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1 INTRODUCTION
In this supplementary file, we present additional experiments and
results to complement the main paper. Firstly, we explore the per-
formance of various backbone networks to illustrate how we select
the backbone network in our VPIP framework. Then, we present
the quantitative comparison of using different information mecha-
nism in the VPIP framework. Following this, we perform a more
comprehensive comparison between GenLV and PromptGIP under
several different settings. Afterwards, we show the computation
cost of different parts of our model. Finally, we present more visual
comparison results of our GenLV with the other methods.

2 EXPLORATION ON DIFFERENT IMAGE
RESTORATION BACKBONE NETWORKS

The quantitative comparison of various backbone networks for dif-
ferent image restoration tasks is presented in Table 2. All the models
are trained on the same multi-task restoration setting. We explore
the different backbone networks based on image restoration be-
cause it has a clear quantitative evaluation scheme (i.e., PSNR/SSIM)
and numerous low-level vision networks are designed based on it.
As one can see that the overall performance of X-Restormer is the
best, so it was selected as the backbone network in our method.
It is noteworthy that the dehazing results show unusual perfor-
mance, as both Restormer and X-Restormer perform much worse
over the other comparison networks on this task. After inspecting
the results, we find that these two models do not process some
haze images. This suggests that these two networks may have fatal
optimization difficulty in handling multi-task image restoration
when dehazing is considered. Nevertheless, we can see that the
introduction of task prompts effectively mitigates this problem, as
depicted in Table 1 of the main paper.

3 EXPLORATION ON DIFFERENT PROMPT
INTERACTION MECHANISMS

In this section, we explore the impact of different prompt interaction
mechanisms in the proposed VPIP framework. A model without
using prompt and two models using common modulation strategies
(i.e., global feature modulation (GFM) [1] and spatial feature trans-
form (SFT) [2]) for low-level vision tasks are compared. All models
are trained on the same settings involving 30 tasks. In Table 3, we
present the quantitative results of these models on restoration tasks.
We can see that the model without using prompt performs much
worse than other models. This is reasonable because the model
cannot handle tasks with different target domains (e.g., edge detec-
tion), which greatly affects the optimization. Models with GFM and
SFT can achieve much better performance than the model without
prompt interaction, but their performance is still lower than our
model. This suggests that the feature modulation schemes can also
achieve task guidance to a certain extent, but their ability to learn
the task representation is not as effective as prompt cross-attention.

4 COMPREHENSIVE COMPARISON BETWEEN
PROMPTGIP AND OUR GENLV

We conduct comprehensive experiments and demonstrate the quan-
titative comparison of PromptGIP and GenLV under three training
settings. Trained only for restoration tasks, we can see that our
GenLV★ can already outperforms PromptGIP★. This is mainly due
to the powerful backbone that our VPIP framework can use. When
the number of tasks increases to 15 (i.e., the PromptGIP setting), the
performance of both PromptGIP# and GenLV# decreases slightly,
while no more than 0.5dB. As the complexity of tasks continues to
increase (i.e., the GenLV setting), we can find that the performance
of both PromptGIP† and GenLV† drops significantly. However, the
performance degradation of GenLV† on most tasks is within 1dB,
while PromptGIP†’s performance degradation is around 2 to 4dB.
This intuitively indicates that PromptGIP is more easily affected by
the increase in the number and complexity of tasks. From the main
paper, we illustrate that this is because PromptGIP is sensitive to
the prompt content. When more tasks involving low-frequency pro-
cessing are considered, its performance would be greatly affected.
Many cases in the visual comparison (in the main paper Figure 5,
Supp. Figure 1, 2 and 3 ) can more directly reflect this point.

5 COMPUTATION COST BREAKDOWN
In Table 1, we present the computation cost of different components
of our GenLV model. The computational cost of the main network
is similar to the original X-Restormer. The computational cost of
prompt encoder comes from the residual blocks. The computational
cost of the extra fusion part is from the prompt cross-attention
modules in PCABs. Our prompt interaction scheme can bring con-
siderable performance improvement at limited additional cost.

Table 1: Computation cost of different parts of our model.

Component Params MACs

Main Network 26.0M 192.3G
Prompt Encoder 2.8M 22.8G
Extra Fusion Part 3.9M 24.1G

6 MORE VISUAL RESULTS
In Figure 5 of the main paper, we show the visual results of 9
representative tasks. In Figure 1, Figure 2 and Figure 3, we present
more visual results on the remaining 21 tasks.
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Table 2: Quantitative results (PSNR) of different image restoration backbone networks.

GN PN S&P Noise GB JPEG Ringing R-L Inpainting SimpleRain ComplexRain Haze

RRDB 26.05 27.42 24.85 22.77 25.37 24.51 25.01 24.28 24.20 22.69 21.54
ViT 24.67 25.39 23.71 22.17 24.76 23.89 24.09 23.11 23.21 23.04 24.91

SwinIR 28.83 31.19 36.59 23.45 26.65 26.00 29.51 27.00 29.78 22.26 21.23
Restormer 28.56 31.21 35.42 24.16 26.65 27.00 29.83 27.77 29.38 24.16 14.83
X-Restormer 28.70 31.36 35.33 24.13 26.68 26.88 30.01 27.68 29.65 24.39 16.73

Table 3: Quantitative results of using different prompt interaction mechanisms.

GN PN S&P Noise GB JPEG Ringing R-L Inpainting SimpleRain ComplexRain Haze

Without Prompt Interaction 24.30 25.85 26.54 20.63 19.26 16.88 17.87 22.57 19.56 21.55 14.22
Feature Modulation - GFM 27.76 30.04 32.42 22.52 25.68 24.55 25.65 26.12 25.66 24.56 28.55
Feature Modulation - SFT 28.03 30.58 33.20 22.82 26.04 24.72 26.46 26.42 26.48 24.46 28.17

Prompt Cross-Attention (ours) 28.28 30.80 33.47 23.14 26.06 25.50 27.51 26.66 27.68 25.13 28.65

Table 4: Comprehensive comparison between PromptGIP and GenLV under three different settings. ★: trained only for
restoration tasks. #: trained on the PromptGIP setting (15 tasks). †: trained on the GenLV setting (30 tasks).

GN PN S&P Noise GB JPEG Ringing R-L Inpainting SimpleRain ComplexRain Haze

PromptGIP★ 26.48 27.76 28.08 22.88 25.86 25.69 27.05 25.28 25.79 24.33 24.55
GenLV★(ours) 28.99 31.69 36.63 24.58 26.91 27.74 31.50 28.11 31.10 24.71 28.91
PromptGIP# 26.22 27.29 27.49 22.77 25.38 25.45 26.79 25.02 25.46 24.08 24.32
GenLV#(ours) 28.92 31.58 36.32 24.33 26.55 27.55 31.11 27.86 30.35 24.47 28.73
PromptGIP† 23.63 23.98 25.05 20.84 22.21 23.86 24.94 22.11 23.16 21.79 21.90
GenLV†(ours) 28.28 30.80 33.47 23.14 26.06 25.50 27.51 26.66 27.68 25.13 28.65

Figure 1: More visual results of different models on various low-level vision tasks.
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Figure 3: More visual results of different models on various low-level vision tasks.
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