A general approximation lower bound in L?” norm,
with applications to feed-forward neural networks

Supplementary Material

This is the appendix for “A general approximation lower bound in L? norm, with applications to
feed-forward neural networks”.

A Feed-forward neural networks: formal definition

In all this paper, we use the following classical graph-theoretic definitions for feed-forward neural
networks given, e.g., in [BHLM19|] (with slightly different terms and notation).

A feed-forward neural network architecture A of depth L > 1 is a directed acyclic graph (V, E') with
d > 1 nodes with in-degree O (also called the input neurons), a single node with out-degree 0 (also
called the output neuron), and such that the longest path in the graph has length L.

We define layers £ = 0,1, ..., L recursively as follows:
* layer 0 is the set Vj of all input neurons; we assume that V = {1, ..., d} without loss of
generality.
e forany £ = 1,..., L, layer { is the set V} of all nodes that have one or several predecessorf]
in layer £ — 1, possibly other predecessors in layers 0, 1, . . . , £ — 2, but no other predecessors.
Layer L consists of a single node: the output neuron. Layers 1,...,L — 1 are called the hidden

layers (if L > 2). Note that skip connections are allowed, i.e., there can be connections between
non-consecutive layers.

Given a feed-forward neural network architecture A of depth L > 1, we associate real numbers
we € Rtoall edges e € E and w, € Rtoallnodes v € V7 U...U V. These real numbers are called
weights (they correspond to linear coefficients and biases) and are concatenated in a weight vector

w € RW, where W = Card(E) + 25:1 Card(V%) is the total number of weights.

Given A4, an associated weight vector w € R", and a function o : R — R (called activation function),
the network represents the function gy : RY — R defined recursively as follows. We write P, C V/
for the set of all predecessors of any node v € V, and w,,_,,, for the weight on the edge from u to v.

The recursion from layer £ = 0 to layer ¢ = L reads: given z = (z1,...,74) € R?,
* each input neuron v € {1,...,d} outputs the value y, := x,;
« forany £ =1,..., L — 1, each neuron v € V; outputs y, := (3 ,c p. WusvYu + Wy);

» the unique output neuron v € Vz, outputs gy (z) := >, o p, WusvlYu + Wy.

Finally, we define H 4 := {gyw : w € R"} to be the set of all functions that can be represented by
tuning all the weights assigned to the network (the dependency on the activation function ¢ is not
written explicitly).

B Main results: technical details

We provide technical details that were missing to establish Proposition[I} Theorem [T]and Corollary [T]

A node u € V is a predecessor of another node v € V if there is a directed edge from u to v.
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B.1 Proof of Proposition ]|

Proposition is a direct extension of [Men02 Corollary 3.12] to any range [a, b]. We first recall this
result but in slightly different terms (see the comments afterwards).

Proposition 7 (Corollary 3.12 in [Men02], “almost equivalent” statement). Let G be a set of
measurable functions from a measurable space X to [0, 1], such that fat.,(G) < +oo for all v > 0.
Then, for every 1 < p < 400, there is some constant c,, > 0 depending only on p such that, for every
probability measure p on X and every € > (),

2fat = (G
log M (2, G, |- o) < it () log? (()) .

€

To be precise, [Men02| Corollary 3.12] was stated a little differently. Instead of the assumption on
fat. (G), there were two conditions on G (i) G satisfies a weak measurability assumption such as the
“image admissible Suslin” property, and (ii) G is a uniform Glivenko-Cantelli class. Fortunately, note
that assumption (i) could easily be checked in special cases such as the setting of Corollary [I] and
that assumption (ii) is equivalent to fat. (G) < +oo for all ¥ > 0 when (i) holds and when G only
consists of [0, 1]-valued functions (see [ABDCBHO97]], Theorem 2.5). The two statements are thus
“almost equivalent”. However, we stress that (i) and (ii) are not necessary (assuming fat, (G) < +oo
for all v > 0). To see why, it suffices to adapt the proof of [Men02, Corollary 3.12] as follows:
instead of starting from an e-packing of G in empirical L?(j,,) norm and showing that it is also
an &’-covering of G in LP(u) norm, with ¢’ > &, we can start from an e-packing of G in LP(u)
norm and show that it is also an e-packing of G in empirical L? (1,,) norm for some large integer n
(with positive probability). This last statement directly follows from the Hoeffding inequality: no
uniform law of large numbers is required, since we only need to compare empirical averages to their
expectations for a finite number of bounded functionsé

We now explain how to derive Proposition [I| (with an arbitrary range [a, b]) as a straightforward
consequence of Proposition[7]

Proof (of Proposition[l). In order to apply Proposition [7, we reduce the problem from [a,b] to
[0, 1] by translating and rescaling every function in G. For g € G, we define g : X — [0, 1] by

g(z) = g(fjga, and we set

G={j:9eG}.
Note that every § € G is indeed [0, 1]-valued.

We now note that translation does not affect packing numbers nor the fat-shattering dimension, while
rescaling only changes the scale € by a factor of b — a. More precisely, we have the following two
properties:

Property 1: For all u > 0, fat_«_(G) = fat,(G).
Property 2: For all u > 0, M(ﬁ, G, - ||LP(#)> =M (u,G, | e ()

Before proving the two properties (see below), we first conclude the proof of Proposition [T} By

Property 1, fat., (G) = fat,,_q)(G), which by assumption is finite for all v > 0. Since every g € G
is [0, 1]-valued, we can thus apply Proposition[7} Using it with & = /(b — a), we get

(&) log? <2 fat = (G) >

Combining with the two equalities in Properties 1 and 2, we obtain

2(b—a) fat £ (G)
5 > ’

1ogM(g,é, I- HLP(M)) < ¢, fat

£
32

M [Blo

10gM(€,G, || : HLP(M)) S Cp fatg_%(G) 10g2(

which concludes the proof of Proposition I}

We now prove the two properties.

%In passing, all occurrences of fat = (G) could be replaced with fat ¢ (G).
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Proof of Property 1. We first show that fat_«_(G) > fat, (G). To thatend, let S = {z1,..., 2}

b—a
and 7 : S — R be such that for any E C S, there exists g € G such that g(z) > r(z) +uifz € E
and g(z) < r(x)—wu otherwise. Setting 7(z) = %, we can see that §(v) > 7(z) + ;% ifz € E

and g(x) < 7(z) — 3, otherwise, which proves fat «_(G) > fat,(G). The reverse inequality is
proved similarly.

Proof of Property 2. Let {g1,...,9m} be a u-packing of G in L?(u) norm. This means that
llgi — gjllr(uy > w and therefore [|g; — g;llre() > 52 foralli # j € {1,...,m}, so that
{91,-..,9m} C Gisa z*--packing of G. This proves M (7%=, G, ||| (1)) = M (u, G, ||| Lr(u))-
The reverse inequality is proved similarly. O

B.2 Clipping can only help

The next two lemmas indicate that clipping (truncature) to a known range can only help. These are
key to apply Proposition [T]in our setting. In the sequel, for a set G of functions from a set X to R, and
for a < bin R, we denote by G|, j the set of all functions in G' whose values are truncated (clipped)
to the segment [a, b], that is, G|, 4) = {g : g € G}, where § : X' — R is given by
Vre X, g(z)=min(max(a,g(z)),bd) .
Lemma 3. Let G be a set of functions defined on a set X, and with values in R. Let G|, ) be defined
as above. Then, for any v > 0,
fat,(G) = faty (Glap)) -

Proof. Let v > 0. The case when fat. (G, ) = 0 is straightforward. We thus assume that
fat, (Gia,p)) > 1. To prove the result, we show that any subset A of X that is y-shattered by G|,y
is also y-shattered by G. Let us consider such a subset A = {z!,... 2V} C X, with cardinality
N > 1. Hence, there exists {ry,...,7n} C R such that for any E C A, there exists § € G[mb]
such that g(x;) —r; > vifz; € E and g(z;) — r; < — otherwise. Note that this must imply
that r; €]a,b[ foralli =1,..., N (indeed, by choosing E such that z; € E or not, we have either
ri+y < g(z;) <borr;—vy > g(x;) > a). Now fix¢ € {1,..., N} and let us assume §(z;)—r; >~y
(by symmetry, the reversed case §(z;) — r; < —v is treated the same way). Because r; > a, this
implies that §(x;) > a and thus g(x;) > §(x;) (by definition of §), which entails g(z;) —r; > 7. It
follows that if G [a,b] Y-Shatters A, then G also y-shatters A, and the result follows. O

The following lemma formalizes the well-known idea that it is easier to approach a function with
values in a finite range by a function with values in the same range.

Lemma 4. Let GG be a set of measurable functions from a measurable space X to R, and let G, y
be defined as above. Assume F is a set of measurable functions from X to [a,b]. Then, for any
probability measure 1 on X,

sup inf — > su inf -4 )
feggec 7= allzrn fegéec[a,b] 1f = Gl

Proof. To prove the above result, it is enough to show that for any f € F' and ¢g € G, the function
g is pointwise at least as close to f as g is, which for all f € F yields infyeq ||f — gllr(n) =
infgec,,; If—3llLr(u)- By definition of G| 4, forany z € X, if g(z) € [a, b], then | f(z) —g(x)| =

|/ (x) = g(2)|. Andif g(z) € [a, ], then |f(x) — g(x)| < |f(z) — g(x)] since f(z) € [a,b]. It
follows that the discrepancy |f — §| is everywhere bounded by | f — g|, and the result follows. [

B.3 Missing details in the proof of Theorem {]]

We provide all details that were missing to derive (9), which is a direct consequence of Lemma 5]
2
below. We follow the convention aP~ = log™ @ (P) = 400 when P = 1.

Lemma 5. Let P € N* and ¢, a,7 > 0. There exist constants a, e} > 0 depending only on ¢,
and v such that, for all ¢ € (0, ) satisfying

P
£~ < cPlog? (T) , (16)

3
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we have
2
€ > min (5’1', aP~w 1og_5(P)) :

Proof. Assume ¢ € (0,r) is such that (T6) holds. To show the result, we study the function
f:(1/r,+00) — R defined for all x > 1/r by

(z) =

xa

log?(rPx)
Note that (T6) implies that f(1/e) < c¢P. For all P > 2, we set
1 2
ep =P olog = (P). (17

ES ex
Let P; > 2 be such that P* log%(Pl) > p( ) For all P > P;, we have 1 > 2 ( > 1/r and

I (1) _ Plog?(P)
€p log® (TPH_é log%(P)) .

Since )
y log”(Q) _ v
Q40 1022 (1O o2 BRI SER
> log (TQ 3 log= (Q)) o
there exists P, such that for all Q > P,, we have log?(Q) >4 .

log? (r@"* % log 2 (Q))
Below we distinguish the cases P > max(Py, P») and P < max(P;, P»).

1st case: P > max(Py, P»).

We have f(2) > %F and P > 17(2) (by (18)), so that (L) > £/ (L). We now use
)

2) (

€ — 2c €
Lemma|§|below with b = £L: setting a := (b/2)"/* = (c1/(4¢)) 1/, there exists x1 > max{+
depending only on 7, b, & such that bf (x) > f(ax) for all z > x;.

r’ar

Therefore, if ¢ < q:% =: ¢y, then 3L (%) > (g) Therefore f(i) > f(ﬁ).

€

xp(%)_

r

€
—=: 9, then we also have % >

Recall from (T7) and P > P that é > exPT(%). ex;(rg 5
Therefore, using Lemma|§|again, f (é) > f(%) implies that é > ¢ that is,

E>acp .
Summarizing, when ¢ € (0, r) satisfies (I6) and when P > max(P;, P,), either ¢ > 1 ore > &5 or

€ > acp. Put differently,
€ > min(ey,&2,aep) . (18)

2nd case: P < max(Py, Py) =: Ps.
Using (T6) and the fact that ¢ — ct log? (“£) is non-decreasing on [e /7, +-00), together with & /r <

1 < P < Pyyields e~ < ¢Pslog?(rPs/e). This entails that, for some 3 > 0 depending only on
Q, C, P3a r,
€>e3. (19)

Conclusion: combining the two cases, when ¢ € (0, r) satisfies (I6), whatever P € N*, we have
(I8) or (T9). Setting &} = min(eq, 2, €3), we obtain

£ > min (5’1’,aP_% logf%(P)) .

(Note that this is also true in the case P = 1, by the convention aP~= log_% (P) = 400.) Since
€1, €2, €3 and a only depend on ¢, «, 7, this concludes the proof. O]

Lemma 6. Let o, > 0 and P € N*. We define f(x) = %for all x > 1/r. Then:
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i) fisincreasing on I := [%, +oo) and lim, s o f(z) = +o00.

ii) for all b > 0, setting a = (b/2)'/*, there exists x1 > max{%, ﬁ} depending only on
r, b, o such that,
Vo > a1, bf(x) > f(ax) .

Proof. Proof of i): The fact that lim,_, ; - f(x) = 400 is because o > 0. To see why f is increasing
on I, note that
az®'log?(rPz) — 2*2log (rPz)r  z* llog(rPz)(alog(rPz) — 2)

fle)= log (rPx) B log*(rPx) ’

so that f/(x) > 0 forall z > © ( , and in particular for all z > <2¢ P (since P > 1). This proves
that f is increasing on 1.

Proof of ii): Let b > 0 and set a := (b/2)'/*. Let z; > max {1
that, for all u > x4,

L1 depending only on r, b, & such

) ar

2
log2 (ru) <
log”(rau)
(Such an z; exists since the ratio converges to 1 as u — 400, and we can choose ;1 as a function
of r, a only.) Now, for all x > x, using the above inequality with v = Pz > x (since P > 1), we
get
log”(rP
$02) _ o 108°0PE) _y0
f(x) log”(rPax)

where the last equality is because a := (b/2)'/“. This proves that bf (x) > f(az) forallz > z;. O

B.4 Proof of Corollary/]

We first recall some definitions and two key bounds on the VC-dimension of piecewise-polynomial
feed-forward neural networks, proved by [GJ95]] and [BHLMI19].

For a set F' of functions from X to {—1, 1}, we say thataset S = {x1 ..., xn} C X is shattered
by Fif for any E C S, there exists f € F satisfying foralli =1,... N, f(x;) = lifx; € F, and
flx;) = —1if x; ¢ E. The VC-dimension of F, denoted by VCdim(F), is defined as the largest
number N > 1 such that there exists S C X of cardinality /V which is shattered by F' (by convention,
VCdim(F') = 0 if no such set S exists, while VCdim(F') = +o0 if there exist sets .S of unbounded
cardinality V).

Let B be any feed-forward neural network architecture of depth L > 1 with W > 1 weights, d > 1
input neurons, and U > 1 hidden or output neurons. Let ¢ : R — R be any piecewise-polynomial
activation function on K > 2 pieces, with maximal degree v € N. Denote by sgn(Hg) = {sgn(gw) :
w € R"'} the set of all classifiers obtained by looking at the sign of the network’s output, that is, the
classifiers defined by sgn(gw)(z) = Ly, (z)>0} forall z € R

Goldberg and Jerrum [GJ95]] showed that, for some constant ¢j > 0 depending only on d, v and K,
the VC-dimension of sgn(Hpz) is bounded as follows (see also Theorem 8.7 in [AB99]):

VCdim(sgn(Hg)) < ¢, W2 . (20)

This bound was refined for piecewise-affine activation functions. Namely, Bartlett et al. [BHLM19,
Theorem 7] proved that, if U > 3, then, for some R < U + U(L — 1)1/L’1,

VCdim(sgn(Hg)) < L+ LW log, (4e(K — 1)Rlog, (2e(K — 1)R)) :

where L = 1if v = 0, and L < L otherwise. Therefore for some constants W .

S > landdh, s >0
depending only on d and K, we have, for all W > W/ . (which in particular implies U > 3),

cAHLWlog(W) ifvr=1,

AW log(W)  ifv=0. @D

VCdim(sgn(Hp)) < {
We are now ready to prove Corollary [T|from Theorem T}
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Proof (of Corollary[I). In order to apply Theorem [I] we first bound P := Pdim(H 4) from above.
The bounds (20) and (2I) were on the VC-dimension of sgn(Hpg), for any feed-forward neural
network architecture B, while we need a bound on the pseudo-dimension. However, by a well-known
trick (e.g., Theorem 14.1 in [AB99]), the pseudo-dimension of H 4 is upper bounded by the VC-
dimension of (the sign of) an augmented network architecture of depth L, with d + 1 input neurons
and W + 1 weights|’| Therefore, replacing (d, W) with (d + 1, W + 1) in (20) and 21)), we get that,
for some constants Wy,i, > 1 and ¢3, ¢2, ¢s > 0 depending only on d, v and K, for all W > Wi,
aw? ifv>2]
P<<{ &LWlog(W) ifv=1, (22)
W log(W) ifr=0.

Now, by Theorem we have, for some constants c1,e; > 0 depending only on b — a, p, cg, €9, @,

inf | f— >'{5, Pl ’%P}. 23
)Sgelggg}hllf gllLr( = min<er, ¢ og” = (P) (23)

Noting that P — min {51, o Pw log_% (P)} is non-increasing and plugging into , we
get, for W > Wiin,

2

caW e log ™= (W2) ifv>2
sup inf |[[f —gllzrgy 2 min g er | cs(LW log(W)) log™ = (LW log(W)) ifv =1
g A 2
rer ce(W log(W)) == log™= (W log(W)) ifr=0
for some constants Wy, > 1 and ¢y, c5, cg > 0 depending only on d, v, K, b — a, p, co, €9 and a.
Taking Wiy, large enough, the first term &; is always larger than the second term in the above

minimum, and the logarithmic terms log(W log(W)) and log(LW log(W)) can be upper bounded
by a constant times log() (since L < W). Rearranging concludes the proof. O

C Earlier works: two other lower bound proof strategies

Approximation lower bounds in a sense similar to ours have been obtained in other recent works. In
the purpose of highlighting the differences between the different approaches, we describe the lower
bound proof strategies of Yarotsky [Yarl7|] and of Petersen and Voigtlaender [PV 18]

C.1 Approximation in sup norm of Sobolev unit balls with ReLLU networks [Yar17]

Recall that the Sobolev space W™ ([0, 1]?) is defined as the set of functions on [0, 1]¢ lying in L
along with all their weak derivatives up to order n. We equip this space with the norm

.00 = max esssup|D"f(z)|,
I oo = s esssnp D)

and we let I, 4 be the unit ball of this space.

We first state the sup norm lower bound and then we give a synthesized version of the proof.

Proposition 8 ([Yarl7l])). There exists positive constants Wi, ¢ > 0 such that for any feed-forward
neural network with architecture A, ReLU activation and W > Wynin weights,

sup inf ||f —¢glleo > W
fEF, 49€HA

Details aside, the proof reads as follows. The author assumes that H 4 approximates F;, 4 with
error €. Fixing N = cn’d(35)_1/ " for a properly chosen constant ¢, ¢ > 0, he constructs a set of

functions in F), 4 that can shatter a grid of N¢ points z1, . . . , ¥ ya evenly distributed over [0, 1]%. The
assumption that H 4 approximates F}, 4 in sup norm with error ¢ allows to conclude that H 4 also

shatters {z1, ...,z ya}, and hence, VCdim(H 4) > N9 = c;’ds’%, for a properly chosen constant

"This is because Pdim(H.4) = VCdim ({(z,7) € R* X R+ L{4(z)—r>0} : g € Ha}), the output neuron
of A is linear, and we allow skip connections.
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c;’ 4 > 0. The author concludes using the upper bound on VCdim(H 4) with respect to W from
IAB99] which yields VCdim(H 4) < ¢/W? for some constant .

It is worth stressing that in this proof, it is paramount to assume that H 4 approximates F,, 4 in sup
norm, rather than any L? norm with p < +o00. The reason is that only this choice of norm allows to
bound the discrepancy between f € F,, g and g¢ € H 4 chosen optimally with respect to f at any
chosen points. Our proof strategy relying on Proposition T]allows to circumvent this issue by relating
the pseudo-dimension to the metric entropy with respect to any L” norm, 1 < p < 400.

C.2 Approximation in L? norm of Horizon functions with quantized networks [PV18]

The authors study quantized neural networks, that is, networks with weights constrained to be
representable with a fixed number of bits. They obtain a lower bound on the minimal number of
weights in a quantized neural network that can approximate a set of Horizon functions in L? norm,
p > 0, with error € > 0. This lower bound is easily invertible to a bound on the approximation error
and is thus comparable to the results we obtain in this paper.

Textually, the authors introduce the set of horizon functions as follows: “These are {0, 1}-valued
functions with a jump along a hypersurface and such that the jump surface is the graph of a smooth
function” [PV18]]. Denoting by H the indicator function of the set [0, +00) X R4=1 the set of horizon
functions reads as

d
HF s = {foT eI (H;] )

f(x) = H(x1 +v(z2,...,24), %2, ..,24),Y € Fpa-1,8, T € II(d, R)} ,

where Fg 4_1,p denotes the set of Holder functions over [—1/2,1/ 2]~ whith smoothness parameter
£ and with norm ||.||cr.« bounded by B (see Section [3| and II(d,R) denotes the group of d-
dimensional permutation matrices.

In the following, for any nonzero integer K and any neural network architecture .4, we denote by
H ﬁf C H 4 the set of K-quantized functions in H 4; namely, the functions in H 4 with weights
representable using at most K bits. The lower bound in [PV18]] (Theorem 4.2) reads as follow:

Proposition 9 ([PV18]). Letd > 2. Let p, 3, B,co > 0 and let o : R — R be such that o(0) = 0.
There exist positive constants g, ¢ > 0 depending only on d, p, 5, B and cq such that, for any € < &y,
setting K = [¢g log(1/ 5}1 for any feed-forward neural network architecture A with W weights and
activation o such that Hy approximates HF g qa,5 in LP norm with error less than e, we have

_pld=y)
W >cem 7 log  (1/e).

The proof of this result is based on a lemma giving a lower bound on the minimal number of
bits ¢ necessary for a binary encoder-decoder pair to achieve an error less than ¢ > 0 in ap-
proximating HF := HF g4 p in LP norm. Formally, given an integer £ > 0, a binary encoder
E‘:HF — {0,1}¢ and given a decoder D : {0,1}¢ — HF, one can measure an approximation
error

sup_||f — D*(B*(f))]l e,

feEHF

which quantifies the loss of information due to the encoding E*. Clearly, for an optimal choice of
encoder, one can reduce this loss of information by increasing ¢. In particular, for € > 0, it is possible
to estimate

{. = min {€>0 1nf sup ||f — DY(E*(f))z» §8}7
Dt feHF

with the convention that /. = oo if the above set is empty. The authors show in their Lemma B.3 that
for € small enough (smaller than some £y > 0), it holds that

p(d—1)

b >ce 7 (24)

20



for some constant ¢ > 0 depending only on d, p, 5 and B. In other words, one can not achieve a loss
of information smaller than € by encoding functions in HF over less than cs™ & bits.

The rest of the proof consists in showing that for an integer K > 0, given a neural network architecture
A with W weight that can approximate H.F in L? norm with error less than € > 0, one can encode
exactly (without loss of information, and for a given activation function) any function in H% over
a string of £ = ¢y W (K + [log, W) bits. This generates a natural encoder-decoder system where
any function f € HJF is encoded as the bit string of length ¢ associated to gy € H f chosen to
approximate f. It remains to observe that if we fix K, this automatically yields a lower bound on ¢
using inequality (24), and thus on W by expressing W through ¢ and K.

Remark. The authors in [PV18] study the neural network approximation in a setting slightly different
from ours, since they focus on the approximation by quantized neural networks. This partly explains
why their proof strategy differs from ours. However, it is worth pointing out that the proof of their
lower bound on the minimal number of bits required to accurately encode a function in HF relies on
a lower bound of the packing number of H.F, just like the lower bound of the packing number of the
set to approximate is key in our proof strategy. An interesting question for the future would be to
see whether our general lower bound (Theorem[I) yields lower bounds of the same order as those in
[PV18] for quantized neural networks.

D Holder balls

D.1 Proof of Lemma/[2]

Though not necessarily stated this way, many arguments below are classical (see, e.g., Theorem 3.2
by [GKKWO02] with a similar construction for lower bounds in nonparametric regression).

Let N € N*. Form = (my,...,mq) € {0,...,N—1}¢, weletapy := & (m1+1/2,...,mq+1/2)
and we denote by CY, the cube of side-length % centered at xp,, with sides parallel to the axes. We
see that the N cubes Cy, decompose the cube [0, 1] in smaller parts which, up to negligible sets
which will not be problematic, form a partition of [0, 1]¢. We will use this decomposition to construct
a packing of F; 4. Denoting | - || the sup norm in R%, we define the C'*® test function ¢ : R? — R by:

$(x) = exp (‘JM) |

for any € R? such that ||z|| < 1, and ¢(x) = 0 otherwise. Recalling that n € N and o € (0, 1] are

such that s = n + «, and since all the high-order partial derivatives of ¢ are uniformly bounded on

[0,1]9, ||¢||cn.« is thus finite and is nonzero.

Let ¢s = £(2N)~*(|¢[|cro and consider, for any tensor of signs ¢ = (Om)mefo,... . N—1}¢ €
d

{—1,1}"", the function f, defined as follows:

fo(z) = cs Z om¢ (2N (v — zm)),

me{0,.. . N—1}4

for all z € [0, 1]%. There are 2%V * different functions f,.

Let us prove that, for all o € {—1, I}Nd, fo € Fs 4. To do so, we study the constituents of || f, ||cn.«
separately and show that they are all bounded by 1. Form € {0,--- , N —1}%, we define the function
Im (%) = csom® (2N (z — zm)). Note that because ¢ vanishes outside (—1,1)¢, we have that gy
vanishes everywhere outside the interior of Cy,, and the same holds for D" gy, for all n € N such
that [n| < n. For any such n, we have

1D gmllos = ¢s2N)MID"3]|oc < cs(2N)?[|g]lcne <

DN =

Therefore,
max [|[D"fol|lco < 1.

n:|n|<n
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Now for any n € N such that |n| = n, any z,y € [0, 1]%, we have
[D"fo(x) = D"fo(y)| _ |D"9m(z) — D"gm (y)|
|z —yll3 lz —yll3

where z € Cp, and y € Cyy for some multi-indexes m and m’. We have to distinguish between the
casesm = m’ and m # m’. In the former case, we have

| D™ fo(x) = D" fo(y)] [D"¢(2N(x — 2m)) = D"$(2N(y — &m))|

)

= c,(2N)" T

[l —ylls 12N (2 — 2m) = 2N (y — 2m)|3
s Dn¢ l’/ _anb yl
ey ony 12 = Doty
2" —y'l|3
. 1
< @V ¢lene = 5,

where at the second line, we used the changes of variables 2’ = 2N (z — 2, ) and y’ = 2N (y — xm)-
In the case m = m’ (z and y belong to the same cube), we thus have

[D"fo(x) = D" f5(y)|

. <1
Iz = ylI3

In the case m # m’, observe that we have
|D"gm(z) — D"gm (y)| < 2max{|D"gm ()], [D"gm (y)|} (25)

Besides, recall that D™ gy, and D™ gy, both vanish outside of the interiors of Cp, and Cyy respectively.
We can thus rewrite as

[Dgm(2) = Dg (y)| < 2max{|D"gm(x) — D"9gm (), D" g () — D" g (y)|}
< 2¢,(2N)" max{| D"$(2N (¢ — 2m)) — D"6(2N(y — xm))],
|ID"$(2N (y — 2m')) — D"G2N (y — ym))|}-
This entails
D" fo(x) — D" f5(y)
lz —yllg

< ¢, 22N’ max{ [DPo(a') = D"(y)| |D"(x") = D"(y")] }

=" =yls 7 " —y"lls
S 652(2N)S||¢||Cn,a - ].7

where 2’ = 2N (z — 2yy) and y' = 2N (y — &), and 2" = 2N (x — ) and vy’ = 2N (y — xpy ).

Summarizing, we showed that for all o € {—1,1}" !

D"f (z) — D"f,
max [D"fole <1 and  max sup 297 = DoY)l

_ <1
n:|n|<n n:|n|:nz?§y H.’L‘—yH2

We conclude that for all ¢ € {—1, 1}V
[follene <1,
and therefore {f, : 0 € {—1,1}""} C F, ..

Let us now evaluate the distance between distinct elements of {f, : o € {—1,1}V d}. Let !,
o2 € {=1,1}N", with o' # 02, and letm € {0,..., N — 1} be such that o}, = —02. Let us
estimate A, the LP(\) discrepancy between f,1 and f,2 on the cube Cp, that is

AP = /C o (&) — fro(2) Pda

—ore / 162N (z — ) [Pda
Cm
= QPCISJ(QN)id”Qf’H]Zp(A)-

It remains to find a subset among the functions f, such that any two functions of this set differ on a
significant number of cubes Cy,. According to the Varshamov-Gilbert Lemma [Yu97], there exists
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I c {—1,1}"" with cardinal at least exp(N?/8) such that for any 0,62 € T, such that o # o2,
d
o! and o2 differ on at least one fourth of their coordinates; i.e., E]kvzl 152 > NTd. We thus fix
k k
d
suchasetI' C {—1,1}". Forany o', 02 € T, with 0! # 02,

o = Loillpy = [ @) = fr@)Pde
m:ol#o2 Cm
N gr—dcp
AP __—____ s p

Finally, recalling the definition of ¢4, we have for any ol, 02 € T, with ! #* o2,

_at21 —s — —s
I for = fozlliogny = 2075 5(2N) [@llcnalldllony = N2,

d+2

where ¢ — 25— % llollze

I¢llen.o -

It follows that { f, : o € I'} is a cN—*-packing of F; 4. Given the lower bound on the size of T,
this implies

M (N5, Fya, || - lo(r) = exp(N9/8),
for all N € N*.

Seteg = cand ¢y = 9—dct /8. Consider ¢ > 0, with € < . To conclude the proof, we need to show
that holds for e. To do so, we consider IV: the smallest integer such that cN~° > & > ¢(2N)~*.
This N € N* exists because 0 < € < gg = cand s > 0. On one side, we have

M (E7Fs,d7 || . HLP()\)) 2 M (CN_S7FS,d7 H . ||LP()\)) )

and on the other side, since 2N > 0%5_%,

d
s

exp(N4/8) > exp(?fdcgefg/& = exp(coe” 7).
Combining the last three inequalities, we finally obtain
log M (g, Fsa, || | 1o () = coe™*,

forall 0 < € < gp.

E Monotonic functions

This section contains the proofs of the results stated in Section[d} More precisely, in Section [E.T| we
provide the proof of Proposition[6]and in Section[E.2]we provide the proof of Proposition ]

E.1 Proof of Proposition [§]

The section contains two sub-sections. In the first sub-section, we provide a proposition on the repre-
sentation of piecewise-constant functions with Heaviside neural-networks. Section [E.I.2]contains the
main part of the proof of Proposition [6]

E.1.1 Representing piecewise-constant functions with Heaviside neural networks

We first describe a neural network architecture which, with the Heaviside activation function, is able
to represent functions that are piecewise-constant on cubes.

Proposition 10. Let d € N*, M € N*. There exists an architecture A with two-hidden layers,
2(d + 1)2M weights and the Heaviside activation function, such that for any (c;)1<i<m € RM, any

collection (C;)1<i<nr of mutually disjoint hypercubes of R? the function f: R — [0, 1] defined by
) M
Vo eRY f(@) =) aile,(x)
i=1
satisfies f € Hy.
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Figure 1: Values of the sum of the perceptrons p§ (z) around a hypercube C; in dimension 2.

Proof. Defineo: R — Rby o(z) = 1,5 forall z € R.

Leti € {1,..., M}. The cube C; has 2d faces. These faces are supported by hyperplanes whose
equations are of the form (w, z) + b = 0, with w € R% and b € R. We allow the faces to belong to
the cube or not. To distinguish them, we denote J; € {1,...,2d} the number of faces that belong to
C;. We index the J; faces that belong to the cube from 1 to .J;, and the other faces from J; + 1 to 2d.
Thus, foralli € {1,...,M}and all j € {1,...,2d}, there exist wé- €RY, bj» € R such that

Ji 2d
Ci= ﬂ{x eR®: (Wi z)+b >0} N ﬂ {z e R (wh,a) + b >0} .
j=1 j=Ji+1
We rewrite:
d.
C;={z€R% Z]l (wia)+bi>0p T Z (wi,z)+bi>0} 2 2. (26)
j=Ji+1

Denoting for all i € {1,..., M} andall j € {1,...,2d} and for all z € RY,

’(x) _ 0(<w§-,x>+b§-) if 7 < J;
P; 1—o (—(wi,z)—b%) otherwise,
we have, see Figure|[l]and (Z6), for all z € R?

]IC'i(x):{l leJ lpj( ) > 2d,

0 otherwise,

2d
=0 Zp;(:c) —2d
j=1

Since the hypercubes are mutually disjoints, for all z € [0, 1]¢, we have

M Ji 2d
f@)=) o | Y o ((wha)+b))+ D> (1—o(=(wjz)-b})) - 2d
i=1 j=1 j=Ji+1
M
Z ZE U<W T —l—b‘) Ji |, 27
i=1
where
i i< i [ owh it < oY ifis<d
€5=) =1 otherwise, Wi —wz- otherwise, J T —b; otherwise.

Equation (27) is the action of the Heaviside neural network with two hidden layers whose architecture
is on Figure 2]

It remains to count the weights and biases of f :
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M neurons

O M x 2d neurons

Figure 2: The function f represented as a neural network.

* the architecture has M edges going to the output layer, due to the «;;

* it has M biases associated to the neurons of the second hidden layer (they correspond to the
terms —J;);

* between the second and the first hidden layer, the architecture has M x 2d edges (corre-
sponding to the &, ;);

* ithas M x 2d biases associated to the neurons of the first hidden layer (the 53»);

e ithas M x 2d x d edges between the first hidden layer and the entry (the v~v§).

Thus there are 2M + 2M x 2d + M x 2d x d = 2(d* + 2d + 1)M = 2(d + 1)>M weights and
biases in total. O

E.1.2 Main developments of the proof of Proposition 6]

Let N € N* and f € M. In this section, we partition [0, 1)? into cubes whose sizes depend on the
maximal variation of f. Then we use this partition to construct a piecewise constant approximation
f of f; we will bound from above the L”()\) approximation error || f — f||1»(») by a function of
N. This part is a direct reinterpretation of the proof of Proposition 3.1 in [GWO07]. We then apply
Proposition to f and obtain the announced result.

We first define some notation that will be used in the rest of the section, then we explain the algorithm
used to divide [0, 1) into cubes. We fix the constant K > 1 the following way:

Ko 240 ifp=1,
127 otherwise, where 5 = %(d -1+ p%l)

We also define an integer [ that corresponds to the number of cube decompositions:

[ = [Nlogﬂ _ {VN itp=1,

(28)

log K % otherwise .

It is worth noting that this implies K ! < 2=V < K=+,
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Now we partition [0, 1)? into dyadic cubes of the form [a1,b;) X - -+ X [aq, bg). If C is such a cube,
we use the following convenient notation:
C = (ay,...,aq) €RY, C = (by,...,by) €RY,

to refer to the smallest and largest vertices of C'. The cube decompositions process reads as follow:

» First we partition [0, 1)? into 2V¢ cubes of side-length 2=, We denote by S the set of
these cubes C such that f(C) — f(C) < K27 and by R the set of the remaining cubes.

* For 1 < < [, we partition each cube in the set R;_; (the remaining cubes at the step © — 1)
into 27 cubes of equal size, and we denote by S, the set of obtained cubes C' of side-length
2= (+N) guch that o 4

F(IO) = f(C) < K7™, (29)
Again, the set of remaining cubes is denoted by R;.

» Lastly, we partition each cube in the set ;_; into 27 cubes of equal size, and we denote by

S; the set of obtained cubes of side-length 2~ (+N).

Once the algorithm is done, each point in [0, 1) clearly belongs to one single cube of U!_S;. For
1€40,...,1},weletS; = Uges,C.

We now define the piecewise constant approximation of f by

Vo e [07 1]d7 f(.’l?) = Z f(Q)]IIEC7
Celo<ici S
where 1,¢c denotes the indicator function of the cube C'. We do not make the dependence explicit,
but f depends on the parameters N, d and p. The number of cubes over which f is constant is

Z i—o |Si|. This quantity is key when constructing the neural network according to Proposmon
in the next lemma, we bound from above |S;| forall ¢ = 0,...,l. Then, we will estimate the error

If = Fllzeo-

Lemma 7. With the above notation:

Vie{0,...,0}, ]S < dK~igid-+Nd+

. 1 ifi =0,
A(S:) < { 2d(2K)~% | otherwise. (30)

Moreover,

Proof. By construction, we have
Vie{l,...,1}, |Si|+|Ri| =27 R4,

since the set .S; U R; contains all the cubes of side-length 2-(+N) that have been constructed from
the cubes of R;_;. In particular,

Vie{l,....l}, |Si| <2%R;1l. 31)
It remains to bound |R;_1| from above for i« > 1. Define V := {C: C € R;_1} the set of the
smallest vertices of the cubes in R;_;. We consider the classes of these vertices under the “laying on

the same extended diagonal” equivalence relation. Since the cubes have side-length 2~ (=1+N)  there

are less than d20—1+N)(d=1) equivalence classes. According to the pigeonhole principle, the largest
class has at least [%—‘ elements; let us refer to this class as D. Let (C )1< j<.J be the set

of cubes in R;_; having a point in D as lowest vertex. Since f is non-decreasing and according to

(29), we have:
J
1> f(1,...,1) = f( }: Cy) > JK27N

V] Kig-N |Ri—1]

S A _ Wl prig—N
> d2(i—1+N)(d-1) - d2(i—1+N)(d—1)K 2
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Thus
|Ri_1| < d2ild—D+Nd+1—dpe—i

The first statement of Lemma [7] follows from (BT).

For: =0, )\(5’0) < 1. For 1 < ¢ < [, using the first statement of this lemma, we bound from above
the measure of S;:

)\(52) _ (2—(i+N))d 15| < dK —i9i(d=1)+Nd+19—d(i+N)
2d(2K)™"

O

To show that f is close to f in LP?()) norm, let us use the fact that (gi)ogigl is a partition of [0, 1)?
and decompose the error in three parts:

-1
I = Py = [ 15@ = F@)lPar+ 3 [ 11(e) = Fla)pae + / /(@) - f@)rda.
0 i=1 i

In the next lemma, we control each term of the above sum to bound from above || f — || Lr(x) by a
function of NV that is independent of f and tends to 0 when N tends to +occ.

Lemma 8. For any 1 < p < +oo, there exists a constant cq, > 0 depending only on d and p such
that for all N € N*

2_N(1+1/B) ifp(d—1) < d,
Q—INf ifp(d —1) > d, (32)
N»2=N lfp(d_l):d,

If— f”LP()\) < cap

where f is the function constructed for the parameters N, d and p.

Proof. For 0 < i < [, onany cube C € S;, we have

Ve e C, |f(z) — f(2)| = |f(2) - f(O)] < F(O) - f(C) < K*H127¥, (33)

since f is non-decreasing, and by definition of fand S;.

« Using the fact that A\(Sp) < 1 and by (33):

f(@) = f(@)Pde < 27V K)P. (34)
So

* Using (30) and (33), we get forall¢ € {1,...,1 — 1}

/ |f(x z)Pde < (K127 N)P2d(2K) " (35)

« Onany C € Sy, we have, forall z € C, |f(z) — f(z)| < |f(z) — f(C)| < 1, and we get,
using (30):
(@) = f(2)[Pde < 2d(2) " (36)

Combining (34), (33) and (36) we get:
-1

1 = I8y < @ VEP + 3 (K12 NP2d(2K) 7 + 2d(2K)

1=1
< (2 NVEK)Y 42 NprdZ<

It remains to bound the right-hand side of (37)), depending on the value of p and d. Note that the
behavior of this term depends on whether £

Kpr—1

> +2d(2K) 7" (37)

_1 is larger or smaller than 1.

P
2
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* Suppose that p(d — 1) < d. In this case, we can have p = 1 orp > 1. If p = 1, we have

Kp;l = % < 1land ﬁ < K7P. If p > 1, we have:
1
pd—1)<d <= dp—p—-d+1<1 <= d—1<—1
Thus, [ being the arithmetic mean of d—1 and ,wehaved — 1 < 8 <1 . Then
K =28 < 21/(P=1) and hence £5— < land 5 < K P Therefore, both forp =1and
p>1,

-1 i
Kr—1 Kr-1 l
_ L
;< 2 )<2—m—1 and (2K)" < K7P.

Since K ! < 27N this leads to

- . kP! B
1 = Pl < @TNE)? 4 2N KR d e 4 24K
Kr~!
< <Kp + 2K A + 2d> 27 Np,

) Kp—1 P
We thus have, setting ¢; := (Kp + 2Kpdm + 2d> s

If— fHLP(A) <27V,
Notice c; only depends on d and p.

* Suppose thatp(d 1) >d. Wehavep > landd—1 > 8 > p%l. Then K = 27 > 21/(—1)

and hence £2— > 1, which entails using (37)
—1/9)\l
—N P 1—Npg-p (Kp /2) —1
Ilf— fHLp(/\ <(27VK)P 42 KdiKp_l/Q_lJer(QK)
2KPd

<2 NpgP 4 9=Np vl (2K)~' +2d(2K)

Kr—1/2 1
Sincep > 1+ % we have 27 VP < 2_N(1+%). Also, since K = 28, (2K)*l = 9~ lA+1)
and since | > 2108 — N we have (2K)~! < 2= % (F+1) — 9=N(+3)  Finally, since

log(K) B>
2 VK <« K,

15 = Wy < (574 7

2K7Pd
_ARTd o) 9N/
Krij2—1 " )

1
We thus have, setting ¢y := (Kp + 1(35172/";_1 + Qd) v

N(1+1/ﬂ)

If = fllrny < 2™
Notice c2 only depends on d and p.
* Suppose that p(d — 1) = d. Itimpliesp > landp — 1 = ﬁ, then 8 = d — 1. We thus
have KP~1 = 2(d=1(P=1) — 2 Therefore, (37) becomes
1f = FlGon <27 VPK? +27NP2KPA(1 1) 4 2d(KP)
On the one hand, we have K~! < 27N, On the other, we have 27V < K~*t1 g0

I-1<N lsgg’ f( = % Putting it all together, we get

1f = Pl < 27NPKP 4+ 27 NP2KPA(1 - 1) + 24277

d
(Kp + 2Kpd— + 2d> N2~ NP,
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We thus have, setting c3 := (Kp + QKP— + Zd) v

_ L
If = fllzey < esNe2™ W

Notice c¢3 only depends on d and p.

Letting cq,, = max{c, c2, c3} yields the result. O

According to Proposition the function f constructed for a given N € N* can be implemented by

a Heaviside neural network with two hidden layers and W = 2(d + 1)? Zé:o |S;| weights. Using
Lemmal[7] we obtain

!
W =2(d Z|5|<2d+1 ZdK igi(d—1)+Nd+1
1=0

L /od-1
2Nd+2dd+122( >
=0

We let, for all N € N*,

l d—1 @
Wy = 2Nd+2d(d+1)2z<2K ) ) (38)
=0

Although we do not make the dependence explicit, W also depends on d and p. Observe that for all
d > 1: (Wy)nen~ is non-decreasing and limpy—, 4 oo Wy = +00.

Lemma 9. With the above notation: For any +00 > p > 1, there exist constants W) ;.. c!
depending only on d and p > 1 such that for all N satisfying Wy > W/ .

If = Fllzroy < €ip 9(Wai)

where f is constructed for the parameters N, p and d, and where for all W > 1,

p>0

w-l/d if (d—1)p < d,
gW)={ W s@D if (d—1)p>d
W-YdlogW if (d—1)p = d.

Proof. Again, we distinguish three cases depending on the values of p and d.

* Suppose that p(d—1) < d: if p = 1, 2%1 =3 < Lifp>1since ;23 >d—1,8>d~1
and % = 2418 < 1. Thus, in both cases % < landforall N > 1,

4d(d + 1)?
Nd Nd
Wy <2 (W 127,

Writing the inequality for N + 1, we obtain

Ndod 11
WN+1 §2 2 Cdp

2

1/d
Thatis: 2=V < 2 (V;]dvil) . Combined with (32),, this provides

1/d

3 cq 1/d
1f = Fllzeny < 2¢ap (VVNil> = da,WyY

for dgp = 2c4p(cj ,)"/* and all N € N*.
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o If p(d — 1) > d, then 3 < d — 1 and 2% = 24=1-8 > 1. Thus, reminding the definition
of [ in (28), we have for all N > 1

Wy < 2Ndo(d—1-8)(1+1) (4d(d+1)2) < 9Ndo(d—1-B)(N/B+2) <4d(d+1)2>

9d-1-5 _ 1 9d-1-5 _ 1
_ oN(d+(d=1)/8-1) 4d(d + 1)%22(4=1-5) . oN(+3)(d=1) 1
9d—1-8 _ 1 : Cd,p>

for a different constant ¢/} - Writing again this inequality for V + 1, we obtain

Wit < cg7p2(1+%)(d*1) N (1+§)(d-1)

1
. . _ 1 1 “ a—1 . .
which we can write 2~ V(+75) < 2(1+%) (V;dTil) . This provides

1
/!
(+1/8) at/s) (€ =y
27N <2y (d’p )
W1
Therefore, using (32), we obtain

1
"
; (A+1/8) Cd.p p(d=1) y ey
Hf - fHLP()\) S Cd,p2 P <WN+1> = ddﬁDWNil )

, a+ye) ! .
fordy ,=cap2 7 (c;,)7@ D andall N € N*.

e Ifp(d—1)=d,then § =d—1and % = 1. Thus, reminding the definition of / in (28},
we have forall N > 1

W = 2V02d(d + 1)%(1+ 1) < 2V 2d(d 4 1)? (g + 2)

= gMd (g + 2) (4d(d +1)%) =: 27 (N + 2) C.p

d—1
< 9d(d=1)(F5+2) <N + 2) i

d—1
N N
where ¢jj , = 4d(d + 1)*. Setting
~ dd—1 log 2 ~ N
Wy o= A UWNlos2 oy § g 1) ( + 2> log 2,
"y d—1
we can rewrite (39) as: ) 3 ~
Wxn < Nexp(N) . (40)

Since d > 2, cg,p > 0, (Wyx)nen- is non-decreasing and limy_, 1 oo Wy = +00, there
exists W), ... such that, for all N satisfying W > W/ .. we have the following:

min’

log(Wy) > 1
log(Wi41) > 2 log(2) d(d — 1)
log(Wn1) _ loglog(Winy1) _ 2(d—1) >

dlog(2) dlog(2)
log Wx4+1 > log <W> .

d,p

(41)

1
plog(2)

These inequalities will be used latter in the proof and, from now on, we always consider N
such that Wy > W/

min*

Let us first show by contradiction that, for all N satisfying Wx > W/ . . @0) implies that

N >log Wy — loglog Wy (42)
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Indeed, if the latter does not hold

N < log Wy — loglog Wy,

- W
exp(N) < N
log Wx

and therefore, multiplying the two inequalities, since (@T) implies that Wy > 0,log Wy >0
and log(log(Wy)) > 0,

Nexp(N) < Wy
The latter being in contradiction with {@0), we have proved that, for all N satisfying

Wy > W/ ., @) holds. Using the definition of N, we deduce
log Wy — log log Wx
N > -2 (d-1
- ( d(d —1)log(2) ( )
B log(Wy) _ loglog Wa .
dlog(2) dlog(2) ’
for the constant c = —2(d—1) < 0. Since (W) nven is non-decreasing, for all NV satisfying

Wy > W/ . . Wny1 > W)/ . and the inequality also holds for N + 1. That is

min’

IOg(WN—H) . log log WN+1

N+12> 43
= dlog(2) dlog(2) “43)
Using (32), we obtain:
1f = Fllzroy < capN727N < 2¢4,(N +1)p27 NFD,
Since, for t > pl%g@), the function ¢ —» £#2~* is non-increasing, using @3) and @T)) and
the fact that 7% + ¢ < 0, we obtain
5 1
~ P log(Wy 1) loglog W1
||f - f”LP()\) < QCd,p <IO§(IW1(\72-31)> 2= gdlog]\(,;r) 2 gdlig(é\)[+ 2—(:7
0g

1

+ el

21, ~ 141 5
= (o) st W5

P ap 1 gd g
= - (o)
(dlog(2))i/p ) "' N+1 OB TINHL
since p(d — 1) = d implies % + 1 = 1. Finally, using the definition of Wy and @), we
obtain .

If = Fllerny < dg, Wiy log Wiy,

e ~1/d
for the constant djj , = 2( 2 Cedp ) (d(d_l)logZ) and all N € N* such that

(dlog(2))/» <dp
Wy > Wy, Notice dj , only depends on d and p.

Taking c;; , = max(dg,p, dy ,,, dy ,) provides the announced statement. O

g _ / ! ! /
Proof of Proposition|6, Take Wi, = max(Wy,;,,, W) and ¢ = ¢ ,, where Wy, and ¢, are

from Lemma[9and W7 1s defined in (38). Let W > Wiy, there exists N € N* such that
Wy <W< WN+1-

Consider the architecture A with W weights, as in Proposition [T0} which allows to represent

piecewise-constant functions with less than % cubic pieces. It can represent piecewise-constant

. . WN .
functions with 3(a+n)z bieces.
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Figure 3: The set C, the set 9C N (0, 1)? and the indicator function f.

For any f € MY, the function f obtained for the parameter N is a piecewise-constant function with
at most Z(SVT’\{)Q pieces, therefore we have f € H 4 and, according to Lemma@ f satisfies

1F = Fllzr oy < apg(Wasn).

Moreover, since g is non-increasing, we have using ¢ = ¢/, »
)

1f = Flley < e g(W).
Therefore, for any f € M¢,
gief}fA 1f = gllLrpy < cg(W)
and so does the supremum over f in M¢,

This concludes the proof of Proposition [6]

E.2 Proof of Proposition[d]

Step 1: we prove the result in dimension d = 2.

We consider the closed disk of radius 1, centered at (1, 1),

C—{xeRzzi(axil)zgl}.

i=1

The intersection between (0, 1)? and the topological boundary C of C is the quarter of circle:

oC N (0,1)* = {x € (0,1)%: Z(;p,» —1)? = 1} :

i=1
We denote by f : [0,1]2 — {0, 1} the indicator function of the set C N [0, 1]2. The set C N [0, 1]2, the
set OC N (0,1)? and the function f are represented on Figure

Since no point in C¢ N [0, 1]? has all its coordinates strictly larger than those of a point in C, we have
f € M? (monotonic functions of 2 variables). We consider an arbitrary neural network architecture
Aand g € Hy.

Let W > 1 be the number of weights in the architecture A. As is well known for Heaviside neural
networks, there exist & € N with K < 2", reals a; and polygons A; C [0, 1%, forj € {1,...,K},
such that for all z € [0, 1]

K
o) = 3" 0yl (@),
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Moreover, (A;)1<;<x form a partition of [0, 1]%.

The proof relies on the fact (proved afterwards) that, if ||f — g[loc < 3 then C N (0,1)? is finite.
The latter being false, we conclude that || f — g[/ec > 3.

Assume from now on that || f — g||oc < 3. This implies that g > 3 on C, and g < § elsewhere. Let
us first show that we then have

K
acn(0,1)* c [ Jo4;.
j=1

Indeed, if the latter were not true, then there would exist x € 9C N (0,1)? and j € {1,..., K} such

that x € A] Since C is closed, x € C. Let € > 0 be such that B(x,¢) C A;. We have B(x,¢) ¢ C
(otherwise, = belongs to the interior of C which contradicts € JC). Thus there exists z € B(z, €) \C.
Since g > % onC,and g < % elsewhere, we have

9(2) < 3 < 9la).

This is not possible since z, 2 € /Olj and g is constant on A;. This concludes the proof of the following
fact: if || f — glloo < 3 then 8C N (0,1)* C U, < ;< i 945

Since the A; are polygons (recall that we work in dimension 2), their boundaries are finite unions of
closed line segments. Then C N (0, 1)? is included in a finite union of closed line segments which
we denote S,,, form € {1,..., M}. The reader may already see that this is in contradiction with the
fact that AC N (0, 1)? is a quarter circle. To detail this argument and complete the announced proof,

we show that 9C N (0,1)2 C Ui/f:l S, implies that C N (0, 1)? is finite.
To do so, since when AC N (0,1)2 ¢ (JY_, S,,, we have
M

U (0cn(0,1)>nS,,) =acn(0,1)%,

m=1
it suffices to prove that the intersection of any closed line segment S with dC N (0, 1)? contains at
most 2 points.

Denote by S a closed line segment: C and S are convex and hence connected, thus C N .S is either
empty, a singleton or a line segment, as a connected compact subset of S. If it is empty, then a
fortiori, 0C N (0,1)?2 N .S = 0. If it is not, denote by y and z its extremities (assuming z = y in the

case of a singleton). By strict convexity of the function x — Z?Zl (x; — 1)2, the open line segment
(y, z) is included in C ( (y, z) = () in the case of a singleton), hence

acn(0,1)2nS c [y,2]\C c {y,z}.

In any case, we have |0C N (0,1)2N S| < 2.

This concludes the proof of the fact: if || f — gl|oc < 3 then C N (0, 1) is finite and concludes the
proof in the case d = 2.

Step 2: we prove the result in any dimension d > 2, by a reduction to dimension 2.
We define

d
C{xGRd:Z(xil)le} ,
i=1
and the function f : [0,1]¢ — R by
[, o za) =Ly aayec -
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Consider an arbitrary neural network architecture A and g € H 4. That is, g can be represented by a
Heaviside neural network with d input neurons. Note that

sup |f(z1, 20,25 ...,2q) — g(x1, 22,23 ..., 2q)]
z1,T2,23...,24€[0,1]

> sup |f(xy,20,1...,1) —g(xy,29,1...,1)]
z1,z2€0,1]

1
>

el 5 )

where the last inequality is by the result of Step 1, since (1, x2) € [0,1]? = f(x1,22,1...,1) s
the indicator function of Step 1, and (21, z2) € [0,1]2 + g(z1,22,1...,1) can be represented by a
Heaviside neural network with 2 input neurons. This concludes the proof.

Remark. Note from the above proof that, though we only stated the impossibility result for piecewise-
constant activation functions, an analogous statement in fact holds more generally for piecewise-affine
activation functions.

F Barron space

In Section[5|we mentioned that the Barron space introduced in [Bar93]| is one among several examples
for which approximation theory provides ready-to-use lower bounds on the packing number. This
space has received renewed attention recently in the deep learning community, in particular because
its “size” is sufficiently small to avoid approximation rates depending exponentially on the input
dimension d. Next we detail how to apply Corollary|l|in this case.

Definition of the Barron space. We start by introducing the Barron space, as defined in [PV21]].
Let d € N*. For any constant C' > 0, the Barron space B;(C') is the set of all functions
f ¢ [0,1]* — [0,1] for which there exist a measurable function F' : R¢ — C and some
c € [~C, C] such that, for all = € [0,1],

f@)=c+ [ (@S- DF©E  amd [ Jelir@ue<c
where x - £ denotes the standard scalar product in between = and &.

Known lower bound on the packing number. Petersen and Voigtlaender [PV21]] showed a tight
lower bound on the log packing number in LP (), [0, 1]¢) norm, which we recall below.

Proposition 11 (Proposition 4.6 in [PV21]]). Let 1 < p < +oo. There exist constants €y, co > 0
depending only on d and C' such that for any € < €,

log M (2, Ba(C), || - || 1r) > coe™ /3 Fa). (44)

Consequence on the approximation rate by piecewise-polynomial neural networks. Plugging
the lower bound of Proposition [IT] in Corollary [T| we obtain the following lower bound on the
approximation error of the Barron space by piecewise-polynomial neural networks.

Proposition 12. Let 1 < p < 400, d > 1. Let 0 : R — R be a piecewise-polynomial function on
K > 2 pieces, with maximal degree v € N. Consider the Barron space By(C') defined above, with
C > 0. There exist positive constants c1, Ca, c3, Wiin depending only on d, p, C, K and v such that,
for any architecture A of depth L > 1 with W > Wnin weights, and for the activation o, the set H 4
(cf. Section[l)) satisfies

aW ' ilogTTH(W)  ifv>2,
sup inf ||f — gl = {8 c(LW)"2dlog 2 4(W) ifv=1, (45)
feBa(C)9EHA _1_1 _3_3 .
csW—z7dlog™ 2" a (W) ifv=0.
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