
A general approximation lower bound in Lp norm,
with applications to feed-forward neural networks

Supplementary Material

This is the appendix for “A general approximation lower bound in Lp norm, with applications to
feed-forward neural networks”.

A Feed-forward neural networks: formal definition

In all this paper, we use the following classical graph-theoretic definitions for feed-forward neural
networks given, e.g., in [BHLM19] (with slightly different terms and notation).

A feed-forward neural network architecture A of depth L ≥ 1 is a directed acyclic graph (V,E) with
d ≥ 1 nodes with in-degree 0 (also called the input neurons), a single node with out-degree 0 (also
called the output neuron), and such that the longest path in the graph has length L.

We define layers ℓ = 0, 1, . . . , L recursively as follows:

• layer 0 is the set V0 of all input neurons; we assume that V0 = {1, . . . , d} without loss of
generality.

• for any ℓ = 1, . . . , L, layer ℓ is the set Vℓ of all nodes that have one or several predecessors5

in layer ℓ−1, possibly other predecessors in layers 0, 1, . . . , ℓ−2, but no other predecessors.

Layer L consists of a single node: the output neuron. Layers 1, . . . , L − 1 are called the hidden
layers (if L ≥ 2). Note that skip connections are allowed, i.e., there can be connections between
non-consecutive layers.

Given a feed-forward neural network architecture A of depth L ≥ 1, we associate real numbers
we ∈ R to all edges e ∈ E and wv ∈ R to all nodes v ∈ V1 ∪ . . .∪ VL. These real numbers are called
weights (they correspond to linear coefficients and biases) and are concatenated in a weight vector
w ∈ RW , where W = Card(E) +

∑L
ℓ=1 Card(Vℓ) is the total number of weights.

Given A, an associated weight vector w ∈ RW , and a function σ : R → R (called activation function),
the network represents the function gw : Rd → R defined recursively as follows. We write Pv ⊂ V
for the set of all predecessors of any node v ∈ V , and wu→v for the weight on the edge from u to v.
The recursion from layer ℓ = 0 to layer ℓ = L reads: given x = (x1, . . . , xd) ∈ Rd,

• each input neuron v ∈ {1, . . . , d} outputs the value yv := xv;

• for any ℓ = 1, . . . , L− 1, each neuron v ∈ Vℓ outputs yv := σ
(∑

u∈Pv
wu→vyu + wv

)
;

• the unique output neuron v ∈ VL outputs gw(x) :=
∑

u∈Pv
wu→vyu + wv .

Finally, we define HA := {gw : w ∈ RW } to be the set of all functions that can be represented by
tuning all the weights assigned to the network (the dependency on the activation function σ is not
written explicitly).

B Main results: technical details

We provide technical details that were missing to establish Proposition 1, Theorem 1 and Corollary 1.

5A node u ∈ V is a predecessor of another node v ∈ V if there is a directed edge from u to v.

14

B.1 Proof of Proposition 1

Proposition 1 is a direct extension of [Men02, Corollary 3.12] to any range [a, b]. We first recall this
result but in slightly different terms (see the comments afterwards).
Proposition 7 (Corollary 3.12 in [Men02], “almost equivalent” statement). Let G be a set of
measurable functions from a measurable space X to [0, 1], such that fatγ(G) < +∞ for all γ > 0.
Then, for every 1 ≤ p < +∞, there is some constant cp > 0 depending only on p such that, for every
probability measure µ on X and every ε > 0,

logM
(
ε,G, ∥ · ∥Lp(µ)

)
≤ cp fat ε

32
(G) log2

(
2 fat ε

32
(G)

ε

)
.

To be precise, [Men02, Corollary 3.12] was stated a little differently. Instead of the assumption on
fatγ(G), there were two conditions on G: (i) G satisfies a weak measurability assumption such as the
“image admissible Suslin” property, and (ii) G is a uniform Glivenko-Cantelli class. Fortunately, note
that assumption (i) could easily be checked in special cases such as the setting of Corollary 1, and
that assumption (ii) is equivalent to fatγ(G) < +∞ for all γ > 0 when (i) holds and when G only
consists of [0, 1]-valued functions (see [ABDCBH97], Theorem 2.5). The two statements are thus
“almost equivalent”. However, we stress that (i) and (ii) are not necessary (assuming fatγ(G) < +∞
for all γ > 0). To see why, it suffices to adapt the proof of [Men02, Corollary 3.12] as follows:
instead of starting from an ε-packing of G in empirical Lp(µn) norm and showing that it is also
an ε′-covering of G in Lp(µ) norm, with ε′ > ε, we can start from an ε-packing of G in Lp(µ)
norm and show that it is also an ε-packing of G in empirical Lp(µn) norm for some large integer n
(with positive probability). This last statement directly follows from the Hoeffding inequality: no
uniform law of large numbers is required, since we only need to compare empirical averages to their
expectations for a finite number of bounded functions.6

We now explain how to derive Proposition 1 (with an arbitrary range [a, b]) as a straightforward
consequence of Proposition 7.

Proof (of Proposition 1). In order to apply Proposition 7, we reduce the problem from [a, b] to
[0, 1] by translating and rescaling every function in G. For g ∈ G, we define g̃ : X → [0, 1] by
g̃(x) = g(x)−a

b−a , and we set
G̃ = {g̃ : g ∈ G} .

Note that every g̃ ∈ G̃ is indeed [0, 1]-valued.

We now note that translation does not affect packing numbers nor the fat-shattering dimension, while
rescaling only changes the scale ε by a factor of b− a. More precisely, we have the following two
properties:

Property 1: For all u > 0, fat u
b−a

(G̃) = fatu(G).

Property 2: For all u > 0, M
(

u
b−a , G̃, ∥ · ∥Lp(µ)

)
= M

(
u,G, ∥ · ∥Lp(µ)

)
.

Before proving the two properties (see below), we first conclude the proof of Proposition 1. By
Property 1, fatγ(G̃) = fatγ(b−a)(G), which by assumption is finite for all γ > 0. Since every g̃ ∈ G̃
is [0, 1]-valued, we can thus apply Proposition 7. Using it with ε̃ = ε/(b− a), we get

logM
(
ε̃, G̃, ∥ · ∥Lp(µ)

)
≤ cp fat ε̃

32
(G̃) log2

(
2 fat ε̃

32
(G̃)

ε̃

)
.

Combining with the two equalities in Properties 1 and 2, we obtain

logM
(
ε,G, ∥ · ∥Lp(µ)

)
≤ cp fat ε

32
(G) log2

(
2(b− a) fat ε

32
(G)

ε

)
,

which concludes the proof of Proposition 1.

We now prove the two properties.

6In passing, all occurrences of fat ε
32
(G) could be replaced with fat ε

8
(G).

15

Proof of Property 1. We first show that fat u
b−a

(G̃) ≥ fatu(G). To that end, let S = {x1, . . . , xm}
and r : S → R be such that for any E ⊂ S, there exists g ∈ G such that g(x) ≥ r(x) + u if x ∈ E

and g(x) ≤ r(x)−u otherwise. Setting r̃(x) = r(x)−a
b−a , we can see that g̃(x) ≥ r̃(x)+ u

b−a if x ∈ E

and g̃(x) ≤ r̃(x)− u
b−a otherwise, which proves fat u

b−a
(G̃) ≥ fatu(G). The reverse inequality is

proved similarly.

Proof of Property 2. Let {g1, . . . , gm} be a u-packing of G in Lp(µ) norm. This means that
∥gi − gj∥Lp(µ) > u and therefore ∥g̃i − g̃j∥Lp(µ) > u

b−a for all i ̸= j ∈ {1, . . . ,m}, so that
{g̃1, . . . , g̃m} ⊂ G̃ is a u

b−a -packing of G̃. This proves M
(

u
b−a , G̃, ∥·∥Lp(µ)

)
≥ M

(
u,G, ∥·∥Lp(µ)

)
.

The reverse inequality is proved similarly.

B.2 Clipping can only help

The next two lemmas indicate that clipping (truncature) to a known range can only help. These are
key to apply Proposition 1 in our setting. In the sequel, for a set G of functions from a set X to R, and
for a < b in R, we denote by G[a,b] the set of all functions in G whose values are truncated (clipped)
to the segment [a, b], that is, G[a,b] = {g̃ : g ∈ G}, where g̃ : X → R is given by

∀x ∈ X , g̃(x) = min(max(a, g(x)), b) .

Lemma 3. Let G be a set of functions defined on a set X , and with values in R. Let G[a,b] be defined
as above. Then, for any γ > 0,

fatγ(G) ≥ fatγ(G[a,b]) .

Proof. Let γ > 0. The case when fatγ(G[a,b]) = 0 is straightforward. We thus assume that
fatγ(G[a,b]) ≥ 1. To prove the result, we show that any subset A of X that is γ-shattered by G[a,b]

is also γ-shattered by G. Let us consider such a subset A = {x1, . . . , xN} ⊂ X , with cardinality
N ≥ 1. Hence, there exists {r1, . . . , rN} ⊂ R such that for any E ⊂ A, there exists g̃ ∈ G[a,b]

such that g̃(xi) − ri ≥ γ if xi ∈ E and g̃(xi) − ri ≤ −γ otherwise. Note that this must imply
that ri ∈]a, b[for all i = 1, . . . , N (indeed, by choosing E such that xi ∈ E or not, we have either
ri+γ ≤ g̃(xi) ≤ b or ri−γ ≥ g̃(xi) ≥ a). Now fix i ∈ {1, . . . , N} and let us assume g̃(xi)−ri ≥ γ
(by symmetry, the reversed case g̃(xi) − ri ≤ −γ is treated the same way). Because ri > a, this
implies that g̃(xi) > a and thus g(xi) ≥ g̃(xi) (by definition of g̃), which entails g(xi)− ri ≥ γ. It
follows that if G[a,b] γ-shatters A, then G also γ-shatters A, and the result follows.

The following lemma formalizes the well-known idea that it is easier to approach a function with
values in a finite range by a function with values in the same range.
Lemma 4. Let G be a set of measurable functions from a measurable space X to R, and let G[a,b]

be defined as above. Assume F is a set of measurable functions from X to [a, b]. Then, for any
probability measure µ on X ,

sup
f∈F

inf
g∈G

∥f − g∥Lp(µ) ≥ sup
f∈F

inf
g̃∈G[a,b]

∥f − g̃∥Lp(µ) .

Proof. To prove the above result, it is enough to show that for any f ∈ F and g ∈ G, the function
g̃ is pointwise at least as close to f as g is, which for all f ∈ F yields infg∈G ∥f − g∥Lp(µ) ≥
inf g̃∈G[a,b]

∥f−g̃∥Lp(µ). By definition of G[a,b], for any x ∈ X , if g(x) ∈ [a, b], then |f(x)−g(x)| =
|f(x) − g̃(x)|. And if g(x) /∈ [a, b], then |f(x) − g̃(x)| < |f(x) − g(x)| since f(x) ∈ [a, b]. It
follows that the discrepancy |f − g̃| is everywhere bounded by |f − g|, and the result follows.

B.3 Missing details in the proof of Theorem 1

We provide all details that were missing to derive (9), which is a direct consequence of Lemma 5
below. We follow the convention aP− 1

α log−
2
α (P) = +∞ when P = 1.

Lemma 5. Let P ∈ N∗ and c, α, r > 0. There exist constants a, ε′′1 > 0 depending only on c, α
and r such that, for all ε ∈ (0, r) satisfying

ε−α ≤ cP log2
(
rP

ε

)
, (16)

16

we have
ε ≥ min

(
ε′′1 , aP

− 1
α log−

2
α (P)

)
.

Proof. Assume ε ∈ (0, r) is such that (16) holds. To show the result, we study the function
f : (1/r,+∞) → R defined for all x > 1/r by

f(x) =
xα

log2(rPx)
.

Note that (16) implies that f(1/ε) ≤ cP . For all P ≥ 2, we set

εP = P− 1
α log−

2
α (P) . (17)

Let P1 ≥ 2 be such that P
1
α
1 log

2
α (P1) ≥

exp(2
α)

r . For all P ≥ P1, we have 1
εP

≥ exp(2
α)

r > 1/r and

f

(
1

εP

)
=

P log2(P)

log2
(
rP 1+ 1

α log
2
α (P)

) .

Since

lim
Q→+∞

log2(Q)

log2
(
rQ1+ 1

α log
2
α (Q)

) =
1

(1 + 1
α)

2
=: c1 ,

there exists P2 such that for all Q ≥ P2, we have log2(Q)

log2
(
rQ1+ 1

α log
2
α (Q)

) ≥ c1
2 .

Below we distinguish the cases P ≥ max(P1, P2) and P < max(P1, P2).

1st case: P ≥ max(P1, P2).
We have f

(
1
εP

)
≥ c1P

2 and P ≥ 1
cf
(
1
ε

)
(by (16)), so that f

(
1
εP

)
≥ c1

2cf
(
1
ε

)
. We now use

Lemma 6 below with b = c1
2c : setting a := (b/2)1/α = (c1/(4c))

1/α, there exists x1 > max
{

1
r ,

1
ar

}
depending only on r, b, α such that bf(x) ≥ f(ax) for all x ≥ x1.

Therefore, if ε < 1
x1

=: ε1, then c1
2cf
(
1
ε

)
≥ f

(
a
ε

)
. Therefore f(1

εP
) ≥ f

(
a
ε

)
.

Recall from (17) and P ≥ P1 that 1
εP

≥ exp(2
α)

r . If ε < ar
exp(2

α)
=: ε2, then we also have a

ε ≥ exp(2
α)

r .

Therefore, using Lemma 6 again, f(1
εP

) ≥ f(aε) implies that 1
εP

≥ a
ε , that is,

ε ≥ a εP .

Summarizing, when ε ∈ (0, r) satisfies (16) and when P ≥ max(P1, P2), either ε ≥ ε1 or ε ≥ ε2 or
ε ≥ a εP . Put differently,

ε ≥ min(ε1, ε2, a εP) . (18)

2nd case: P < max(P1, P2) =: P3.
Using (16) and the fact that t 7→ ct log2

(
rt
ε

)
is non-decreasing on [ε/r,+∞), together with ε/r ≤

1 ≤ P ≤ P3 yields ε−α ≤ cP3 log
2(rP3/ε). This entails that, for some ε3 > 0 depending only on

α, c, P3, r,
ε ≥ ε3 . (19)

Conclusion: combining the two cases, when ε ∈ (0, r) satisfies (16), whatever P ∈ N∗, we have
(18) or (19). Setting ε′′1 = min(ε1, ε2, ε3), we obtain

ε ≥ min
(
ε′′1 , a P

− 1
α log−

2
α (P)

)
.

(Note that this is also true in the case P = 1, by the convention aP− 1
α log−

2
α (P) = +∞.) Since

ε1, ε2, ε3 and a only depend on c, α, r, this concludes the proof.

Lemma 6. Let α, r > 0 and P ∈ N∗. We define f(x) = xα

log2(rPx)
for all x > 1/r. Then:

17

i) f is increasing on I :=
[
exp(2

α)

r ,+∞
)

and limx→+∞ f(x) = +∞.

ii) for all b > 0, setting a := (b/2)1/α, there exists x1 > max
{

1
r ,

1
ar

}
depending only on

r, b, α such that,
∀x ≥ x1 , bf(x) ≥ f(ax) .

Proof. Proof of i): The fact that limx→+∞ f(x) = +∞ is because α > 0. To see why f is increasing
on I , note that

f ′(x) =
αxα−1 log2(rPx)− xα2 log(rPx) 1x

log4(rPx)
=

xα−1 log(rPx)(α log(rPx)− 2)

log4(rPx)
,

so that f ′(x) > 0 for all x >
exp(2

α)

rP , and in particular for all x >
exp(2

α)

r (since P ≥ 1). This proves
that f is increasing on I .

Proof of ii): Let b > 0 and set a := (b/2)1/α. Let x1 > max
{

1
r ,

1
ar

}
depending only on r, b, α such

that, for all u ≥ x1,
log2(ru)

log2(rau)
≤ 2 .

(Such an x1 exists since the ratio converges to 1 as u → +∞, and we can choose x1 as a function
of r, a only.) Now, for all x ≥ x1, using the above inequality with u = Px ≥ x (since P ≥ 1), we
get

f(ax)

f(x)
= aα

log2(rPx)

log2(rPax)
≤ 2aα = b ,

where the last equality is because a := (b/2)1/α. This proves that bf(x) ≥ f(ax) for all x ≥ x1.

B.4 Proof of Corollary 1

We first recall some definitions and two key bounds on the VC-dimension of piecewise-polynomial
feed-forward neural networks, proved by [GJ95] and [BHLM19].

For a set F of functions from X to {−1, 1}, we say that a set S = {x1 . . . , xN} ⊂ X is shattered
by F if for any E ⊂ S, there exists f ∈ F satisfying for all i = 1, . . . , N , f(xi) = 1 if xi ∈ E, and
f(xi) = −1 if xi /∈ E. The VC-dimension of F , denoted by VCdim(F), is defined as the largest
number N ≥ 1 such that there exists S ⊂ X of cardinality N which is shattered by F (by convention,
VCdim(F) = 0 if no such set S exists, while VCdim(F) = +∞ if there exist sets S of unbounded
cardinality N).

Let B be any feed-forward neural network architecture of depth L ≥ 1 with W ≥ 1 weights, d ≥ 1
input neurons, and U ≥ 1 hidden or output neurons. Let σ : R → R be any piecewise-polynomial
activation function on K ≥ 2 pieces, with maximal degree ν ∈ N. Denote by sgn(HB) = {sgn(gw) :
w ∈ RW } the set of all classifiers obtained by looking at the sign of the network’s output, that is, the
classifiers defined by sgn(gw)(x) = 1{gw(x)>0} for all x ∈ Rd.

Goldberg and Jerrum [GJ95] showed that, for some constant c′1 > 0 depending only on d, ν and K,
the VC-dimension of sgn(HB) is bounded as follows (see also Theorem 8.7 in [AB99]):

VCdim(sgn(HB)) ≤ c′1W
2 . (20)

This bound was refined for piecewise-affine activation functions. Namely, Bartlett et al. [BHLM19,
Theorem 7] proved that, if U ≥ 3, then, for some R ≤ U + U(L− 1)νL−1,

VCdim(sgn(HB)) ≤ L+ L̄W log2

(
4e(K − 1)R log2

(
2e(K − 1)R

))
,

where L̄ = 1 if ν = 0, and L̄ ≤ L otherwise. Therefore, for some constants W ′
min ≥ 1 and c′2, c

′
3 > 0

depending only on d and K, we have, for all W ≥ W ′
min (which in particular implies U ≥ 3),

VCdim(sgn(HB)) ≤
{

c′2LW log(W) if ν = 1 ,
c′3W log(W) if ν = 0 .

(21)

We are now ready to prove Corollary 1 from Theorem 1.

18

Proof (of Corollary 1). In order to apply Theorem 1, we first bound P := Pdim(HA) from above.
The bounds (20) and (21) were on the VC-dimension of sgn(HB), for any feed-forward neural
network architecture B, while we need a bound on the pseudo-dimension. However, by a well-known
trick (e.g., Theorem 14.1 in [AB99]), the pseudo-dimension of HA is upper bounded by the VC-
dimension of (the sign of) an augmented network architecture of depth L, with d+ 1 input neurons
and W + 1 weights.7 Therefore, replacing (d,W) with (d+ 1,W + 1) in (20) and (21), we get that,
for some constants W̃min ≥ 1 and c̃1, c̃2, c̃3 > 0 depending only on d, ν and K, for all W ≥ W̃min,

P ≤

 c̃1W
2 if ν ≥ 2 ,

c̃2LW log(W) if ν = 1 ,
c̃3W log(W) if ν = 0 .

(22)

Now, by Theorem 1, we have, for some constants c1, ε1 > 0 depending only on b− a, p, c0, ε0, α,

sup
f∈F

inf
g∈HA

∥f − g∥Lp(µ) ≥ min
{
ε1, c1P

− 1
α log−

2
α (P)

}
. (23)

Noting that P 7→ min
{
ε1, c1P

− 1
α log−

2
α (P)

}
is non-increasing and plugging (22) into (23), we

get, for W ≥ Wmin,

sup
f∈F

inf
g∈HA

∥f − g∥Lp(µ) ≥ min

ε1,

 c4W
− 2

α log−
2
α (W 2) if ν ≥ 2

c5(LW log(W))−
1
α log−

2
α (LW log(W)) if ν = 1

c6(W log(W))−
1
α log−

2
α (W log(W)) if ν = 0




for some constants Wmin ≥ 1 and c4, c5, c6 > 0 depending only on d, ν, K, b− a, p, c0, ε0 and α.
Taking Wmin large enough, the first term ε1 is always larger than the second term in the above
minimum, and the logarithmic terms log(W log(W)) and log(LW log(W)) can be upper bounded
by a constant times log(W) (since L ≤ W). Rearranging concludes the proof.

C Earlier works: two other lower bound proof strategies

Approximation lower bounds in a sense similar to ours have been obtained in other recent works. In
the purpose of highlighting the differences between the different approaches, we describe the lower
bound proof strategies of Yarotsky [Yar17] and of Petersen and Voigtlaender [PV18].

C.1 Approximation in sup norm of Sobolev unit balls with ReLU networks [Yar17]

Recall that the Sobolev space Wn,∞([0, 1]d) is defined as the set of functions on [0, 1]d lying in L∞

along with all their weak derivatives up to order n. We equip this space with the norm

∥f∥Wn,∞([0,1]d) = max
n∈Nd:|n|≤n

ess sup
x∈[0,1]d

|Dnf(x)|,

and we let Fn,d be the unit ball of this space.

We first state the sup norm lower bound and then we give a synthesized version of the proof.
Proposition 8 ([Yar17]). There exists positive constants Wmin, c > 0 such that for any feed-forward
neural network with architecture A, ReLU activation and W ≥ Wmin weights,

sup
f∈Fn,d

inf
g∈HA

∥f − g∥∞ ≥ cW− 2n
d .

Details aside, the proof reads as follows. The author assumes that HA approximates Fn,d with
error ε. Fixing N = cn,d(3ε)

−1/n for a properly chosen constant cn,d > 0, he constructs a set of
functions in Fn,d that can shatter a grid of Nd points x1, . . . , xNd evenly distributed over [0, 1]d. The
assumption that HA approximates Fn,d in sup norm with error ε allows to conclude that HA also
shatters {x1, . . . , xNd}, and hence, VCdim(HA) ≥ Nd = c′n,dε

− d
n , for a properly chosen constant

7This is because Pdim(HA) = VCdim
(
{(x, r) ∈ Rd ×R 7→ 1{g(x)−r>0} : g ∈ HA}

)
, the output neuron

of A is linear, and we allow skip connections.

19

c′n,d > 0. The author concludes using the upper bound on VCdim(HA) with respect to W from
[AB99] which yields VCdim(HA) ≤ c′W 2 for some constant c′.

It is worth stressing that in this proof, it is paramount to assume that HA approximates Fn,d in sup
norm, rather than any Lp norm with p < +∞. The reason is that only this choice of norm allows to
bound the discrepancy between f ∈ Fn,d and gf ∈ HA chosen optimally with respect to f at any
chosen points. Our proof strategy relying on Proposition 1 allows to circumvent this issue by relating
the pseudo-dimension to the metric entropy with respect to any Lp norm, 1 ≤ p < +∞.

C.2 Approximation in Lp norm of Horizon functions with quantized networks [PV18]

The authors study quantized neural networks, that is, networks with weights constrained to be
representable with a fixed number of bits. They obtain a lower bound on the minimal number of
weights in a quantized neural network that can approximate a set of Horizon functions in Lp norm,
p > 0, with error ε > 0. This lower bound is easily invertible to a bound on the approximation error
and is thus comparable to the results we obtain in this paper.

Textually, the authors introduce the set of horizon functions as follows: “These are {0, 1}-valued
functions with a jump along a hypersurface and such that the jump surface is the graph of a smooth
function” [PV18]. Denoting by H the indicator function of the set [0,+∞)×Rd−1, the set of horizon
functions reads as

HFβ,d,B =

{
f ◦ T ∈ L∞

([
−1

2
,
1

2

]d)
:

f(x) = H(x1 + γ(x2, . . . , xd), x2, . . . , xd), γ ∈ Fβ,d−1,B , T ∈ Π(d,R)

}
,

where Fβ,d−1,B denotes the set of Hölder functions over [−1/2, 1/2]
d−1 whith smoothness parameter

β and with norm ∥.∥Cn,α bounded by B (see Section 3), and Π(d,R) denotes the group of d-
dimensional permutation matrices.

In the following, for any nonzero integer K and any neural network architecture A, we denote by
HK

A ⊂ HA the set of K-quantized functions in HA; namely, the functions in HA with weights
representable using at most K bits. The lower bound in [PV18] (Theorem 4.2) reads as follow:
Proposition 9 ([PV18]). Let d ≥ 2. Let p, β,B, c0 > 0 and let σ : R → R be such that σ(0) = 0.
There exist positive constants ε0, c > 0 depending only on d, p, β,B and c0 such that, for any ε ≤ ε0,
setting K = ⌈c0 log(1/ε)⌉, for any feed-forward neural network architecture A with W weights and
activation σ such that HK

A approximates HFβ,d,B in Lp norm with error less than ε, we have

W ≥ cε−
p(d−1)

β log−1(1/ε).

The proof of this result is based on a lemma giving a lower bound on the minimal number of
bits ℓ necessary for a binary encoder-decoder pair to achieve an error less than ε > 0 in ap-
proximating HF := HFβ,d,B in Lp norm. Formally, given an integer ℓ > 0, a binary encoder
Eℓ : HF → {0, 1}ℓ and given a decoder Dℓ : {0, 1}ℓ → HF , one can measure an approximation
error

sup
f∈HF

∥f −Dℓ(Eℓ(f))∥Lp ,

which quantifies the loss of information due to the encoding Eℓ. Clearly, for an optimal choice of
encoder, one can reduce this loss of information by increasing ℓ. In particular, for ε > 0, it is possible
to estimate

ℓε = min

{
ℓ > 0 : inf

Eℓ,Dℓ
sup

f∈HF
∥f −Dℓ(Eℓ(f))∥Lp ≤ ε

}
,

with the convention that ℓε = ∞ if the above set is empty. The authors show in their Lemma B.3 that
for ε small enough (smaller than some ε0 > 0), it holds that

ℓε ≥ cε−
p(d−1)

β (24)

20

for some constant c > 0 depending only on d, p, β and B. In other words, one can not achieve a loss
of information smaller than ε by encoding functions in HF over less than cε−

p(d−1)
β bits.

The rest of the proof consists in showing that for an integer K > 0, given a neural network architecture
A with W weight that can approximate HF in Lp norm with error less than ε > 0, one can encode
exactly (without loss of information, and for a given activation function) any function in HK

A over
a string of ℓ = c1W (K + ⌈log2 W ⌉) bits. This generates a natural encoder-decoder system where
any function f ∈ HF is encoded as the bit string of length ℓ associated to gf ∈ HK

A chosen to
approximate f . It remains to observe that if we fix K, this automatically yields a lower bound on ℓ
using inequality (24), and thus on W by expressing W through ℓ and K.

Remark. The authors in [PV18] study the neural network approximation in a setting slightly different
from ours, since they focus on the approximation by quantized neural networks. This partly explains
why their proof strategy differs from ours. However, it is worth pointing out that the proof of their
lower bound on the minimal number of bits required to accurately encode a function in HF relies on
a lower bound of the packing number of HF , just like the lower bound of the packing number of the
set to approximate is key in our proof strategy. An interesting question for the future would be to
see whether our general lower bound (Theorem 1) yields lower bounds of the same order as those in
[PV18] for quantized neural networks.

D Hölder balls

D.1 Proof of Lemma 2

Though not necessarily stated this way, many arguments below are classical (see, e.g., Theorem 3.2
by [GKKW02] with a similar construction for lower bounds in nonparametric regression).

Let N ∈ N∗. For m = (m1, . . . ,md) ∈ {0, . . . , N−1}d, we let xm := 1
N (m1+1/2, . . . ,md+1/2)

and we denote by Cm the cube of side-length 1
N centered at xm, with sides parallel to the axes. We

see that the Nd cubes Cm decompose the cube [0, 1]d in smaller parts which, up to negligible sets
which will not be problematic, form a partition of [0, 1]d. We will use this decomposition to construct
a packing of Fs,d. Denoting ∥ · ∥ the sup norm in Rd, we define the C∞ test function ϕ : Rd → R by:

ϕ(x) = exp

(
− ∥x∥2

1− ∥x∥2

)
,

for any x ∈ Rd such that ∥x∥ < 1, and ϕ(x) = 0 otherwise. Recalling that n ∈ N and α ∈ (0, 1] are
such that s = n+ α, and since all the high-order partial derivatives of ϕ are uniformly bounded on
[0, 1]d, ∥ϕ∥Cn,α is thus finite and is nonzero.

Let cs = 1
2 (2N)−s∥ϕ∥−1

Cn,α and consider, for any tensor of signs σ = (σm)m∈{0,··· ,N−1}d ∈
{−1, 1}Nd

, the function fσ defined as follows:

fσ(x) = cs
∑

m∈{0,...,N−1}d

σmϕ (2N(x− xm)) ,

for all x ∈ [0, 1]d. There are 2N
d

different functions fσ .

Let us prove that, for all σ ∈ {−1, 1}Nd

, fσ ∈ Fs,d. To do so, we study the constituents of ∥fσ∥Cn,α

separately and show that they are all bounded by 1. For m ∈ {0, · · · , N −1}d, we define the function
gm(x) = csσmϕ (2N(x− xm)). Note that because ϕ vanishes outside (−1, 1)d, we have that gm
vanishes everywhere outside the interior of Cm, and the same holds for Dngm for all n ∈ Nd such
that |n| ≤ n. For any such n, we have

∥Dngm∥∞ = cs(2N)|n|∥Dnϕ∥∞ ≤ cs(2N)s∥ϕ∥Cn,α ≤ 1

2
.

Therefore,
max

n:|n|≤n
∥Dnfσ∥∞ ≤ 1.

21

Now for any n ∈ Nd such that |n| = n, any x, y ∈ [0, 1]d, we have

|Dnfσ(x)−Dnfσ(y)|
∥x− y∥α2

=
|Dngm(x)−Dngm′(y)|

∥x− y∥α2
,

where x ∈ Cm and y ∈ Cm′ for some multi-indexes m and m′. We have to distinguish between the
cases m = m′ and m ̸= m′. In the former case, we have

|Dnfσ(x)−Dnfσ(y)|
∥x− y∥α2

= cs(2N)n+α |Dnϕ(2N(x− xm))−Dnϕ(2N(y − xm))|
∥2N(x− xm)− 2N(y − xm)∥α2

= cs(2N)s
|Dnϕ(x′)−Dnϕ(y′)|

∥x′ − y′∥α2

≤ cs(2N)s∥ϕ∥Cn,α =
1

2
,

where at the second line, we used the changes of variables x′ = 2N(x− xm) and y′ = 2N(y − xm).
In the case m = m′ (x and y belong to the same cube), we thus have

|Dnfσ(x)−Dnfσ(y)|
∥x− y∥α2

≤ 1.

In the case m ̸= m′, observe that we have

|Dngm(x)−Dngm′(y)| ≤ 2max{|Dngm(x)|, |Dngm′(y)|}. (25)

Besides, recall that Dngm and Dngm′ both vanish outside of the interiors of Cm and Cm′ respectively.
We can thus rewrite (25) as

|Dngm(x)−Dngm′(y)| ≤ 2max{|Dngm(x)−Dngm(y)|, |Dngm′(x)−Dngm′(y)|}
≤ 2cs(2N)n max{|Dnϕ(2N(x− xm))−Dnϕ(2N(y − xm))|,

|Dnϕ(2N(y − xm′))−Dnϕ(2N(y − ym′))|}.
This entails

|Dnfσ(x)−Dnfσ(y)|
∥x− y∥α2

≤ cs2(2N)s max

{
|Dnϕ(x′)−Dnϕ(y′)|

∥x′ − y′∥α2
,
|Dnϕ(x′′)−Dnϕ(y′′)|

∥x′′ − y′′∥α2

}
≤ cs2(2N)s∥ϕ∥Cn,α = 1,

where x′ = 2N(x− xm) and y′ = 2N(y − xm), and x′′ = 2N(x− xm′) and y′′ = 2N(y − xm′).

Summarizing, we showed that for all σ ∈ {−1, 1}Nd

max
n:|n|≤n

∥Dnfσ∥∞ ≤ 1 and max
n:|n|=n

sup
x̸=y

|Dnfσ(x)−Dnfσ(y)|
∥x− y∥α2

≤ 1.

We conclude that for all σ ∈ {−1, 1}Nd

∥fσ∥Cn,α ≤ 1,

and therefore {fσ : σ ∈ {−1, 1}Nd} ⊂ Fs,d.

Let us now evaluate the distance between distinct elements of {fσ : σ ∈ {−1, 1}Nd}. Let σ1,
σ2 ∈ {−1, 1}Nd

, with σ1 ̸= σ2, and let m ∈ {0, . . . , N − 1}d be such that σ1
m = −σ2

m. Let us
estimate ∆p the Lp(λ) discrepancy between fσ1 and fσ2 on the cube Cm, that is

∆p
p =

∫
Cm

|fσ1(x)− fσ2(x)|pdx

= 2pcps

∫
Cm

|ϕ (2N(x− xm)) |pdx

= 2pcps(2N)−d∥ϕ∥pLp(λ).

It remains to find a subset among the functions fσ such that any two functions of this set differ on a
significant number of cubes Cm. According to the Varshamov-Gilbert Lemma [Yu97], there exists

22

Γ ⊂ {−1, 1}Nd

with cardinal at least exp(Nd/8) such that for any σ1, σ2 ∈ Γ, such that σ1 ̸= σ2,
σ1 and σ2 differ on at least one fourth of their coordinates; i.e.,

∑Nd

k=1 1σ1
k ̸=σ2

k
≥ Nd

4 . We thus fix

such a set Γ ⊂ {−1, 1}Nd

. For any σ1, σ2 ∈ Γ, with σ1 ̸= σ2,

∥fσ1 − fσ2∥pLp(λ) =
∑

m:σ1
m ̸=σ2

m

∫
Cm

|fσ1(x)− fσ2(x)|pdx

≥ Nd

4
∆p

p =
2p−dcps

4
∥ϕ∥pLp(λ).

Finally, recalling the definition of cs, we have for any σ1, σ2 ∈ Γ, with σ1 ̸= σ2,

∥fσ1 − fσ2∥Lp(λ) ≥ 21−
d+2
p

1

2
(2N)−s∥ϕ∥−1

Cn,α∥ϕ∥Lp(λ) = cN−s,

where c = 2−s− d+2
p

∥ϕ∥Lp(λ)

∥ϕ∥Cn,α
.

It follows that {fσ : σ ∈ Γ} is a cN−s-packing of Fs,d. Given the lower bound on the size of Γ,
this implies

M
(
cN−s, Fs,d, ∥ · ∥Lp(λ)

)
≥ exp(Nd/8),

for all N ∈ N∗.

Set ε0 = c and c0 = 2−dc
d
s /8. Consider ε > 0, with ε ≤ ε0. To conclude the proof, we need to show

that (12) holds for ε. To do so, we consider N : the smallest integer such that cN−s ≥ ε ≥ c(2N)−s.
This N ∈ N∗ exists because 0 < ε ≤ ε0 = c and s > 0. On one side, we have

M
(
ε, Fs,d, ∥ · ∥Lp(λ)

)
≥ M

(
cN−s, Fs,d, ∥ · ∥Lp(λ)

)
,

and on the other side, since 2N ≥ c
1
s ε−

1
s ,

exp(Nd/8) ≥ exp(2−dc
d
s ε−

d
s /8) = exp(c0ε

− d
s).

Combining the last three inequalities, we finally obtain

logM
(
ε, Fs,d, ∥ · ∥Lp(λ)

)
≥ c0ε

−d/s,

for all 0 < ε ≤ ε0.

E Monotonic functions

This section contains the proofs of the results stated in Section 4. More precisely, in Section E.1 we
provide the proof of Proposition 6 and in Section E.2 we provide the proof of Proposition 4.

E.1 Proof of Proposition 6

The section contains two sub-sections. In the first sub-section, we provide a proposition on the repre-
sentation of piecewise-constant functions with Heaviside neural-networks. Section E.1.2 contains the
main part of the proof of Proposition 6.

E.1.1 Representing piecewise-constant functions with Heaviside neural networks

We first describe a neural network architecture which, with the Heaviside activation function, is able
to represent functions that are piecewise-constant on cubes.
Proposition 10. Let d ∈ N∗, M ∈ N∗. There exists an architecture A with two-hidden layers,
2(d+ 1)2M weights and the Heaviside activation function, such that for any (αi)1≤i≤M ∈ RM , any
collection (Ci)1≤i≤M of mutually disjoint hypercubes of Rd the function f̃ : Rd → [0, 1] defined by

∀x ∈ Rd, f̃(x) =

M∑
i=1

αi1Ci
(x)

satisfies f̃ ∈ HA.

23

2

3

2

3 2

4

3 2

3
wi

j

Figure 1: Values of the sum of the perceptrons pij(x) around a hypercube Ci in dimension 2.

Proof. Define σ : R → R by σ(x) = 1x≥0 for all x ∈ R.

Let i ∈ {1, . . . ,M}. The cube Ci has 2d faces. These faces are supported by hyperplanes whose
equations are of the form ⟨w, x⟩+ b = 0, with w ∈ Rd and b ∈ R. We allow the faces to belong to
the cube or not. To distinguish them, we denote Ji ∈ {1, . . . , 2d} the number of faces that belong to
Ci. We index the Ji faces that belong to the cube from 1 to Ji, and the other faces from Ji + 1 to 2d.
Thus, for all i ∈ {1, . . . ,M} and all j ∈ {1, . . . , 2d}, there exist wi

j ∈ Rd, bij ∈ R such that

Ci =
Ji⋂
j=1

{x ∈ Rd :
〈
wi

j , x
〉
+ bij ≥ 0} ∩

2d⋂
j=Ji+1

{x ∈ Rd :
〈
wi

j , x
〉
+ bij > 0} .

We rewrite:

Ci =

x ∈ Rd :

Ji∑
j=1

1{⟨wi
j ,x⟩+bij≥0} +

2d∑
j=Ji+1

1{⟨wi
j ,x⟩+bij>0} ≥ 2d

 . (26)

Denoting for all i ∈ {1, . . . ,M} and all j ∈ {1, . . . , 2d} and for all x ∈ Rd,

pij(x) =

{
σ
(〈
wi

j , x
〉
+ bij

)
if j ≤ Ji

1− σ
(
−
〈
wi

j , x
〉
− bij

)
otherwise,

we have, see Figure 1 and (26), for all x ∈ Rd

1Ci
(x) =

{
1 if

∑2d
j=1 p

i
j(x) ≥ 2d,

0 otherwise,

= σ

 2d∑
j=1

pij(x)− 2d

 .

Since the hypercubes are mutually disjoints, for all x ∈ [0, 1]d, we have

f̃(x) =

M∑
i=1

αiσ

 Ji∑
j=1

σ
(〈
wi

j , x
〉
+ bij

)
+

2d∑
j=Ji+1

(
1− σ

(
−
〈
wi

j , x
〉
− bij

))
− 2d


=

M∑
i=1

αiσ

 2d∑
j=1

εijσ
(〈

w̃i
j , x
〉
+ b̃ij

)
− Ji

 , (27)

where

εij =

{
+1 if j ≤ Ji
−1 otherwise, w̃i

j =

{
wi

j if j ≤ Ji
−wi

j otherwise, b̃ij =

{
bij if j ≤ Ji
−bij otherwise.

Equation (27) is the action of the Heaviside neural network with two hidden layers whose architecture
is on Figure 2.

It remains to count the weights and biases of f̃ :

24

. . .

.

. . .

α1 αM

±1 ±1 ±1

x1 x2 xd

wi
j,k

σ

σ M neurons

M × 2d neurons

Figure 2: The function f̃ represented as a neural network.

• the architecture has M edges going to the output layer, due to the αi;

• it has M biases associated to the neurons of the second hidden layer (they correspond to the
terms −Ji);

• between the second and the first hidden layer, the architecture has M × 2d edges (corre-
sponding to the εi,j);

• it has M × 2d biases associated to the neurons of the first hidden layer (the b̃ij);

• it has M × 2d× d edges between the first hidden layer and the entry (the w̃i
j).

Thus there are 2M + 2M × 2d +M × 2d × d = 2(d2 + 2d + 1)M = 2(d + 1)2M weights and
biases in total.

E.1.2 Main developments of the proof of Proposition 6

Let N ∈ N∗ and f ∈ Md. In this section, we partition [0, 1)d into cubes whose sizes depend on the
maximal variation of f . Then we use this partition to construct a piecewise constant approximation
f̃ of f ; we will bound from above the Lp(λ) approximation error ∥f − f̃∥Lp(λ) by a function of
N . This part is a direct reinterpretation of the proof of Proposition 3.1 in [GW07]. We then apply
Proposition 10 to f̃ and obtain the announced result.

We first define some notation that will be used in the rest of the section, then we explain the algorithm
used to divide [0, 1)d into cubes. We fix the constant K > 1 the following way:

K :=

{
2d if p = 1,

2β otherwise, where β = 1
2 (d− 1 + 1

p−1).

We also define an integer l that corresponds to the number of cube decompositions:

l :=

⌈
N log 2

logK

⌉
=

{⌈
N
d

⌉
if p = 1,⌈

N
β

⌉
otherwise .

(28)

It is worth noting that this implies K−l ≤ 2−N < K−l+1.

25

Now we partition [0, 1)d into dyadic cubes of the form [a1, b1)× · · · × [ad, bd). If C is such a cube,
we use the following convenient notation:

C := (a1, . . . , ad) ∈ Rd, C := (b1, . . . , bd) ∈ Rd,

to refer to the smallest and largest vertices of C. The cube decompositions process reads as follow:

• First we partition [0, 1)d into 2Nd cubes of side-length 2−N . We denote by S0 the set of
these cubes C such that f(C)− f(C) ≤ K2−N and by R0 the set of the remaining cubes.

• For 1 ≤ i < l, we partition each cube in the set Ri−1 (the remaining cubes at the step i− 1)
into 2d cubes of equal size, and we denote by Si the set of obtained cubes C of side-length
2−(i+N) such that

f(C)− f(C) ≤ Ki+12−N . (29)
Again, the set of remaining cubes is denoted by Ri.

• Lastly, we partition each cube in the set Rl−1 into 2d cubes of equal size, and we denote by
Sl the set of obtained cubes of side-length 2−(l+N).

Once the algorithm is done, each point in [0, 1)d clearly belongs to one single cube of ∪l
i=0Si. For

i ∈ {0, . . . , l}, we let S̃i = ∪C∈Si
C.

We now define the piecewise constant approximation of f by

∀x ∈ [0, 1]d, f̃(x) =
∑

C∈
⋃

0≤i≤l Si

f(C)1x∈C ,

where 1x∈C denotes the indicator function of the cube C. We do not make the dependence explicit,
but f̃ depends on the parameters N , d and p. The number of cubes over which f̃ is constant is∑l

i=0 |Si|. This quantity is key when constructing the neural network according to Proposition 10;
in the next lemma, we bound from above |Si| for all i = 0, . . . , l. Then, we will estimate the error
∥f − f̃∥Lp(λ).
Lemma 7. With the above notation:

∀i ∈ {0, . . . , l}, |Si| ≤ dK−i2i(d−1)+Nd+1

Moreover,

λ(S̃i) ≤
{

1 if i = 0,
2d(2K)−i , otherwise. (30)

Proof. By construction, we have

∀i ∈ {1, . . . , l}, |Si|+ |Ri| = 2d|Ri−1|,

since the set Si ∪Ri contains all the cubes of side-length 2−(i+N), that have been constructed from
the cubes of Ri−1. In particular,

∀i ∈ {1, . . . , l}, |Si| ≤ 2d|Ri−1|. (31)

It remains to bound |Ri−1| from above for i ≥ 1. Define V := {C : C ∈ Ri−1} the set of the
smallest vertices of the cubes in Ri−1. We consider the classes of these vertices under the “laying on
the same extended diagonal” equivalence relation. Since the cubes have side-length 2−(i−1+N), there
are less than d2(i−1+N)(d−1) equivalence classes. According to the pigeonhole principle, the largest
class has at least

⌈
|V |

d2(i−1+N)(d−1)

⌉
elements; let us refer to this class as D. Let (Cj)1≤j≤J be the set

of cubes in Ri−1 having a point in D as lowest vertex. Since f is non-decreasing and according to
(29), we have:

1 ≥ f(1, . . . , 1)− f(0, . . . , 0) ≥
J∑

j=1

f(Cj)− f(Cj) ≥ JKi2−N

≥ |V |
d2(i−1+N)(d−1)

Ki2−N =
|Ri−1|

d2(i−1+N)(d−1)
Ki2−N .

26

Thus
|Ri−1| ≤ d2i(d−1)+Nd+1−dK−i.

The first statement of Lemma 7 follows from (31).

For i = 0, λ(S̃0) ≤ 1. For 1 ≤ i ≤ l, using the first statement of this lemma, we bound from above
the measure of S̃i:

λ(S̃i) =
(
2−(i+N)

)d
|Si| ≤ dK−i2i(d−1)+Nd+12−d(i+N),

= 2d(2K)−i.

To show that f̃ is close to f in Lp(λ) norm, let us use the fact that (S̃i)0≤i≤l is a partition of [0, 1)d
and decompose the error in three parts:

∥f − f̃∥pLp(λ) =

∫
S̃0

|f(x)− f̃(x)|pdx+

l−1∑
i=1

∫
S̃i

|f(x)− f̃(x)|pdx+

∫
S̃l

|f(x)− f̃(x)|pdx.

In the next lemma, we control each term of the above sum to bound from above ∥f − f̃∥Lp(λ) by a
function of N that is independent of f and tends to 0 when N tends to +∞.
Lemma 8. For any 1 ≤ p < +∞, there exists a constant cd,p > 0 depending only on d and p such
that for all N ∈ N∗

∥f − f̃∥Lp(λ) ≤ cd,p


2−N if p(d− 1) < d,

2−N
(1+1/β)

p if p(d− 1) > d,

N
1
p 2−N if p(d− 1) = d,

(32)

where f̃ is the function constructed for the parameters N , d and p.

Proof. For 0 ≤ i < l, on any cube C ∈ Si, we have

∀x ∈ C, |f(x)− f̃(x)| = |f(x)− f(C)| ≤ f(C)− f(C) ≤ Ki+12−N , (33)

since f is non-decreasing, and by definition of f̃ and Si.

• Using the fact that λ(S̃0) ≤ 1 and by (33):∫
S̃0

|f(x)− f̃(x)|pdx ≤ (2−NK)p. (34)

• Using (30) and (33), we get for all i ∈ {1, . . . , l − 1}∫
S̃i

|f(x)− f̃(x)|pdx ≤ (Ki+12−N)p2d(2K)−i. (35)

• On any C ∈ Sl, we have, for all x ∈ C, |f(x)− f̃(x)| ≤ |f(x)− f(C)| ≤ 1, and we get,
using (30): ∫

S̃l

|f(x)− f̃(x)|pdx ≤ 2d(2K)−l. (36)

Combining (34), (35) and (36) we get:

∥f − f̃∥pLp(λ) ≤ (2−NK)p +

l−1∑
i=1

(Ki+12−N)p2d(2K)−i + 2d(2K)−l

≤ (2−NK)p + 21−NpKpd

l−1∑
i=1

(
Kp−1

2

)i

+ 2d(2K)−l. (37)

It remains to bound the right-hand side of (37), depending on the value of p and d. Note that the
behavior of this term depends on whether Kp−1

2 is larger or smaller than 1.

27

• Suppose that p(d − 1) < d. In this case, we can have p = 1 or p > 1. If p = 1, we have
Kp−1

2 = 1
2 < 1 and 1

2K < K−p. If p > 1, we have:

p(d− 1) < d ⇐⇒ dp− p− d+ 1 < 1 ⇐⇒ d− 1 <
1

p− 1
.

Thus, β being the arithmetic mean of d − 1 and 1
p−1 , we have d − 1 < β < 1

p−1 . Then

K = 2β < 21/(p−1) and hence Kp−1

2 < 1 and 1
2K < K−p. Therefore, both for p = 1 and

p > 1,
l−1∑
i=1

(
Kp−1

2

)i

≤ Kp−1

2−Kp−1
and (2K)−l ≤ K−pl.

Since K−l ≤ 2−N , this leads to

∥f − f̃∥pLp(λ) ≤ (2−NK)p + 21−NpKpd
Kp−1

2−Kp−1
+ 2dK−pl

≤
(
Kp + 2Kpd

Kp−1

2−Kp−1
+ 2d

)
2−Np.

We thus have, setting c1 :=

(
Kp + 2Kpd

Kp−1

2−Kp−1
+ 2d

) 1
p

,

∥f − f̃∥Lp(λ) ≤ c12
−N .

Notice c1 only depends on d and p.

• Suppose that p(d−1) > d. We have p > 1 and d−1 > β > 1
p−1 . Then K = 2β > 21/(p−1)

and hence Kp−1

2 > 1, which entails using (37)

∥f − f̃∥pLp(λ) ≤ (2−NK)p + 21−NpKpd
(Kp−1/2)l

Kp−1/2− 1
+ 2d(2K)−l

≤ 2−NpKp + 2−NpKpl 2Kpd

Kp−1/2− 1
(2K)−l + 2d(2K)−l.

Since p > 1 + 1
β , we have 2−Np ≤ 2−N(1+ 1

β). Also, since K = 2β , (2K)−l = 2−l(β+1),

and since l ≥ N log(2)
log(K) = N

β , we have (2K)−l ≤ 2−
N
β (β+1) = 2−N(1+ 1

β). Finally, since
2−NKl < K,

∥f − f̃∥pLp(λ) ≤
(
Kp +Kp 2Kpd

Kp−1/2− 1
+ 2d

)
2−N(1+1/β)

We thus have, setting c2 :=
(
Kp + 2K2pd

Kp−1/2−1 + 2d
) 1

p

,

∥f − f̃∥Lp(λ) ≤ c22
−N(1+1/β)

p .

Notice c2 only depends on d and p.

• Suppose that p(d− 1) = d. It implies p > 1 and p− 1 = 1
d−1 , then β = d− 1. We thus

have Kp−1 = 2(d−1)(p−1) = 2. Therefore, (37) becomes

∥f − f̃∥pLp(λ) ≤ 2−NpKp + 2−Np2Kpd(l − 1) + 2d(Kp)−l.

On the one hand, we have K−l ≤ 2−N . On the other, we have 2−N < K−l+1, so
l − 1 < N log 2

logK = N
d−1 . Putting it all together, we get

∥f − f̃∥pLp(λ) ≤ 2−NpKp + 2−Np2Kpd(l − 1) + 2d2−Np

≤
(
Kp + 2Kp d

d− 1
+ 2d

)
N2−Np.

28

We thus have, setting c3 :=
(
Kp + 2Kp d

d−1 + 2d
) 1

p

,

∥f − f̃∥Lp(λ) ≤ c3N
1
p 2−N .

Notice c3 only depends on d and p.

Letting cd,p = max{c1, c2, c3} yields the result.

According to Proposition 10, the function f̃ constructed for a given N ∈ N∗ can be implemented by
a Heaviside neural network with two hidden layers and W = 2(d+ 1)2

∑l
i=0 |Si| weights. Using

Lemma 7, we obtain

W = 2(d+ 1)2
l∑

i=0

|Si| ≤ 2(d+ 1)2
l∑

i=0

dK−i2i(d−1)+Nd+1

= 2Nd+2d(d+ 1)2
l∑

i=0

(
2d−1

K

)i

.

We let, for all N ∈ N∗,

WN := 2Nd+2d(d+ 1)2
l∑

i=0

(
2d−1

K

)i

. (38)

Although we do not make the dependence explicit, WN also depends on d and p. Observe that for all
d ≥ 1: (WN)N∈N∗ is non-decreasing and limN→+∞ WN = +∞.

Lemma 9. With the above notation: For any +∞ > p ≥ 1, there exist constants W ′
min, c

′
d,p > 0

depending only on d and p ≥ 1 such that for all N satisfying WN ≥ W ′
min

∥f − f̃∥Lp(λ) ≤ c′d,p g(WN+1)

where f̃ is constructed for the parameters N , p and d, and where for all W ≥ 1,

g(W) =


W−1/d if (d− 1)p < d,
W− 1

p(d−1) if (d− 1)p > d,
W−1/d logW if (d− 1)p = d.

Proof. Again, we distinguish three cases depending on the values of p and d.

• Suppose that p(d−1) < d: if p = 1, 2d−1

K = 1
2 < 1; if p > 1, since 1

p−1 > d−1, β > d−1

and 2d−1

K = 2d−1−β < 1. Thus, in both cases 2d−1

K < 1 and for all N ≥ 1,

WN ≤ 2Nd

(
4d(d+ 1)2

1− 2d−1−β

)
=: 2Ndc′′d,p.

Writing the inequality for N + 1, we obtain

WN+1 ≤ 2Nd2dc′′d,p .

That is: 2−N ≤ 2
(

c′′d,p
WN+1

)1/d
. Combined with (32), this provides

∥f − f̃∥Lp(λ) ≤ 2cd,p

(
c′′d,p

WN+1

)1/d

= dd,pW
−1/d
N+1 ,

for dd,p = 2cd,p(c
′′
d,p)

1/d and all N ∈ N∗.

29

• If p(d− 1) > d, then β < d− 1 and 2d−1

K = 2d−1−β > 1. Thus, reminding the definition
of l in (28), we have for all N ≥ 1

WN ≤ 2Nd2(d−1−β)(l+1)

(
4d(d+ 1)2

2d−1−β − 1

)
≤ 2Nd2(d−1−β)(N/β+2)

(
4d(d+ 1)2

2d−1−β − 1

)
= 2N(d+(d−1)/β−1)

(
4d(d+ 1)222(d−1−β)

2d−1−β − 1

)
=: 2N(1+ 1

β)(d−1)c′′d,p,

for a different constant c′′d,p. Writing again this inequality for N + 1, we obtain

WN+1 ≤ c′′d,p2
(1+ 1

β)(d−1) 2N(1+ 1
β)(d−1),

which we can write 2−N(1+ 1
β) ≤ 2(1+

1
β)
(

c′′d,p
WN+1

) 1
d−1

. This provides

2−N
(1+1/β)

p ≤ 2
(1+1/β)

p

(
c′′d,p

WN+1

) 1
p(d−1)

.

Therefore, using (32), we obtain

∥f − f̃∥Lp(λ) ≤ cd,p2
(1+1/β)

p

(
c′′d,p

WN+1

) 1
p(d−1)

= d′d,pW
− 1

p(d−1)

N+1 ,

for d′d,p = cd,p 2
(1+1/β)

p (c′′d,p)
1

p(d−1) and all N ∈ N∗.

• If p(d− 1) = d, then β = d− 1 and 2d−1

K = 1. Thus, reminding the definition of l in (28),
we have for all N ≥ 1

WN = 2Nd+2d(d+ 1)2(l + 1) ≤ 2Nd+2d(d+ 1)2
(
N

β
+ 2

)
= 2Nd

(
N

β
+ 2

)(
4d(d+ 1)2

)
=: 2Nd

(
N

d− 1
+ 2

)
c′′d,p

≤ 2d(d−1)(N
d−1+2)

(
N

d− 1
+ 2

)
c′′d,p

= exp

(
d(d− 1)

(
N

d− 1
+ 2

)
log 2

)(
N

d− 1
+ 2

)
c′′d,p (39)

where c′′d,p = 4d(d+ 1)2. Setting

W̃N :=
d(d− 1)WN log 2

c′′d,p
and Ñ := d(d− 1)

(
N

d− 1
+ 2

)
log 2,

we can rewrite (39) as:
W̃N ≤ Ñ exp(Ñ) . (40)

Since d ≥ 2, c′′d,p > 0, (WN)N∈N∗ is non-decreasing and limN→+∞ WN = +∞, there
exists W ′

min such that, for all N satisfying WN ≥ W ′
min, we have the following:

log(W̃N) > 1
log(W̃N+1) > 2 log(2) d(d− 1)
log(W̃N+1)
d log(2) − log log(W̃N+1)

d log(2) − 2(d− 1) > 1
p log(2)

logWN+1 ≥ log
(

d(d−1) log 2
c′′d,p

)
.

(41)

These inequalities will be used latter in the proof and, from now on, we always consider N
such that WN ≥ W ′

min.

Let us first show by contradiction that, for all N satisfying WN ≥ W ′
min, (40) implies that

Ñ ≥ log W̃N − log log W̃N . (42)

30

Indeed, if the latter does not hold

Ñ < log W̃N − log log W̃N ,

exp(Ñ) <
W̃N

log W̃N

,

and therefore, multiplying the two inequalities, since (41) implies that W̃N > 0, log W̃N > 0
and log(log(W̃N)) > 0,

Ñ exp(Ñ) < W̃N .

The latter being in contradiction with (40), we have proved that, for all N satisfying
WN ≥ W ′

min, (42) holds. Using the definition of Ñ , we deduce

N ≥

(
log W̃N − log log W̃N

d(d− 1) log(2)
− 2

)
(d− 1)

=
log(W̃N)

d log(2)
− log log W̃N

d log(2)
+ c,

for the constant c = −2(d−1) < 0. Since (WN)N∈N is non-decreasing, for all N satisfying
WN ≥ W ′

min, WN+1 ≥ W ′
min and the inequality also holds for N + 1. That is

N + 1 ≥ log(W̃N+1)

d log(2)
− log log W̃N+1

d log(2)
+ c. (43)

Using (32), we obtain:

∥f − f̃∥Lp(λ) ≤ cd,pN
1
p 2−N ≤ 2cd,p(N + 1)

1
p 2−(N+1).

Since, for t > 1
p log(2) , the function t 7−→ t

1
p 2−t is non-increasing, using (43) and (41) and

the fact that − log log W̃N+1

d log(2) + c < 0, we obtain

∥f − f̃∥Lp(λ) ≤ 2cd,p

(
log(W̃N+1)

d log(2)

) 1
p

2−
log(W̃N+1)

d log(2) 2
log log W̃N+1

d log(2) 2−c,

=

(
21−ccd,p

(d log(2))1/p

)
(log W̃N+1)

1
p+

1
d W̃

− 1
d

N+1

=

(
21−ccd,p

(d log(2))1/p

)
W̃

− 1
d

N+1 log W̃N+1,

since p(d − 1) = d implies 1
p + 1

d = 1. Finally, using the definition of W̃N and (41), we
obtain

∥f − f̃∥Lp(λ) ≤ d′′d,pW
− 1

d

N+1 logWN+1,

for the constant d′′d,p = 2
(

21−ccd,p
(d log(2))1/p

)(
d(d−1) log 2

c′′d,p

)−1/d

and all N ∈ N∗ such that

WN ≥ W ′
min. Notice d′′d,p only depends on d and p.

Taking c′d,p = max(dd,p, d
′
d,p, d

′′
d,p) provides the announced statement.

Proof of Proposition 6. Take Wmin = max(W ′
min,W1) and c = c′d,p, where W ′

min and c′d,p are
from Lemma 9 and W1 is defined in (38). Let W ≥ Wmin, there exists N ∈ N∗ such that

WN ≤ W < WN+1.

Consider the architecture A with W weights, as in Proposition 10, which allows to represent
piecewise-constant functions with less than W

2(d+1)2 cubic pieces. It can represent piecewise-constant

functions with WN

2(d+1)2 pieces.

31

0

1

0

1

1

(1,1)

Figure 3: The set C, the set ∂C ∩ (0, 1)2 and the indicator function f .

For any f ∈ Md, the function f̃ obtained for the parameter N is a piecewise-constant function with
at most WN

2(d+1)2 pieces, therefore we have f̃ ∈ HA and, according to Lemma 9, f̃ satisfies

∥f − f̃∥Lp(λ) ≤ c′d,pg(WN+1).

Moreover, since g is non-increasing, we have using c = c′d,p

∥f − f̃∥Lp(λ) ≤ c g(W).

Therefore, for any f ∈ Md,
inf

g∈HA
∥f − g∥Lp(λ) ≤ c g(W)

and so does the supremum over f in Md.

This concludes the proof of Proposition 6.

E.2 Proof of Proposition 4

Step 1: we prove the result in dimension d = 2.

We consider the closed disk of radius 1, centered at (1, 1),

C =

{
x ∈ R2 :

2∑
i=1

(xi − 1)2 ≤ 1

}
.

The intersection between (0, 1)2 and the topological boundary ∂C of C is the quarter of circle:

∂C ∩ (0, 1)2 =

{
x ∈ (0, 1)2 :

2∑
i=1

(xi − 1)2 = 1

}
.

We denote by f : [0, 1]2 → {0, 1} the indicator function of the set C ∩ [0, 1]2. The set C ∩ [0, 1]2, the
set ∂C ∩ (0, 1)2 and the function f are represented on Figure 3.

Since no point in Cc ∩ [0, 1]2 has all its coordinates strictly larger than those of a point in C, we have
f ∈ M2 (monotonic functions of 2 variables). We consider an arbitrary neural network architecture
A and g ∈ HA.

Let W ≥ 1 be the number of weights in the architecture A. As is well known for Heaviside neural
networks, there exist K ∈ N with K ≤ 2W , reals αj and polygons Aj ⊂ [0, 1]2, for j ∈ {1, . . . ,K},
such that for all x ∈ [0, 1]2

g(x) =

K∑
j=1

αj1Aj
(x).

32

Moreover, (Aj)1≤j≤K form a partition of [0, 1]2.

The proof relies on the fact (proved afterwards) that, if ∥f − g∥∞ < 1
2 then ∂C ∩ (0, 1)2 is finite.

The latter being false, we conclude that ∥f − g∥∞ ≥ 1
2 .

Assume from now on that ∥f − g∥∞ < 1
2 . This implies that g > 1

2 on C, and g < 1
2 elsewhere. Let

us first show that we then have

∂C ∩ (0, 1)2 ⊂
K⋃
j=1

∂Aj .

Indeed, if the latter were not true, then there would exist x ∈ ∂C ∩ (0, 1)2 and j ∈ {1, . . . ,K} such
that x ∈ Åj . Since C is closed, x ∈ C. Let ϵ > 0 be such that B(x, ϵ) ⊂ Åj . We have B(x, ϵ) ̸⊂ C
(otherwise, x belongs to the interior of C which contradicts x ∈ ∂C). Thus there exists z ∈ B(x, ϵ)\C.
Since g > 1

2 on C, and g < 1
2 elsewhere, we have

g(z) <
1

2
< g(x).

This is not possible since x, z ∈ Åj and g is constant on Aj . This concludes the proof of the following
fact: if ∥f − g∥∞ < 1

2 then ∂C ∩ (0, 1)2 ⊂
⋃

1≤j≤K ∂Aj .

Since the Aj are polygons (recall that we work in dimension 2), their boundaries are finite unions of
closed line segments. Then ∂C ∩ (0, 1)2 is included in a finite union of closed line segments which
we denote Sm, for m ∈ {1, . . . ,M}. The reader may already see that this is in contradiction with the
fact that ∂C ∩ (0, 1)2 is a quarter circle. To detail this argument and complete the announced proof,
we show that ∂C ∩ (0, 1)2 ⊂

⋃M
m=1 Sm implies that ∂C ∩ (0, 1)2 is finite.

To do so, since when ∂C ∩ (0, 1)2 ⊂
⋃M

m=1 Sm we have

M⋃
m=1

(
∂C ∩ (0, 1)2 ∩ Sm

)
= ∂C ∩ (0, 1)2,

it suffices to prove that the intersection of any closed line segment S with ∂C ∩ (0, 1)2 contains at
most 2 points.

Denote by S a closed line segment: C and S are convex and hence connected, thus C ∩ S is either
empty, a singleton or a line segment, as a connected compact subset of S. If it is empty, then a
fortiori, ∂C ∩ (0, 1)2 ∩ S = ∅. If it is not, denote by y and z its extremities (assuming z = y in the
case of a singleton). By strict convexity of the function x 7→

∑2
i=1(xi − 1)2, the open line segment

(y, z) is included in C̊ ((y, z) = ∅ in the case of a singleton), hence

∂C ∩ (0, 1)2 ∩ S ⊂ [y, z] \ C̊ ⊂ {y, z}.

In any case, we have |∂C ∩ (0, 1)2 ∩ S| ≤ 2.

This concludes the proof of the fact: if ∥f − g∥∞ < 1
2 then ∂C ∩ (0, 1)2 is finite and concludes the

proof in the case d = 2.

Step 2: we prove the result in any dimension d ≥ 2, by a reduction to dimension 2.

We define

C =

{
x ∈ Rd :

d∑
i=1

(xi − 1)2 ≤ 1

}
,

and the function f : [0, 1]d → R by

f(x1, . . . , xd) = 1(x1,...,xd)∈C .

33

Consider an arbitrary neural network architecture A and g ∈ HA. That is, g can be represented by a
Heaviside neural network with d input neurons. Note that

sup
x1,x2,x3...,xd∈[0,1]

|f(x1, x2, x3 . . . , xd)− g(x1, x2, x3 . . . , xd)|

≥ sup
x1,x2∈[0,1]

|f(x1, x2, 1 . . . , 1)− g(x1, x2, 1 . . . , 1)|

≥ 1

2
,

where the last inequality is by the result of Step 1, since (x1, x2) ∈ [0, 1]2 7→ f(x1, x2, 1 . . . , 1) is
the indicator function of Step 1, and (x1, x2) ∈ [0, 1]2 7→ g(x1, x2, 1 . . . , 1) can be represented by a
Heaviside neural network with 2 input neurons. This concludes the proof.

Remark. Note from the above proof that, though we only stated the impossibility result for piecewise-
constant activation functions, an analogous statement in fact holds more generally for piecewise-affine
activation functions.

F Barron space

In Section 5 we mentioned that the Barron space introduced in [Bar93] is one among several examples
for which approximation theory provides ready-to-use lower bounds on the packing number. This
space has received renewed attention recently in the deep learning community, in particular because
its “size” is sufficiently small to avoid approximation rates depending exponentially on the input
dimension d. Next we detail how to apply Corollary 1 in this case.

Definition of the Barron space. We start by introducing the Barron space, as defined in [PV21].
Let d ∈ N∗. For any constant C > 0, the Barron space Bd(C) is the set of all functions
f : [0, 1]d → [0, 1] for which there exist a measurable function F : Rd → C and some
c ∈ [−C,C] such that, for all x ∈ [0, 1]d,

f(x) = c+

∫
Rd

(eix·ξ − 1)F (ξ)dξ and
∫

Rd

∥ξ∥2|F (ξ)|dξ ≤ C,

where x · ξ denotes the standard scalar product in between x and ξ.

Known lower bound on the packing number. Petersen and Voigtlaender [PV21] showed a tight
lower bound on the log packing number in Lp(λ, [0, 1]d) norm, which we recall below.
Proposition 11 (Proposition 4.6 in [PV21]). Let 1 ≤ p ≤ +∞. There exist constants ε0, c0 > 0
depending only on d and C such that for any ε ≤ ε0,

logM(ε,Bd(C), ∥ · ∥Lp) ≥ c0ε
−1/(1

2+
1
d). (44)

Consequence on the approximation rate by piecewise-polynomial neural networks. Plugging
the lower bound of Proposition 11 in Corollary 1, we obtain the following lower bound on the
approximation error of the Barron space by piecewise-polynomial neural networks.
Proposition 12. Let 1 ≤ p < +∞, d ≥ 1. Let σ : R → R be a piecewise-polynomial function on
K ≥ 2 pieces, with maximal degree ν ∈ N. Consider the Barron space Bd(C) defined above, with
C > 0. There exist positive constants c1, c2, c3,Wmin depending only on d, p, C, K and ν such that,
for any architecture A of depth L ≥ 1 with W ≥ Wmin weights, and for the activation σ, the set HA
(cf. Section 1) satisfies

sup
f∈Bd(C)

inf
g∈HA

∥f − g∥Lp(λ) ≥


c1W

−1− 2
d log−1− 2

d (W) if ν ≥ 2 ,

c2(LW)−
1
2−

1
d log−

3
2−

3
d (W) if ν = 1 ,

c3W
− 1

2−
1
d log−

3
2−

3
d (W) if ν = 0 .

(45)

34

