� 0.29 -0.68� 1.06 0.197� 0.008 0.221� 0.028 18 min
DOODL + Pick 5.21� 0.46 -0.12� 0.84 0.204� 0.010 0.220� 0.035 1.1 hr

Table 4: Using Tanh Demons with various reward functions. The baseline, Stable Diffusion v1.4,
refers to the standard model without our proposed enhancements.

Baseline Best-of-N Uni DOODL Aes Ensemble DPO

A demon exiting through a portal

A painting of a girl encountering a giant sun�ower blocking her path in a hallway

Image Generation with Various Reward Functions. While our method optimizes a given reward
function, as shown in Figure 4, we also present qualitative results in Table 4 and cross-validation
results in Table 3. These results demonstrate perceptual preferences by averaging rewards derived
from prompts provided in Tables 12 and 15.

We employ our Tanh Demon with various reward functions, such as Aes (LAION, 2023), ImageRe-
ward (IR)(Xu et al., 2023), PickScore (Pick)(Kirstain et al., 2023), HPSv2 (Wu et al., 2023), and a
scaled sum (Ensemble) of Aes, IR, Pick, and HPSv2. For comparison, we include the best reward
during sampling under the same time condition (best-of-N) and DOODL (Wallace et al., 2023b),
which is optimized on Aes and Pick to modify results generated by PF-ODE using their recommended
settings. For reference, we also provide the performance of a training-based method, DPO Wallace
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et al. (2023a), and a backpropagation-based method, Universal Guidance (Uni) by Bansal et al.
(2024), guided by the CLIP condition.

Starting from the baseline SDv1.4 under similar computational conditions, Tanh exhibits improvement
across the four metrics, demonstrating robustness even when acknowledging slight over-optimization
of the objective—in contrast to DOODL. By comparing best-of-N and Tanh with the Ensemble reward,
our method achieves superior performance oneachobjective using the Ensemble, demonstrating
not only the ability to integrate a mixture of rewards but also generating asuperior samplesthat
outperforms all individual best samples selected by best-of-N methods.

Alignment with preferences of VLMs (Non-differentiable). In Table 5, we present qualitative
results of aligning diffusion models SDXL to preferences of VLMs from API, as a demonstration of
using non-differentiable reward sources. In this experiment, we use Google Gemini Pro v1.0 (Gemini
Team Google, 2024) and GPT4 Turbo (OpenAI, 2024). In each step, the VLM receives a �xed
prompt, e.g. “You are a journalist who wants to add a visual teaser for your article to grab attention
on social media or your news website”, and is asked to select the best-matching intermediate sample
from generated images. VLMs are presented withc(x t ) andc(x̂ (k )

t � � ) produced by PF-ODE. The

rewardbVLM
k is 0:5 if the VLM selectsc(x̂ (k )

t � � ) and� 0:5 otherwise. We also use PickScore (Kirstain
et al., 2023) to evaluate the results and �nd that 14 out of 16 images generated with VLMs show
improvements compared to directly generating with PF-ODE.

Table 5: Using VLMs to generate images. PF-ODE (baseline) refers to a baseline without using our
method for alignment. Columns 3-6 indicate the role that the agent plays in the given prompt.

Model Baseline Teacher Artist Researcher Journalist

Gem
ini

-S
D

v1
.4

Gem
ini

-S
DXL

GPT-
SD

v1
.4

GPT-
SDXL

Manual Selection. We also explore using online interactive human judgements to guide diffusion.
That means, the users themselves would be (non-differentiable) reward functions. We let users directly
interact with our method to generate desired images. Figure 5a shows an example interface created
by us for an image resembling a given reference cat image. At each iterative step fromt to t � � , we
sample 16 i.i.d. copies ofx t � � and computec(x t � � ) with PF-ODE. The user then manually select
their preferred image, assigning a reward of+1 to it and� 1 to the others. We continue this process
until there is no obvious preferred ones among the generated images. As shown in Figure 5b, the
image generated by our method more closely matches the target than the one produced by PF-ODE.
We also measure the improvement with DINOv2 (Oquab et al., 2023) embedding cosine similarity
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(a) Our user interface for interacting with our
algorithm (0.594 cosine similarity).

(b) (Top Left) Image generated by PF-ODE (0.622 cosine
similarity). (Bottom Left) Image generated by our method
(0.708 cosine similarity). (Right) Reference image.

Figure 5: We design an application for manual interaction with our algorithm. Our author selects
the images, and the criteria are based on the author's preference (non-preferred images are kept
unselected), where the author tries to align the reference image. We evaluate performance by
measuring the cosine similarity of DINOv2 features between the targeted and reference images.

between the reference image and the generated image, and observe that the similarity improves from
0:594to 0:708through online user interactions.

6 CONCLUSION

This work addresses the challenge of better aligning pre-trained diffusion models without training
or backpropagation. We �rst demonstrate how to estimate noisy samples' rewards based on clean
samples using PF-ODE. Additionally, we introduce a novel inference-time sampling method, based
on stochastic optimization, to guide the denoising process with any reward sources, including non-
differentiable reward sources that includes VLMs and interactive human judgements. Theoretical
analysis and extensive experimental results validate the effectiveness of our proposed method for
improved image generation without requiring additional training. Through comprehensive empirical
and theoretical analysis, we observe that the quality and ef�ciency of reward estimationr � c are
essential for our algorithm, especially in balancing computational speed and reward performance.
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A NOTATIONS AND CONVENTIONS

Although we keep the main paper self-consistent, we provide this section to establish a consistent
notation and convention for this paper as an aid.

A.1 NOTATIONS

Table 6: Notations

Notation Description

N State dimension
K Noise sample number
tmin ; tmax Upper bound and Lower bound of the noise level in numerical integration
T Number of time steps to solve SDE/ODE
� Noise parameter
x State variable
z Noise from Gaussian
� Time step
bk Unnormalized weight of noise
f � SDE policy drift
g� SDE policy diffusion coef�cient
f0 PF-ODE policy drift
J � Langevin diffusion SDE
! t reversed time Brownian motion
r Reward
r � Reward estimates of SDE policy
c Function to get expected ODE result
heun Heuns's method, SDE solver for Karras SDE

A.2 CONVENTIONS

Table 7: Conventions

Convention Details

r � c ODE reward estimate approximation,r (c(x t ; t)) = ( r � c)(x t ; t)
f � g For all x of our interest,f (x) = g(x)
x̂ Numerical approximation with SDE solver
~x Intermediate value of Heun's method
x0 An ODE trajectory
~z Uniformly sampled from the sphere of radius

p
N

z� Optimal noise generated by our algorithm
�̂ Mean of next state ODE reward estimates,1

K

P K
k=1 (r � c)( x̂ (k )

t � � )
r (x t ) Shorthand forr (x t ; t) when the context is clear
c(x t ) Shorthand forc(x t ; t) when the context is clear
(r � c)(x t ) Shorthand for(r � c)(x t ; t) when the context is clear
x0 j x t Shorthand forx0 j � x t ; wherex0 = x t +

R0
t f � (xu ; u) du + g� (u) d! u

~! t Standard Brownian motion

Instead of ODE, we sometimes use PF-ODE to highlight Song et al. (2021)'s contribution or when
the context is unclear. They are equivalent in this paper.
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B GUIDELINE ON PARAMETER SETTING

We explore the optimal setting for parameter� with respect to the Boltzmann Demon and the Tanh
Demon. For the Tanh Demon, the most effective� is neither1 nor0. We recommend setting� to
the standard deviation of the estimationsf (r � c)(x (k )

t � � )gK
k=1 , rendering it an adaptive parameter

that is robust to scaling. For the Boltzmann Demon, optimal performance is achieved by setting� to
0, as demonstrated in Table 8.

Table 8: Comparison of performance for different settings of� in the setting of Figure 4.

� = 1 � = 0 :01 Adaptive�

Tanh 7:40� 0:30 7:24� 0:31 7:45 � 0:33
Boltzmann 6:30� 0:35 7:28 � 0:30 6:85� 0:37

We also conduct an ablation study on the remaining parametersK and� . The base con�guration
is K = 16; � = 0 :1, with an adaptive temperature� for the Tanh Demon. We setT = 32 for the
ablation study of� andT = 64 for K .

Figure 6: Comparison of our algorithm with respect toK and�

We found a large� makes the sampling unstable, given the number of stepsT is �xed. Predictably,
sampling with a� close to0 is reduced to ODE. From our theoretical result Lemma 1, the design
methodology, and empirical results, the guidelines Table 9 can assist users in setting parameters. We
provide a sparse parameter search in Table 10.

Parameter Description

K Controls the noise distribution bias, positively affecting �nal quality and
linearly increasing computational time.

�
Adjusts the distribution's proximity to the original PF-ODE. Set em-
pirically based onr 's characteristics. Lemma 1 suggests smaller� for
reward functions with Laplacian deviations.

T Inherit the properties of time stepsT from diffusion models, scaling
computational time linearly. Karras's EDM recommendsT > 17.

� Recommended values vary for Boltzmann and Tanh Demons, as detailed
in Table 8.

r � c Accurate reward estimates are critical for ensuring high �nal quality.

Table 9: Guidelines for Setting Hyperparameters
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Table 10: This table presents the experimental con�gurations used to measure aesthetics score under
various animal prompts, presenting a sparse search of parameters. The time column represents the
duration required to generate each image. We alias adaptive temperature as Adaptive.

Demon Checkpoint � K T � Aes Time(min)

Boltzmann

SD v1.4 0.1 16 64 Adaptive 6.408� 0.36 17.6

1e-10 7.111� 0.32 16.6

SDXL
0.05 16 32

Adaptive 6.853� 0.37 45.8

1e-02 7.276� 0.30 45.4

1 6.300� 0.35 46.1

0.1 16 64 Adaptive 6.990� 0.38 94.2

1e-10 7.501� 0.31 93.1

Tanh

SD v1.4
0.05 16

16 Adaptive 6.723� 0.26 5.0

32 Adaptive 7.073� 0.22 9.7

64 Adaptive 7.394� 0.29 18.7

0.1 16 64 Adaptive 7.549� 0.43 18.7

64 64 Adaptive 8.566� 0.33 79.1

Diffusion-DPO 0.1 16 64 Adaptive 7.564� 0.34 94.5

SDXL

0.01 16 16 Adaptive 6.876� 0.40 22.0

0.05 16

16 Adaptive 6.866� 0.35 21.9

32
Adaptive 7.459� 0.33 46.0

1e-02 7.244� 0.31 46.0

1 7.398� 0.30 46.2

0.1
8 64 Adaptive 7.446� 0.37 47.0

16 64 Adaptive 7.841� 0.32 94.4

32 64 Adaptive 8.179� 0.35 188.8

0.5 16 32 Adaptive 6.370� 0.35 46.0

Tanh-C SD v1.4
0.5 16 64 Adaptive 7.269� 0.33 5.0

0.1 16 64 Adaptive 6.710� 0.34 5.0

SDXL 0.5 16 64 Adaptive 7.301� 0.24 17.9
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C PSEUDOCODES

As an aid, we provide pseudocodes for the design of Demons Algorithm 2, Algorithm 3:

Algorithm 2 Tanh Demon with Adaptive Temperature

1: Input: A list of ODE reward estimate[Rk ]
2: Output: Noise Weights[bk ]
3: K  length([Rk ])
4: �̂  1

K

P K
k=1 Rk

5: �  
q

1
K

P K
k=1 (Rk � �̂ )2

6: for k = 1 to K do
7: bk  tanh

�
R k � �̂

�

�

8: end for
9: Return [bk ]

Algorithm 3 Boltzmann Demon with Fixed Temperature�

1: Input: A list of ODE reward estimate[Rk ]
2: Output: Noise Weights[bk ]
3: K  length([Rk ])
4: Z  1

K

P K
k=1 exp

� R k
�

�

5: for k = 1 to K do
6: bk  1

Z exp
� R k

�

�

7: end for
8: Return [bk ]
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D MATHEMATICS

D.1 ERRORCOMPREHENSION FORREWARD ESTIMATE APPROXIMATION

In this section, we present the theoretical analysis and proof to better understand the error in our
reward estimate approximation.

D.1.1 ERRORTERM AS AN ITÔ INTEGRAL

Lemma 1. Let the reward estimate function,h(x t ; t) = ( r � c)(x t ; t), be shorthanded ash. We have:

r � (x t ; t) � (r � c)(x t ; t) = Ex 0 j x t

� Z 0

t
r x u h � dJ � (xu ; u) � �u 2r 2h du

�
: (13)

wherex0 is sampled from Equation(2), r 2h is the Laplacian ofh and

dJ � (xu ; u) = � �u 2r x u logp(xu ; u) du +
p

2�u d! u ; (14)

Proof. We aim to prove:

r (x0) � (r � c)(x t ; t) =
Z 0

t
r x u h � dJ � (xu ; u) � �u 2r 2h du; (15)

Recall that

x0 = x t +
Z 0

t
f � (xu ; u) du + g� (u) d! u ; (16)

c (x0
t ; t) = x0

t +
Z 0

t
f0(x0

u ; u) du: (17)

For an ODE trajectoryx0(t), notice that:

0 =
d
dt

h(x0
t ; t) =

@h
@t

+ r x h �
dx0

dt
=

@h
@t

+ r x h � f0: (18)

We can write:

r (x0) � (r � c)(x t ; t) = h(x0; 0) � h(x t ; t) =
Z 0

t
dh; (19)

wherex t , which is not an ODE trajectory (noted byx0
t ), follows the SDE trajectory. Using Itô's

lemma Ito et al. (1951), we �nd:

dh =
�

@h
@t

+ r x h � f � �
1
2

� g2
� r 2h

�
dt + g� r x h � d! t (20)

=
�

@h
@t

+ r x h � f � �
�

@h
@t

+ r x h � f0

�
�

1
2

g2
� r 2h

�
dt + g� r x h � d! t (21)

=
�

r x h � (f � � f0) �
1
2

g2
� r 2h

�
dt + g� r x h � d! t (22)

= r x h �
�

� �t 2r x t logp(x t ; t) dt +
p

2�t d! t

�
� �t 2r 2h dt: (23)

The sign of the Itô correction term is �ipped due to reverse time Brownian Motion-—and the other is
followed by expansion. We thus derived Equation (15).
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D.1.2 DISCUSSION

We interpret the error terms of the reward estimates approximation as follows:

• The estimate becomes more accurate as� decreases, satisfying the intuition that SDE
trajectories will reduce to the ODE trajectory as� ! 0.

• If r x u h ? r x u logp(xu ; u), the termr x u h � dJ � (xu ; u) cancels out in expectation.

• If r 2h � 0 and the previous condition holds, thenr � c � r � .

For estimation purposes, we make the following assumptions to facilitate understanding and derivation
of Equation (5):

r x t logp(x t ; t) � �
x t

t2 (24)

c(x t ; t) � Ct x t (25)
r x r ? x (26)

whereCt is a time-dependent constant andr is scale-invariant.

• Equation (24) is derived from the assumption thatp(x t ) � N (0; t2I ).

• Equation (25) stems from image preprocessing algorithms, such as those used in Stable
Diffusion, which normalize the image distribution. This normalization implies that images
in the dataset are often scaled to lie on a sphere. Therefore, we can reasonably assume that a
randomly generatedx t is close to an image in the dataset in direction.

• Equation (26) is based on the intuition that minor changes in brightness do not signi�cantly
affect the semantic interpretation of an image. Besides, many training algorithms incorporate
scaling as part of data augmentation, which aligns with the assumption that the gradient of
r x r is orthogonal tox.

Under these assumptions, we obtain:

dh = r x h �
�

� �t 2r x t logp(x t ; t) dt +
p

2�t d! t

�
� �t 2r 2h dt (27)

� Ct r x r �
�

� � x t dt +
p

2�t d! t

�
� �t 2r 2h dt (28)

�
p

2�tC t r x r � d! t � �t 2C2
t r 2r dt (29)

If r is harmonic, i.e.,r 2r � 0, thendh becomes a martingale (Billingsley, 2017) and:

r � (x t ; t) � (r � c)(x t ; t) � Ex 0 j x t

� Z 0

t

p
2�tC t r x r � d! t

�
= 0 : (30)

The mean value property, an equivalent statement of a harmonic function, states that the value of
a harmonic function at any point is the average of its values on any sphere centered at that point.
This property provides an intuitive explanation of our method: ifr is harmonic, the reward of the
ODE-generated image is the mean value of the reward of SDE-generated ones, while empirically, we
observe that the ODE generation resembles the SDE variants.

D.1.3 ILLUSTRATION OF M ISMATCH

For better understanding, we provide an example thatr � is far fromr � c. We adopt assumptions
in Appendix D.1.2 to illustrate the intuition, and supposex t is a noisy sample at timet such
that c(x t ) is a sharp local maxima ofr , wherer 2r � 0 nearc(x t ). Further, suppose that� is
small enough such that the generatedx0 is nearc(x t ). In this case,r � (x t ) � (r � c)(x t ) < 0 as
r � (x t ) = Ex 0 j x t [r (x0)] < (r � c)(x t ) by intuition.

We can also verifyr � (x t ) � (r � c)(x t ) < 0 using Equation (15). Under the assumptions in
Appendix D.1.2, we can write:
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r � (x t ) � (r � c)(x t ) � Ex 0 j x t

� Z 0

t

p
2�tC t r x r � d! t � �u 2r 2h du

�
(31)

= Ex 0 j x t

� Z 0

t
� �u 2C2

t r 2r du
�

(32)

< 0: (33)

Note that the value ofr 2r is taken atc(x t ), �uctuating with SDE.

D.2 MARTINGALE PROPERTY OFREWARD ESTIMATES.

A martingale is a sequence of random variables that maintains a certain property over time Billingsley
(2017): the expected future value, given all past values, is equal to the current value; for a �xed SDE,
the current reward estimate is the expected value of the reward estimates at the next time step:

Fact 1. For any time step� < 0 such thatt > t � � > 0:

r � (x t ) = Ex t � � j x t [r � (x t � � )] : (34)

Intuitively speaking, this idea stems from the principles of conditional probability, which tell us
that our current prediction of the �nal score should be the same as the average of all possible future
predictions.

Proof. This result follows directly from the foundational de�nition of expectation. For variable
r � (x t ), we have:

r � (x t ) = Ex 0 j x t [r (x0)] = Ex t � � j x t

�
Ex 0 j x t � � [r (x0)]

�
= Ex t � � j x t [r � (x t � � )] : (35)

D.3 TANH DEMON

We provide the theoretical idea behind the development of the algorithm. To start with, there
exists a linear relationship between the reward estimate increment fromx t to x̂ (k )

t � � and the injected
noisez(k ) , which can be derived from Itô's lemma Ito et al. (1951) and Kolmogorov backward
equations Kolmogoroff (1931), as follows:

r � (x̂ (k )
t � � ) � r � (x t ) = g(t)r x t r � � z(k )

p
�+ o(�) ; where x̂ (k )

t � � = heun(x t ; z(k ) ; t; �) ; (36)

which can be interpreted from an SDE with the following Lemma.

Claim 1. Let r � (x t ; t) = Ex 0 j x t [r (x0)] be the expected future reward at time0, given the current
statex t at timet. Then, under the SDE:

dx t = f � dt + g� d! t ; (37)

the differential ofr � is:
dr � = g� r x t r � � d! t : (38)

Proof. We begin by introducing a change of variables. Lets = tmax � t , so that ast decreases from
tmax to 0, s increases from0 to tmax. This allows us to consider a forward-time process with standard
Brownian motion~! s.

Given the original SDE, we can write:

dx s = � f � ds + g� d~! s; (39)

where~! s is the standard Brownian motion.
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Now, applying Itô's lemma tor � (x s; s):

dr � =
�

@r�
@s

� f � � r x s r � +
1
2

g2
� r 2r �

�
ds + g� r x s r � � d~! s: (40)

We aim to prove the Kolmogorov backward equation:

@r�
@s

� f � � r x s r � +
1
2

g2
� r 2r � = 0 : (41)

To do so, we integrate Itô's lemma froms to tmax:

r � (x t max) � r � (x s) =
Z t max

s
dr � (42)

=
Z t max

s

�
@r�
@s0

� f � � r x s 0r � +
1
2

g2
� r 2r �

�
ds0

+
Z t max

s
g� r x s 0r � � d~! s0: (43)

Sincer � (x t max) is a martingale, by taking the expectation (conditioned onx s) on both sides, we
obtain:

0 = Ex t maxj x s [r � (x t max) � r � (x s)] (44)

= Ex t maxj x s

� Z t max

s

�
@r�
@s0

� f � � r x s 0r � +
1
2

g2
� r 2r �

�
ds0

�

+ Ex t maxj x s

� Z t max

s
g� r x s 0r � � d~! s0

�
: (45)

The expectation of the stochastic integral is zero, as Itô integrals have a mean of zero:

Ex t maxj x s

� Z t max

s
g� r x s 0r � � d~! s0

�
= 0 : (46)

Thus, we are left with:

Ex t maxj x s

� Z t max

s

�
@r�
@s0

� f � � r x s 0r � +
1
2

g2
� r 2r �

�
ds0

�
= 0 : (47)

Since the expectation is zero for any interval[s; tmax], the integrand itself must be zero:

@r�
@s

� f � � r x s r � +
1
2

g2
� r 2r � = 0 : (48)

Thus, the differential ofr � is given by:

dr � = g� r x s r � � d~! s; (49)

Returning to the original time variablet, we substitutes = tmax � t yielding:

dr � = g� r x t r � � d! t ; (50)

completing the proof.

Althoughg� r x t r � is inaccessible without distillation and thus an intractable static vector, we can still
leverage the linear relationship to derive applications. Using our standard approach of interpreting
r � c asr � and recognizing thatr � (x t � � ) is an unbiased estimator ofr � (x t ) (from Appendix D.2),
we practically interpret Equation (36) as:
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(r � c)( x̂ (k )
t � � ) � �̂ � g� (t)r x t r � � z(k )

p
� ; where �̂ =

1
K

KX

k=1

(r � c)( x̂ (k )
t � � ): (51)

From Equation (36), �ipping the sign ofz(k ) reverses its contribution tor � . Therefore, based on the
observation(r � c)( x̂ (k )

t � � ) � �̂ , we �ip z(k ) accordingly. We show the theoretical analysis and proof
for the error of the reward estimate of our Tanh Demon in the following.

Lemma 2. Assume the truncation error terms in Equation(36) are negligible andr � � r � c. Letz�

be derived from Equation(11). With probability1, r (x̂ tanh
0 ) > r � (x t ); wherex̂ tanh

0 is derived by
applyingz� on every step.

Let ` = g� r x t r � . Recall that we assume

r � (x̂ (k )
t � � ) � r � (x t ) = ` � z(k )

p
� (52)

r � (x̂ tanh
t � � ) � r � (x t ) = ` � z�

p
� (53)

x̂ (k )
t � � = heun(x t ; z(k ) ; t; �) (54)

x̂ tanh
t � � = heun(x t ; z� ; t; �) (55)

z� =
p

N normalized

 
KX

i =1

btanh
k z(k )

!

(56)

btanh
k = tanh

 
r � (x̂ (k )

t � � ) � r � (x t )

�

!

: (57)

We aim to prove the suf�cient condition:r � (x̂ tanh
t � � ) > r � (x t ) for each numerical step. Under a

rotation of basis, without loss of generality, we assume` only has value in the �rst component, i.e.,
` = ( `1; 0; : : : ; 0) and`1 > 0. We have:

r � (x̂ tanh
t � � ) > r � (x t ) () `1z�

1

p
� > 0 (58)

Claim 2. With probability1, the �rst componentz�
1 of z� is positive.

Proof. Since

btanh
k = tanh

 
r � (x̂ (k )

t � � ) � r � (x t )

�

!

(59)

= tanh

 
` � z(k )

p
�

�

!

(60)

= tanh

 
`1z(k )

1

p
�

�

!

; (61)

wherez(k )
1 is the �rst component ofz(k ) .

Almost surely,z(k )
1 6= 0 , sobtanh

k will have the same sign asz(k )
1 . This impliesbtanh

k z(k )
1 > 0:

Since the �rst component ofz� will have the same sign as the �rst component of
P K

k=1 btanh
k z(k ) i.e.

P K
k=1 btanh

k z(k )
1 > 0: We conclude thatz�

1 > 0:

In addition, we provide proof of the linear relationship presented in Equation (36).
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D.4 BOLTZMANN DEMON

Recall that

x t � � := x t +
Z t � �

t
f � (xu ; u) du + g� (u) d! u (62)

~x t � � := x t � f � (x t ; t)� + g� (t)z
p

� (63)

x̂ t � � := x t �
1
2

[f � (x t ; t) + f � (~x t � � ; t � �)] � +
1
2

[g� (t) + g� (t � �)] z
p

� (64)

We �rst present the theoretical analysis and proof for the reward estimate error of the proposed
Boltzmann Demon as follows.
Lemma 3. Assumet is bounded bytmax andr � is L -Lipschitz. Givenx t , if the truncation error per
Heun's SDE step in Equation(64) is x t � � = x̂ t � � + o(�) as� ! 0+ , then we have:

E
�
r (x̂ boltz

0 )
�

� r � (x t ) � o(L � tmax ); (65)
where the expectation denotes that each step of the numerical approximation from everyt to t + � is
taken with the maximum value ofr � (�) among i.i.d. SDE sampleŝx (k )

t +� , representing the Boltzmann
Demon with� = 0 .

Lemma 3 establishes a lower bound based on the sample maximum and reward estimate accuracy,
providing an improvement guarantee of expected reward in expectation.

We �rst claim the following statement.
Claim 3.

E
�
r � (x̂boltz

t � � )
�

� r � (x t ) � o(L � �) : (66)

The rest is the induction of SDE time stepst0 = t > � � � > t T � 2 > t T � 1 > t T = 0 , i.e.,

E
�
r (x̂boltz

0 )
�

= E
�
r � (x̂boltz

0 )
�

(67)

� E
h
r � (x̂boltz

t T � 1
)
i

� o(L � tT � 1) (68)

� E
h
r � (x̂boltz

t T � 2
)
i

� o(L � (tT � 1 + ( tT � 2 � tT � 1))) (69)

... (70)

� E
�
r � (x̂boltz

t )
�

� o(L � t) (71)

� r � (x̂boltz
t ) � o(L � tmax ) (72)

Proof. We list the premise as the following:

x̂ (k )
t � � = heun(x t ; z(k ) ; t; �) (73)

x̂ (k )
t � � = x (k )

t � � � o(�) (74)

r � (zboltz ) = max f r � (x̂ (1)
t � � ); � � � ; r � (x̂ (K )

t � � )g: (75)

We can deduce that:

E
�
r � (x̂boltz

t � � )
�

= E
h
maxf r � (x̂ (1)

t � � ); � � � ; r � (x̂ (K )
t � � )g

i
(76)

� E
h
r � (x̂ (1)

t � � )
i

(77)

= E
h
r � (x (1)

t � � ) � L � o(�)
i

(78)

= r � (x t ) � o(L � �) (79)

The last equation is followed by Equation (34). Here,r � (x̂ t � � ) is the numerical estimation of the
underlying SDE valuer � (x t � � ).
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Lemma 4. When� = 1 and the time step is small enough, the Boltzmann Demon sampling is
identically distributed as the SDE sampling.

By adjusting� , we can smoothly transition from prioritizing high-reward noise samples to the
standard SDE sampling method, balancing Demon and SDE strategies; note that when� = 1 , the
weights arebk = exp(0) = 1 . Thus,

P K
k=1 bk zk results in a Gaussian distributionN (0; K I N ). This

distribution is identical distributed to drawing a Gaussian after both are projected onto a sphere of
radius

p
N .

We justify replacing Gaussian sampling with uniform sampling from a sphere of radius
p

N could
result in the same effect of SDE during the Euler-Maruyama discretization of SDEs. Assuming
constant driftf and diffusiong for Euler-Maruyama step, the SDE isdx = f dt + g dW . We aim to
demonstrate that this replacement yields an identical distribution under small step sizes. De�ne:

Y n = � f � +
nX

i =1

g

r
�
n

~zi = � f � + g
p

�
1

p
n

nX

i =1

~zi (80)

where~zi are i.i.d. vectors uniformly sampled from the surface of a sphere with radius
p

N i.e.
~zi � Unif(

p
N SN � 1). Also, de�ne:

Y = � f � + g
p

� z (81)

Claim 4. Y n converges toY in distribution asn ! 1 .

Proof. To justify replacing Gaussian sampling with uniform sampling from the sphere, it is suf�cient
to show that the normalized sum converges in distribution to a Gaussian vectorz, i.e.

1
p

n

nX

i =1

~zi
d�! z (82)

Due to the symmetry of the uniform distribution, the expectation of each vector is zero, i.e.,E[~zi ] = 0.
Moreover, the distribution satis�esE

�
~zi ~z>

i

�
= I N .

By applying the Central Limit Theorem for vector-valued random variables (see, e.g., Rencher
(2005)), we conclude that asn ! 1 , the normalized sum converges in distribution to a Gaussian
vectorz with mean0 and covariance matrixI N . It justi�ed, in the limit of n ! 1 , the uniform
sampling from the sphere replicates the statistical properties of Gaussian sampling in the diffusion
term of the original SDE.

D.5 HIGH DIMENSIONAL GAUSSIAN ON SPHERE

The original statement is more general in the textbook, but we provide speci�c proof for Gaussian.

Lemma 5. (Vershynin, 2020, Chap. 3) Letz be independent and identically distributed (i.i.d.)
instances of a standard isotropic GaussianN (0; I N ) in a high-dimensional spaceN . With a high
probability (e.g., 0.9999), it holds that

kzk =
p

N + O(1) (83)

Proof. Consider the normkzk2, wherez is an instance of a standard isotropic GaussianN (0; I N )
in N dimensions. The distribution ofkzk2 follows a Chi-squared distribution withN degrees of
freedom. The mean and variance of this distribution areN and2N , respectively.

Applying the central limit theorem argument, we approximate the distribution ofkzk2 by a normal
distribution whenN is large, giving:

kzk2 = N + C
p

N (84)

for some constantC, whereC 2 O (1) represents �uctuations around the mean which are typically
on the order of the standard deviation ofkzk2, which is

p
2N .
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To connect this with the norm ofz, we consider:

lim
N !1

q
N + C

p
N �

p
N = lim

N !1

p
N

 s

1 +
C

p
N

� 1

!

(85)

= lim
N !1

p
N

�
C

2
p

N

�
(86)

=
C
2

(87)

Here, we use the Taylor series expansion for
p

1 + x, approximated as1 + x
2 for smallx, to �nd the

limit. This expansion leads to the conclusion thatkzk =
p

N + O(1).

E COMPARISON ONPICKSCORE

E.1 PICKSCORECOMPARISONS.

Since PickScore Kirstain et al. (2023) is trained speci�cally on generated images, we believe it is
a more reliable measure and objective than the aesthetics score. To emphasize the strength of our
method, we show how the median PickScore reward function improves across 20 different prompts
using our Tanh Demon, as shown in Figure 7a.

Our approach utilizes 1,440 reward queries per sample and achieves a PickScore of 0.253, outper-
forming other methods alongside reduced computation time (180 minutes for our method vs. 240
minutes for resampling methods due to shortened ODE trajectories). Speci�cally, we compare our
method to:

• SDXL/SDXL-DPO Wallace et al. (2023a): A state-of-the-art method for direct preference
optimization in diffusion models, which achieves a PickScore of 0.226, while the baseline
SDXL reaches 0.222.

• Diffusion-DPO(1440x): A variant that selects the highest quality median PickScore from
1440 samples among 20 prompts, achieving a PickScore of 0.246.

• SDXL(1440x): Similar to the above, but without preference optimization, achieving a
PickScore of 0.243.

Additionally, resampling an ODE fromx t max is crucial in applications where the distributionx t max j
x0 plays a key role, such as in SDEdit Meng et al. (2022). Resampling methods fail to address such
applications, highlighting the advantage of our approach.

(a) A Trajectory of Tanh Demon. We plot(r �
c)( x t ) for differentt . (b) The performance of each method on PickScore.

Figure 7: Quantitative results for Tanh Demon.

E.2 QUALITATIVE RESULTS

In this section, we demonstrate the quantitative and qualitative results of PickScore in SDXL with
our Tanh Demon.
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Figure 8: Each row in the �gure presents two pairs of images where the image of each pair on the
left illustrates results generated using the original PF-ODE method. The image on the right in each
pair showcases enhancements achieved by applying our Tanh Demon based on the PickScore metric
and SDXL. This �gure demonstrates the improvements in visual �delity and adherence to targeted
characteristics achieved through our proposed method.
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F COMPARISON ONHPSV2

(a) Performance w.r.t Reward Query Number (b) Performance w.r.t Execution Time

Figure 9: Comparison in HPSv2 and HPDv2. The performance comparison of the proposed algorithm
and the best-of-N baseline methods is presented in terms of the number of reward queries and
execution time, with the dependent variable beingT. The shaded areas and the solid circle radii
represent the evaluation results' standard deviations. If the computational bottleneck is the number of
reward queries, we recommend Tanh; if it is computational time, we recommend Tanh-C.

Table 11: We present qualitative results for various methods. For our method, we setT = 128,
� = 0 :5, andK = 16. The Best-of-N samples are generated using 2,336 (5,440 for CM) reward
queries and 3.8k seconds, which is signi�cantly more than our method's 1,424 reward queries and
1.8k seconds. Moreover, the presented image from Best-of-N possesses an inferior HPSv2 score
compared to ours.

Best-of-N Best-of-N
(CM) Tanh-C Tanh Boltzmann

a castle is in the middle of a eurpean city

A motorcycle that is sitting in the dirt.

We present quantitative and qualitative results in Figure 9 and table 11, using 10 prompts sampled
from HPDv2 (Wu et al., 2023). Both the diffusion model and CM are implemented and distilled with
SD v1.5.

We observe similar results in Figure 4. Regarding reward queries, the Tanh Demon method outper-
forms Tanh-C, followed by the Boltzmann Demon method. Regarding execution time, however,
Tanh-C is recommended over the Tanh Demon if computational time is limited.
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G ADDITIONAL RESULTS WITH VARIOUS REWARD FUNCTIONS.

G.1 IMAGE GENERATION RESULTS WITH DIFFERENTREWARD FUNCTIONS

We show more image generation results in SDv1.4/SDXL with our Tanh Demon and other reward
functions in Tables 12 to 15, using the four reward as objective.

G.2 SUBJECTIVE TEST OVERVIEW

We surveyed with 101 participants via Google Forms, as shown in Figure 10. Participants evaluated
different image generation methods based on:

• Subjective Preference: Visual aesthetics and image quality.

• Semantic Alignment: Correspondence between generated images and text prompts.

Each participant ranked images across four sections, with rankings aggregated using the following
formula:

1
ML

MX

i =1

LX

j =1

exp(� (rankij � 1)) (88)

where:

• M = 4 (number of sections),

• L = 101 (participants),

• rankij is the ranking by participantj for methodi .

(a) Comparison across methods.

(b) Comparison across objectives.

Figure 10: Subjective test results: Preferences and prompt alignment across methods and objectives.

G.2.1 SURVEY STRUCTURE

The subjective test comprised four sections: two comparing methods (DOODL, Baseline (SD
or SDXL), Ensemble) based on subjective preference and prompt alignment, each with 3 sets
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