
Supplementary Material

1 Decoding using automatic differentiation variational inference (ADVI)

In the method section of our paper, we describe the general encoding-decoding paradigm. In
this section of the supplementary material, we delve into a specific case that focuses on decoding
continuous behaviors, yk ∈ RT , that exhibit temporal variations. We introduce the use of ADVI,
which allows us to model the relationship between firing rates of MoG components and behavior
correlates using a generalized linear model (GLM).

Notation Definition

sitk spike feature i at time bin t in trial k
yk behavior in trial k
zitk MoG assignment of spike feature i at time bin t in trial k
ηc = (µc,Σc) mean and covariance matrix of MoG component c
πtk MoG mixing proportion at time bin t in trial k
ntk number of spikes collected at time bin t in trial k
C number of MoG components
T number of time bins within each trial
K number of trials in a session

λctk behavior-dependent firing rate of component c at time bin t in trial k
bc “baseline firing rate” of component c

ADVI βct “behavior-modulated firing rate” of component c at time bin t
ηbc = (µbc , σ

2
bc
) mean and variance of the variational posterior distribution for bc

ηβct = (µβct , σ
2
βct

) mean and variance of the variational posterior distribution for βct

ηytk
= (µytk

, σ2
ytk

) mean and variance of the variational posterior distribution for ytk

λct1, λct0 firing rate of component c at time bin t that switches between two states
ϕ variational paramter that represents the probability of yk = 1

CAVI ρictk unnormalized posterior probability of assigning sitk to component c
rictk normalized posterior probability of assigning sitk to component c
y∗k1, y

∗
k0 unnormalized posterior probability of yk = 1 and yk = 0

νk normalized posterior probability of yk = 1

Table 2: Table of notation.

1.1 ADVI-based encoder

Building upon the general model specification outlined in Equations 1-3, we can describe the
generative model of the encoder as follows:

λctk = exp(bc +βct · ytk), bc ∼ N (bc; 0, 1), βct ∼ N (βct; 0, 1), (6)

zitk ∼ Categorical(zitk;πtk), πtk = {πctk}Cc=1, πctk =
λctk∑
c′ λc′tk

, (7)

sitk ∼ N (sitk; ηzitk), ηc = (µc,Σc), (8)

where b and β are the unknown model parameters corresponding to θ in Equation 1, and are sampled
from a standard normal prior distribution. The latent spike assignment z depends on the mixing
proportion π of the MoG, which is influenced by the behavior y through the firing rate λ. Intuitively,
we can interpret λctk as the “firing rate” of component c at time t in trial k, while bc and βc describe
the “baseline firing rate” and “behavior-modulated firing rate” of component c, respectively.

To learn the latent variables z, b and β, we posit a mean-field Gaussian variational approximation

q(z, b, β) =
∏
c,t

q(zct)q(bc)q(βct) (9)

for the posterior distribution p(z, b, β | s, y). Obtaining exact updates for b and β is challenging
due to the normalization term for π in Equation 7. Therefore, we employ ADVI to maximize the

14

ELBO and utilize stochastic gradient ascent to update b and β. ADVI requires that the model be
differentiable with respect to the parameters, and with a normal prior, the latent variables b and
β reside in the real coordinate space and cause no issues with differentiability. The variational
approximations for b and β are

q(b) =
∏
c

q(bc; ηbc) =
∏
c

N (bc; ηbc), ηbc = (µbc , σ
2
bc), (10)

q(β) =
∏
c,t

q(βct; ηβct) =
∏
c,t

N (βct; ηβct), ηβct = (µβct , σ
2
βct

). (11)

A drawback of the parameterization in Equations 6-8 is that the spike assignment variables z are
discrete and not compatible with ADVI. An alternative, equivalent parameterization that addresses
these problems is to marginalize over z. The marginalized model is

λctk = exp(bc +βct · ytk), bc ∼ N (bc; 0, 1), βct ∼ N (βct; 0, 1), (12)

πctk =
λctk∑
c′ λc′tk

, πtk = {πctk}Cc=1, (13)

sitk =

C∑
c=1

πctk N (sitk; ηc), ηc = (µc,Σc). (14)

Under this parameterization, the ELBO for the encoder is

LADVI
enc := Eq(b,β)[log p(s, b, β | y)]− Eq(b,β)[log q(b, β)] (15)

= Eq(b,β)

[∑
k,t,c,i

logN (sitk; ηc) + log πctk + logN (bc; 0, 1) + logN (βct; 0, 1)
]

(16)

− Eq(b,β)

[∑
c,t

logN (bc; ηbc) + logN (βct; ηβct
)
]
.

1.2 ADVI-based decoder

The decoder adopts the same generative model as the encoder described in Equations 6-8 with
two exceptions: 1) The latent variable ytk is assumed to have a standard normal prior, i.e.,
ytk ∼ N (ytk; 0, 1), assuming independence at each time step t. Alternatively, a Gaussian process
prior can be chosen to capture temporal correlations between time steps. 2) The parameters b and β
are learned from the ADVI-based encoder and kept fixed in the decoder.

The mean-field Gaussian variational approximation for the posterior distribution p(z, y | s) is

q(z, y) =
∏
c,t

q(zct)q(yt), (17)

where

q(y) =
∏
k,t

q(ytk; ηytk
) =

∏
k,t

N (ytk; ηytk
), ηytk

= (µytk
, σ2

ytk
). (18)

To enable the use of ADVI, we can marginalize out the discrete latent variable z, thereby transforming
the MoG model into a differentiable form. Under the marginalized MoG parametrization in Equations
12-14, the ELBO of the decoder is

LADVI
dec := Eq(y)[log p(s, y)]− Eq(y)[log q(y)] (19)

= Eq(y)

[∑
k,t,c,i

logN (sitk; ηc) + log πctk + logN (ytk; 0, 1)
]

(20)

− Eq(y)

[∑
k,t

logN (ytk; ηytk
)
]
.

15

2 Decoding using coordinate ascent variational inference (CAVI)

We present a specific scenario for decoding binary variables, yk ∈ {0, 1}, where we derive exact
updates for the variational variables using CAVI.

2.1 CAVI-based encoder

Extending the general model described in Equations 1-3, the generative model of the encoder can be
defined as follows:

πctk =

(
λct1∑
c′ λc′t1

)yk
(

λct0∑
c′ λc′t0

)1−yk

, (21)

zitk ∼ Categorical(zitk;πtk), πtk = {πctk}Cc=1, (22)
sitk ∼ N (sitk; ηzitk), ηc = (µc,Σc), (23)

where z and λ are the latent variables that we aim to learn. The behavior-dependent firing rates of
each component c at time t vary based on the binary variable y, such that the components switch
between two behavioral states characterized by firing rates λct1 and λct0.

The log-likelihood of the encoder can be written as

log p(s, z | y) =
∑
k,t,c,i

zictk
{
logN (sitk; ηc) + yk(log λct1 − log Λt1) (24)

+ (1− yk)(log λct0 − log Λt0)
}
,

where Λt1 =
∑

c′ λc′t1 and Λt0 =
∑

c′ λc′t0. To approximate the posterior p(z | s, y), we employ
the mean-field variational approximation q(z) =

∏
c,t q(zct). The ELBO of the encoder is

LCAVI
enc := Eq(z)[log p(s, z | y)]− Eq(z)[log q(z)]. (25)

The exact update for q(z) is obtained by maximizing the ELBO with respect to q(z), which leads to
the following update equation:

q(zct) ∝ exp{Eq−ct
[log p(zct, z−ct, s | y)]}, (26)

where q−ct means
∏

c′ ̸=c

∏
t′ ̸=t q(zc′t′). Then,

q(zictk = 1) ∝ exp

{
logN (sitk; ηc) + yk log

(
λct1

Λt1

)
+ (1− yk) log

(
λct0

Λt0

)}
:= ρictk (27)

denotes the unnormalized posterior probability of assigning spike i collected at time t in trial k
to component c, while E[zictk] = ρictk/

∑
c′ ρic′tk := rictk represents the normalized posterior

probability.

After fixing q(z), the term in the ELBO which depends on λ, µ and Σ can be expressed as

L :=
∑
k,t,c,i

rictk
{
logN (sitk; ηc) + yk log

(
λct1

Λt1

)
+ (1− yk) log

(
λct0

Λt0

)}
.

16

Algorithm 1 CAVI-based encoder
Input: {sitk}, {yk}, i = 1 : ntk, t = 1 : T, k = 1 : K, number of components C.

Initialize {µc,Σc}, c = 1 : C.
while ELBO not converged do

for all k ∈ 1 : K do
for all t ∈ 1 : T do

for all i ∈ 1 : ntk do
Set q(zictk = 1) ∝ ρictk. ▷ eq. (27)

end for
end for

end for

for all c ∈ 1 : C do
Set µc = µ∗

c , Σc = Σ∗
c . ▷ eq. (36-39)

for all t ∈ 1 : T do
Set λct0 = λ∗

ct0, λct1 = λ∗
ct1. ▷ eq. (32-33)

end for
end for
Compute the ELBO LCAVI

enc . ▷ eq. (25)
end while
Return q(z), λ, µ, Σ.

We derive the update for λ by setting the gradients ∇λct1L and ∇λct0L to 0:

∇λct1L = ∇λct1

∑
k,i

rictk · yk(log λct1 − log Λt1) (28)

=

∑
k,i rictk · yk

λct1
−

∑
k,i

∑C
c′=1 ric′tk · yk
Λt1

= 0 (29)

=⇒
∑
k,i

rictk · yk(λct1 +
∑
c′ ̸=c

λc′t1) =
∑
k,i

C∑
c′=1

ric′tk · yk · λct1 (30)

=⇒
∑
k,i

yk(
∑
c′ ̸=c

ric′tk)λct1 =
∑
k,i

yk · rictk(
∑
c′ ̸=c

λc′t1) (31)

=⇒ λct1 =

∑
k,i yk · rictk(

∑
c′ ̸=c λc′t1)∑

k,i yk(
∑

c′ ̸=c ric′tk)
:= λ∗

ct1. (32)

∇λct0L = 0 =⇒ λct0 =

∑
k,i(1− yk)rictk(

∑
c′ ̸=c λc′t0)∑

k,i(1− yk)(
∑

c′ ̸=c ric′tk)
:= λ∗

ct0. (33)

Consider the gradient with respect to the ηc parameter,

∇ηc
L =

∑
k,t,i

rictk∇ηc
logN (sitk; ηc) (34)

=
∑
k,t,i

rictk∇ηc

1

2

(
log |Σ−1

c | − Tr{Σ−1
c (sitk − µc)(sitk − µc)

⊤}
)
. (35)

17

The closed-form updates for µc and Σc are

∇µcL =
∑
k,t,i

rictkΣ
−1
c (sitk − µc) = 0 (36)

=⇒ µc =
1

nc

∑
k,t,i

rictksitk := µ∗
c , nc =

∑
k,t,i

rictk. (37)

∇ΣcL =
1

2

∑
k,t,i

rictk(Σc − (sitk − µc)(sitk − µc)
⊤) = 0 (38)

=⇒ Σc =
1

nc

∑
k,t,i

rictk(sitk − µc)(sitk − µc)
⊤ := Σ∗

c . (39)

2.2 CAVI-based decoder

The CAVI-based decoder employs the same generative model as the CAVI-based encoder, with
the exception that the behavior-dependent firing rates λct1 and λct0 are learned by the encoder and
kept fixed, and the behavior y is treated as an unknown latent variable. We sample y from a prior
distribution, yk ∼ Bernoulli(ϕ), where ϕ is a variational parameter that represents the probability
that yk = 1. The log-likelihood can be expressed as follows

log p(s, z, y) =
∑
k,t,c,i

zictk{ logN (sitk; ηc) + yk(log λct1 − log Λt1) (40)

+ (1− yk)(log λct0 − log Λt0)}+ yk log ϕ+ (1− yk) log(1− ϕ).

We use the factorization q(z, y) = q(z)q(y) =
∏

c,t q(zct)q(y) to approximate the posterior distribu-
tion p(z, y | s). The ELBO of the decoder can be defined as

LCAVI
dec := Eq(z,y)[log p(s, z, y)]− Eq(z,y)[log q(z, y)]. (41)

Algorithm 2 CAVI-based decoder
Input: {sitk}, {λct0, λct1}, i = 1 : ntk, t = 1 : T, k = 1 : K, c = 1 : C.

Initialize {µc}, {Σc}.
while ELBO not converged do

for all k ∈ 1 : K do
Set q(yk = 1) ∝ y∗k1. ▷ eq. (44)
for all t ∈ 1 : T do

for all i ∈ 1 : ntk do
Set q(zictk = 1) ∝ ρictk. ▷ eq. (43)

end for
end for

end for

for all c ∈ 1 : C do
Set µc = µ∗

c , Σc = Σ∗
c . ▷ eq. (36-39)

end for
Set ϕ = ϕ∗. ▷ eq. (46)
Compute the ELBO LCAVI

dec . ▷ eq. (41)
end while
Return q(z, y), ϕ, µ, Σ.

The exact updates for q(z) and q(y) that guarantee an increase in the ELBO are

q(z) ∝ exp{Eq(y)[log p(s, z, y)]}, q(y) ∝ exp{Eq(z)[log p(s, z, y)]}, (42)

where

q(zictk = 1) ∝ exp{logN (sitk; ηc) + E[yk] log
(
λct1

Λt1

)
+ (1− E[yk]) log

(
λct0

Λt0

)
} := ρictk, (43)

18

and E[zictk] = ρictk/
∑

c′ ρic′tk := rictk are the unnormalized and normalized posterior probabilities
of assigning spike i collected at time t in trial k to component c, respectively. The unnormalized
posterior probabilities of yk = 1 and yk = 0 are

q(yk = 1) ∝ exp{
∑
t,c,i

E[zictk](log λct1 − log Λt1) + log ϕ} := y∗k1, (44)

q(yk = 0) ∝ exp{
∑
t,c,i

E[zictk](log λct0 − log Λt0) + log(1− ϕ)} := y∗k0,

and E[yk] = y∗k1/(y
∗
k1 + y∗k0) := νk represents the normalized posterior probability of yk = 1.

After fixing q(z) and q(y), the term in the ELBO which depends on ϕ, µ and Σ can be written as

L ′ :=
∑
k,t,c,i

rictk{logN (sitk; ηc) + νk(log λct1 − log Λt1) (45)

+ (1− νk)(log λct0 − log Λt0)}+ νk log ϕ+ (1− νk) log(1− ϕ).

Considering the gradient of the ELBO with respect to the ϕ parameter, we obtain its update:

∇ϕ L ′ = 0 =⇒ ϕ∗ =
1

K

K∑
k=1

νk. (46)

The updates for ηc are computed in a similar manner as described in Equations 36-39.

3 MoG initialization

We employ the following procedure to intialize the MoG model used in both the ADVI-based
and CAVI-based algorithms: 1) According to Figure 1 (a), the spike feature distribution is highly
multimodal. To determine the appropriate number of modes, we utilize isosplit (Magland and Barnett,
2015) to cluster the spike features. This step helps in splitting the set of spike features into distinct
clusters. 2) For each identified cluster, we compute the mean and variance of the spike features
belonging to that cluster, which serve as the parameters for the corresponding Gaussian component.
This automatic selection of the number of MoG components and the initialization of means and
covariance matrices facilitate the initialization of the ADVI-based and CAVI-based algorithms.

19

4 Data preprocessing

We provide a brief overview of our data preprocessing pipeline, which involves the following steps.

Destriping. During the data collection process, we encounter line noise due to voltage leakage on
the probe. This translates into large “stripes” of noise spanning the whole probe. To mitigate the
impact of these noise artifacts, we apply a destriping procedure (Chapuis et al., 2022).

Subtraction-based spike detection and denoising. We employ the iterative subtraction-based
procedure for spike detection and collision-correction described in Boussard et al. (2023).

Spike localization. We employ the method of Boussard et al. (2021) to estimate the location of
each denoised spike.

Drift registration. Probe motion (or drift) in the electrophysiology data poses a challenge for
downstream analyses. Decentralized registration (Windolf et al., 2022) is applied to track and correct
for motion drift in the high-density probe recordings.

“bad” sorting exampleb)“good” sorting examplea)

Figure 6: Motion drift in “good” and “bad” sorting recordings. (a) The motion-registered spike
raster plot of a “good” sorting example that is less affected by drift. (b) The spike raster plot of a
“bad” sorting example, which is still affected by drift even after registration.

5 Behavior decoder

To decode binary behaviors, such as the mouse’s left or right choices, we utilize L2-penalized logistic
regression. For decoding dynamic behaviors, such as wheel speed, we employ a sliding-window
algorithm to aggregate the entries of the weight matrix, Wkct, over time. Within the time window
[t− δ, t+ δ], where δ is the window size, we stack 2δ weight matrix entries, {Wkct}Cc=1, for time
point t in trial k. This aggregated weight matrix is then used as input for ridge regression to predict the
behavior ytk at time t. The window size δ and the regularization strength are model hyper-parameters,
set through cross-validation to achieve the optimal decoding performance.

20

6 Model interpretation

In this section, we provide visualizations to gain insights into the effectiveness of our proposed decoder.
We quantify the posterior entropy of each spike assignment in Figure 7 (a). Spike assignments with
higher entropy correspond to a spread of posterior probabilities among multiple MoG components. In
contrast, traditional spike sorting or thresholding methods result in deterministic spike assignments,
leading to lower entropy and empirically reduced decoding performance. In Figure 7 (b), we compare
the trial-averaged weight matrices (W) used for decoding between spike-sorted, spike-thresholded,
and our proposed decoders.

 (spike-thresholded)a) b) (spike-sorted)

K
S

 u
ni

t

time (s)

co
m

po
ne

nt

 (ours)

time (s)time (s)

ch
an

ne
l

Figure 7: Model interpretation. (a) The posterior entropy of the spike assignment is high, when the
posterior probability of spike assignment, q(zikct), is spread out among several MoG components
instead of being concentrated at a single component. The scatter plot shows that low-amplitude spikes
that are difficult to assign have higher posterior entropy than high-amplitude spikes. (b) Visualizations
of the averaged weight matrices W ’s across trials in an example IBL session. For “W (spike-sorted
and spike-thresholded)”, the W matrix has one-hot rows and each entry Wkct is the spike count that
belongs to KS unit (channel) c and time bin t in trial k. The purple crosses indicate the “good” KS
units. For “W (ours)”, Wkct is the sum of posterior probabilities of spike assignments, and the MoG
mixing proportion π depends on the behavior y and changes over time. The arrangement of KS units
(channels or MoG components) on the heat maps is based on the depth of the NP probe, ensuring
comparability across the displayed W matrices.

7 Decoding across brain regions

In addition to the previously mentioned five brain regions (PO, LP, DG, CA1, VISa) depicted in
Figure 3, we expanded our analysis to include two additional brain regions situated in the cerebellum:
the arbor vitae (ARB) and the ansiform cruciform lobule (ANCR). We specifically include the
cerebellum in our analysis due to the frequent occurrence of spike sorting issues in this area. In Figure
8 and 9, we present a comparison between our decoder and the spike-sorted decoder that utilizes
all KS units across all the brain regions studied. According to Figure 8, our method consistently
outperforms the decoder that relies on all KS units across all brain regions and the majority of IBL
sessions. Furthermore, Figure 9 specifically demonstrates that our method consistently achieves
superior decoding performance in the recorded regions of the cerebellum, where spike sorting quality
issues are commonly encountered. This highlights the robustness and reliability of our method,
particularly in challenging recording conditions.

21

All

PO

LP

DG

CA1

VISa

Figure 8: Decoding comparisons across brain regions in the thalamus, hippocampus and visual
cortex. We compare our decoder to the spike-sorted decoder using all KS units across various brain
regions and behavioral tasks. Each point in the scatter plot represents one session from the 20 IBL
session previously described in the experiments section. Sessions with “good” sorting quality are
depicted in green, while sessions with “bad” sorting quality are shown in purple. The majority of the
sessions lie above the gray diagonal line, indicating that our method consistently outperforms the
decoder relying on all KS units.

22

All

ARB

ANCR

Figure 9: Decoding comparisons across brain regions in the cerebellum. We evaluate our decoder
against the spike-sorted decoder utilizing all KS units across various brain regions in the cerebellum.
The scatter plot visualizes the results for each IBL session in the study, with all sessions depicted
in purple indicating “bad” sorting quality. Note that the probes used in the cerebellum sessions
were not uniformly implanted in the same set of brain regions. As a result, the number of available
sessions for decoding in certain cerebellum regions is limited. Notably, the majority of sessions
are positioned above the gray diagonal line, indicating that our method consistently achieves better
decoding performance compared to the decoder relying on all KS units. This outcome highlights the
robustness of our method, particularly in the context of the cerebellum where spike sorting quality
issues are prevalent.

23

8 Ablation study

We conduct an ablation study to investigate the importance of various components in our decoding
paradigm. Specifically, we examine how the integration of dynamic (behavior-dependent) mixing
proportions in the MoG and higher-dimensional spike features influence decoding performance.
Additionally, we analyze how the inclusion criteria for spike waveforms can affect decoding outcomes.

Effects of dynamic MoG mixing proportion. Table 3 presents a comparison between the ordinary
MoG with a fixed mixing proportion (referred to as “fixed π”) and our proposed model with a
dynamic mixing proportion (referred to as “dynamic π”). The results indicate that this approach leads
to improved decoding performance compared to using a fixed mixing proportion in the MoG model.

Motion energy (R2) Wheel speed (R2) Choice (accuracy)

Fixed π Dynamic π Fixed π Dynamic π Fixed π Dynamic π

All 0.664 (± 0.034) 0.742 (± 0.028) 0.470 (± 0.062) 0.564 (± 0.045) 0.948 (± 0.038) 0.957 (± 0.036)
PO 0.365 (± 0.031) 0.488 (± 0.046) 0.520 (± 0.019) 0.670 (± 0.015) 0.844 (± 0.016) 0.861 (± 0.035)
LP 0.145 (± 0.015) 0.464 (± 0.054) 0.114 (± 0.032) 0.342 (± 0.027) 0.917 (± 0.026) 0.931 (± 0.022)
DG 0.280 (± 0.033) 0.492 (± 0.042) 0.221 (± 0.040) 0.381 (± 0.035) 0.669 (± 0.084) 0.722 (± 0.050)
CA1 0.407 (± 0.021) 0.538 (± 0.038) 0.308 (± 0.051) 0.428 (± 0.030) 0.621 (± 0.062) 0.626 (± 0.064)
VISa 0.488 (± 0.046) 0.490 (± 0.047) 0.318 (± 0.056) 0.364 (± 0.074) 0.857 (± 0.065) 0.874 (± 0.066)

Table 3: Effects of dynamic mixing proportion of the MoG on decoding performance.

Effects of higher-dimensional spike features. In Table 4, we provide a comparison of decoding
performance using two different sets of spike features. The first set includes spike location along
the width and depth dimensions of the probe (denoted as x and z) as well as the maximum peak-to-
peak amplitude of the spike (denoted as a). The second set includes the first and second principal
components (PCs) of the spike waveforms (denoted as u1 and u2) in addition to x, z and a. The
spike features are visually represented using scatter plots in Figure 10. We report the mean and
standard deviation of the decoding accuracy (R2) obtained from a 5-fold CV on a single session.
Table 4 provides insights regarding the inclusion of additional waveform PC features for decoding.
The findings suggest that the incorporation of these additional PC features does not contribute to
significant improvements in decoding performance.

Motion energy (R2) Wheel speed (R2) Choice (accuracy)

(x, z, a) (x, z, a, u1, u2) (x, z, a) (x, z, a, u1, u2) (x, z, a) (x, z, a, u1, u2)

All 0.531 (± 0.026) 0.529 (± 0.026) 0.484 (± 0.042) 0.478 (± 0.045) 0.917 (± 0.019) 0.917 (± 0.019)
PO 0.462 (± 0.038) 0.457 (± 0.039) 0.469 (± 0.061) 0.464 (± 0.051) 0.853 (± 0.019) 0.853 (± 0.025)
LP 0.490 (± 0.026) 0.489 (± 0.029) 0.479 (± 0.035) 0.473 (± 0.013) 0.864 (± 0.022) 0.849 (± 0.036)
DG 0.335 (± 0.028) 0.321 (± 0.037) 0.273 (± 0.030) 0.264 (± 0.025) 0.675 (± 0.038) 0.679 (± 0.049)
CA1 0.449 (± 0.027) 0.440 (± 0.046) 0.329 (± 0.044) 0.328 (± 0.040) 0.755 (± 0.045) 0.758 (± 0.053)
VISa 0.270 (± 0.021) 0.237 (± 0.017) 0.225 (± 0.024) 0.206 (± 0.013) 0.725 (± 0.048) 0.732 (± 0.054)

Table 4: Effects of incorporating higher-dimensional spike features on decoding performance.

24

Figure 10: Visualizations of spike features employed for decoding. Spike localization features,
(x, z), the locations of spikes along the width and depth of the NP1 probe, and waveform features, a,
the maximum peak-to-peak (max ptp) amplitudes of spikes. Amplitude is measured in standard units
(s.u.). u1 and u2 denote the first and second principal components (PCs) of the spike waveforms.

25

Effects of inclusion criteria for spike waveforms. To investigate whether the density-based
decoder is performing better by using additional spikes that a spike sorter would miss, we conducted
an experiment using different inclusion criteria for spike waveforms. We fitted our model using
only spikes detected by Kilosort 2.5, and compared its performance to decoders using spike-sorted
outputs and our subtraction-based spike detection on choice and motion energy decoding. The results
are summarized in Table 5. As shown in the table, our decoder can achieve comparable or better
decoding performance than the spike-sorted decoder when modeling the same spikes. This suggests
that the gain in decoding performance can be attributed to the density-based approach, instead of the
spike inclusion criteria.

Choice (accuracy) Motion energy (R2)

Density-based (subtraction spikes) 0.876 (± 0.068) 0.589 (± 0.111)
Density-based (KS spikes) 0.876 (± 0.079) 0.579 (± 0.121)
Sorted (KS spikes) 0.887 (± 0.078) 0.503 (± 0.117)

Table 5: Effects of inclusion criteria for spike waveforms on decoding performance.

9 Comparison to a state-of-the-art clusterless decoder

In this section, we outline the specific experimental setup for evaluating our density-based decoder
in comparison with the clusterless point process decoder (Denovellis et al., 2021) on both multiple
tetrodes and high-density (HD) probes data.

Application to tetrodes. We utilized the code provided in the GitHub repository1 of the clusterless
point process decoder (Denovellis et al., 2021) to generate simulated neural and behavioral data. This
synthetic dataset was designed to mimic recordings from 5 tetrodes, with each tetrode containing
4 channels. Spike amplitudes from each channel of these multiple tetrodes were selected as the
spike features for both decoding methods. The objective of the decoding was to estimate the
animal’s position from these simulated spike features. As the original simulated position was too
straightforward to decode, we intentionally distorted it by blending it with real position data sourced
from the GitHub repository2. Moreover, we introduced random Gaussian noise to the simulated
position for added complexity.

Application to HD probes. We evaluated both decoders on decoding wheel speed and motion
energy from spike features extracted from NP1 probes across three IBL datasets. To preprocess the
data, we followed the pipeline outlined above, extracting spike localization features and maximum
peak-to-peak amplitudes as common features for both decoders.

We only focus on continuous behaviors for decoding since the clusterless point process decoder
is designed exclusively for continuous behaviors. Notably, due to its continuous time nature, the
clusterless point process decoder directly decoded behaviors without time binning. In contrast, our
density-based model required time binning of both behavioral and spike feature data into equal-sized
time intervals. Consequently, we used the time-binned behaviors for decoding with the density-based
approach. We employed 5-fold cross-validation to assess the decoding performance of both decoders.
We used a random walk as the state transition for the clusterless point process decoder, and used the
estimated variance from the animal’s behavior to set the variance of the random walk. The clusterless
point process decoder uses a grid-based approximation of the inferred behavior, discretizing the
behavior space into place bins; see Section “Decoding” in Denovellis et al. (2021). We determine
place bin size based on the square root of the observed behavior variance. Denovellis et al. (2021)
use kernel density estimation (KDE) to estimate the distributions of both the behavior variable and
the spike features used for decoding. We set the KDE bandwidth that determines the amount of
smoothing done for spike features to be 1.0, and the bandwidth for behavior to be the square root of
the observed behavior variance; see Section “Encoding - clusterless” in Denovellis et al. (2021).

1https://github.com/Eden-Kramer-Lab/replay_trajectory_classification
2https://github.com/nelpy/example-analyses/blob/master/LinearTrackDemo.ipynb

26

https://github.com/Eden-Kramer-Lab/replay_trajectory_classification
https://github.com/nelpy/example-analyses/blob/master/LinearTrackDemo.ipynb

10 Simulation for model validation

We conducted simulations to illustrate the principles of our method. The simulation aimed to show that
our encoding model can learn the relationship between spike features and behaviors. We performed
two tasks, decoding a binary variable, yk, simulated from a Bernoulli distribution, and decoding a
continuous variable, yk, simulated from a Gaussian process. To mimic the data-generating process,
we selected Gaussian components with “templates” extracted from a real dataset. The encoding
model parameters, b and β, were also taken from learned parameters in the same dataset. Given b, β
and yk, we simulated the “firing rates” λ for each Gaussian component in the mixture, as described in
the Method section of our paper. Next, we generated spike features based on these simulated “firing
rates,” and applied the encoding model to infer the behavior-dependent λ. Figure 11 displays the
learned λ for each component c, time t, and trial k. The learned “firing rates” closely resembled
the simulated ones, indicating the model’s ability to recover the primary associations between spike
features and behaviors. With such associations, the decoding model can decode behaviors.

simulated simulated learned a) b)

time (second)
0 1.0

time (second)
0 1.0

time (second)
0 1.0

co
m

p
o

n
en

t

co
m

p
o

n
en

t

time (second)
0 1.0

learned

Figure 11: Our encoding model recovers the relationship between the simulated spiking activity
and the simulated behavior correlate. Panel (a) shows a comparison of the simulated firing rates
conditioned on the binary behavior variable with the learned firing rates by our encoding model. In
Panel (b), we compare the simulated firing rates conditioned on the continuous behavior variable with
the learned firing rates from our encoding model.

27

11 Relationship to spike sorting

We conducted experiments to investigate the biological interpretation of our MoG units and the
correspondence between single cells identified by KS and our MoG units. The agreement matrix
between “hard” KS spike assignments and “soft” MoG assignments is shown in Figure 12. We
calculated the conditional probability of spikes belonging to each MoG component, given that these
spikes belong to the corresponding KS unit. Notably, KS units with large amplitudes are less likely to
be split into multiple Gaussian components. This shows a reasonable correspondence between the
Gaussian components and the spike-sorted units.

Prob.

Amplitude
(s.u.)

Figure 12: Correspondence between Kilosort and MoG spike assignment. Units are ordered
by their depth on the Neuropixel probe. The color bar shows the conditional probability of spikes
belonging to each MoG component, given that these spikes belong to the corresponding KS unit. The
mean amplitude of each KS unit is shown at the bottom.

28

