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ABSTRACT

Spiking Neural Networks (SNNs) are increasingly explored for their energy ef-
ficiency and robustness in real-world applications, yet their privacy risks remain
largely unexamined. In this work, we investigate the susceptibility of SNNs to
Membership Inference Attacks (MIAs)—a major privacy threat where an adver-
sary attempts to determine whether a given sample was part of the training dataset.
While prior work suggests that SNNs may offer inherent robustness due to their
discrete, event-driven nature, we find that its resilience diminishes as latency (T)
increases. Furthermore, we introduce an input dropout strategy under black box
setting, that significantly enhances membership inference in SNNs. Our find-
ings challenge the assumption that SNNs are inherently more secure, and even
though they are expected to be better, our results reveal that SNNs exhibit pri-
vacy vulnerabilities that are equally comparable to ANNs. Our code is available
at https://github.com/sharmaabhijith/MIA_SNN

1 INTRODUCTION

Spiking Neural Networks (SNNs) are a class of neural networks that emulate the discrete, event-
driven processing of biological neurons. Unlike artificial neural networks (ANNs), which rely on
continuous activations, SNNs communicate through discrete spikes, making them energy-efficient,
noise-resistant, and suited for temporal pattern recognition (Tavanaei et al., 2019; Kasabov, 2014;
Yan et al., 2024; Nunes et al., 2022; Nagarajan et al., 2022). These advantages have led to their
growing adoption in computer vision and speech processing applications(Yamazaki et al., 2022).

However, as SNNs gain traction, security, and privacy concerns must also be addressed (Jobin et al.,
2019; Liu et al., 2021; Rigaki & Garcia, 2023). One of the most prominent threats is the Membership
Inference Attack (MIA) (Shokri et al., 2017), where an adversary attempts to determine whether a
specific data sample was part of a model’s training set. Such attacks pose significant privacy risks,
particularly in sensitive applications like healthcare, where leaking training data could compromise
confidentiality. In addition, regulating organizations can leverage MIA as a metric to conduct pre-
deployment audits of AI models to avoid leakage of sensitive data. MIAs have been widely studied
in conventional neural networks, but their impact on SNNs remains largely unexplored.

A recent study by Li et al. (2024) suggests that SNNs’ discrete spike-based outputs may offer some
level of protection against MIAs, but current evaluations are limited and often rely on metrics that
may not fully capture the unique characteristics of SNNs (see Appendix A). This raises a critical
question: Are SNNs genuinely more resilient to MIAs, or do they exhibit vulnerabilities similar
to conventional neural networks? In this work, we investigate SNNs’ susceptibility to membership
inference attacks to better understand their privacy risks and address gaps in existing research.

2 METHODOLOGY

Our main attack setup follows prior MIA research (Zarifzadeh et al., 2024; Carlini et al., 2022).
We start with a dataset D, and then utilize a data splitting explained in Appendix D to effectively
train all the reference models to carry out MIA. In this setting, attackers know the target model’s
architecture and can use the whole D to train reference models. They can also know the model’s
softmax outputs. For auditing, we use the entire dataset to maintain unbiased results.

∗Equal contribution.
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2.1 MIA ATTACK METHODS: BACKGROUND AND MODIFICATIONS

In this section, we describe Attack-P, Attack-R, and RMIA (Ye et al., 2022; Zarifzadeh et al., 2024)
and adapt them to our experimental setting, as summarized in Table 2.1. The primary aim is to utilize
the whole dataset to audit and also to make the attack stronger and faster. Theorem 2, supported by
Remark 1 establishes the equivalence of our modified setting with an empirical estimation of RMIA,
allowing an approximation of the strongest online RMIA version without executing it online. We
define the parameters for the following attack methods as follows. Let θ be the target model and θ′

a reference model. The audited sample is x, while z is drawn from the dataset D of size N . The
model’s confidence output is Pr(·|θ). Reference models trained with and without x are denoted as
θ′x and θ′x̄, respectively. The confidence of any model m, Pr(d|m), is given by the softmax score of
the true label of input d.

Attack Attack-P Attack-R RMIA

Original Prz
(

Pr(x|θ)
Pr(z|θ) ≥ 1

)
Prθ′

(
Pr(x|θ)
Pr(x|θ′) ≥ 1

)
Prz

(
Pr(θ|x)
Pr(θ|z) ≥ 1

)
Modified Pr(x|θ) 1

2n

∑
θ′ 1 (Pr(x|θ) ≥ Pr(x|θ′)) Pr(x|θ)

1
2n

(∑
θ′x

Pr(x|θ′x)+
∑

θ′x̄
Pr(x|θ′x̄)

)

Table 2.1: Attack formulations for computational efficiency by removing dependence on z.

The three attack methods outlined above exploit different assumptions about model confidence to
infer membership. Attack-P assumes that if a sample x is part of the target model’s (θ) training
data, the model’s confidence on x is likely higher than on an arbitrary sample z. While the weakest
among the three, it provides insights into the model’s confidence distribution. Attack-R strengthens
this approach by comparing θ’s confidence on x with that of reference models (θ′), assuming that the
target model assigns higher confidence to samples it has seen during training. RMIA is the strongest
attack, exploiting the assumption that if θ is trained on x, the likelihood of θ given x is higher than
for any unrelated sample z. Together, these attacks provide a progressive understanding of how a
model’s confidence can reveal membership information.

2.2 MOTIVATION

Numerous existing works have demonstrated the robustness of SNNs against adversaries due to their
discrete spiking behavior (Kim et al., 2022; Sharmin et al., 2019). These references and many others
are discussed in Appendix A. Similarly, we expect MIAs to be ineffective, especially on low-latency
Spiking SNNs (also validated by our results of Section 3). It is not because SNNs fail to remember
the training data, but because their discrete representations cause member and non-member samples
to overlap. Interestingly, we observe that MIA and the out-of-distribution (OOD) detection task
share the same principle: the model exhibits higher confidence on in-distribution data (members)
compared to the out-of-distribution data (non-members) (Hendrycks & Gimpel, 2016). Fundamen-
tally, both methods are related to epistemic uncertainty, which arises due to lack of knowledge or
data, and can be reduced with additional information or improved modeling (Der Kiureghian &
Ditlevsen, 2009; Lahlou et al., 2023).

In practice, dropout is a widely used and effective technique for regularization (Hinton, 2012), un-
certainty estimation (Gal & Ghahramani, 2016), (Sun et al., 2023), and OOD detection (Hendrycks
& Gimpel, 2016; Nguyen et al., 2022). Techniques like Monte Carlo (MC)-Dropout (Gal & Ghahra-
mani, 2016) introduce stochasticity during inference, with variations in output softmax probabilities
approximating model uncertainty. However, in the context of MIA, directly applying MC-Dropout
is not feasible, as it requires access to model parameters, which is unavailable in a black-box setting.
To address this, we propose using input dropout, as an approximation of MC-Dropout (in the first
layer), introducing stochasticity to the predictions without requiring access to the model’s internals.
As evidenced by our experiments, low-latency SNNs often struggle to differentiate subtle distinc-
tions between member and non-member data. By perturbing the input through dropout, we aim to
reduce the confidence of non-member data while maintaining the relative confidence of member
data, thus enhancing the separation and improving the MIA’s effectiveness.
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2.3 DROPOUT-ENHANCED MIA METHOD: INTRODUCING PREDICTION STOCHASTICITY

This section develops an intuition for the similarities between weight and input dropout. Consider a
simple single-layered model given by fW : Rd → R, fW (X) = φ(WT ·X), where W ∈ Rd is
the weight vector, X ∈ Rd represents the input and φ is the non-linear activation. During dropout,
a Bernoulli mask M ∈ Rd with probability (1− p) modifies the input and weight as X̃ = M ⊙X

and W̃ = M ⊙W , where ⊙ denotes the Hadamard product. The equivalence between the expected
outputs of input dropout EM [fW (X̃)] and weight dropout EM [fW̃ (X)] is shown in Equation 1:

EM [fW (X̃)] = EM

[
φ
(
WT · (M ⊙X)

)]
= EM

[
φ

(∑
i

wi(Mixi)

)]

= EM

[
φ

(∑
i

(Miwi)xi

)]
= EM

[
φ
(
(M ⊙W )T ·X

)]
= EM [fW̃ (X)]

(1)

However, in case of multi-layered networks, weight dropout is applied to each layer individually,
which differentiates it from input dropout. Nevertheless, both methods are capable of introducing
stochasticity into the model’s predictions. Hence, based on our hypothesis, instead of modifying the
internal layers, we randomly drop parts of the input data. For each forward pass i ∈ {1, . . . , N}, a
binary mask with elements sampled from the Bernoulli (p) mask inputs: X̃ = X ⊙M is fed into
the model θ. We then compute the confidence Pr(X̃ | θ) for each pass, and the final estimate is
obtained by averaging over n passes:

Pr(X | θ) = 1

N

N∑
i=1

Pr(X̃i | θ).

This method enhances existing MIA techniques by incorporating the mean confidence value, which
can be optimized for different attack strategies. When selecting the hyperparameters, we use the
following approach: we randomly consider one of the reference models as the target model and
use the other reference models to attack it. Then, we find the optimal hyperparameters p and N by
grid search to maximize the attack’s AUC. Finally, we use the hyperparameters selected from the
reference models to attack the original target model.

Some MIA methods also incorporate input noise (e.g., Carlini et al. (2022), Zarifzadeh et al. (2024))
However, these methods do not directly estimate the confidence term Pr(X | θ); they rely on other
components of the MIA metric. Our focus here is not to compare various uncertainty estimation
methods but rather to evaluate whether input dropout can significantly enhance MIA performance
on SNNs. Additionally, by estimating the confidence term with input dropout, we can extend this
approach to all attack methods that require confidence estimation.

3 EXPERIMENTS AND RESULTS

The detailed outline of our experimental setup is explained in Appendix F. Hence, in this section,
we primarily discuss the experiment results to analyze the membership privacy risk in SNNs.

Without-Dropout. Tables 3.1 and Figure 1 Left present the performance of trained ANNs and their
corresponding SNNs (T = 1, 2, 4) on CIFAR-10 and CIFAR-100 against MIAs. Our results can be
summarized in three key points. First, RMIA is the most effective attack, followed by Attack-R and
then Attack-P, which aligns with previous findings Zarifzadeh et al., 2024. Second, for SNNs, all
attack metrics (AUC and TPR at low FPR) increase with T , indicating their progressive vulnerability
to MIAs as their latency increases. Finally, ANNs consistently exhibit the highest attack metric
scores, demonstrating that they are inherently more susceptible to MIAs than SNNs.

The robustness of SNNs at lower T stems from their inherent discrete signal processing. Unlike
ANNs, which handle continuous inputs and outputs, SNNs encode inputs as binary spike sequences
over T time steps. When T is small T = 1, each neuron outputs a single binary value, significantly
limiting expressiveness. This leads to overlapping confidence distributions for member and non-
member data (Fig. 1, Middle), reducing MIA effectiveness. As T increases, SNNs capture more
details, improving separation (Fig. 3 of Appendix G) and more easily be attacked. Note that there
exists an accuracy-privacy trade-off: lower T reduces accuracy slightly but improves privacy, while
higher T improves accuracy at the cost of privacy (see Table F.2).
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Table 3.1: MIA Results with SNN (left) and ANN (right) ResNet18 on CIFAR-10 and CIFAR-100.

Drop Attack SNN (T=1) SNN (T=2) SNN (T=4)

Out AUC 0.1% 1% AUC 0.1% 1% AUC 0.1% 1%
C

IF
A

R
-1

0
Fa

ls
e Attack-P 54.58 0.08 0.87 54.90 0.00 0.72 55.34 0.00 0.00

Attack-R 57.59 0.00 0.00 58.22 0.00 0.00 59.14 0.00 0.00
RMIA 59.89 0.84 3.82 60.83 1.00 4.43 62.61 1.09 5.01

Tr
ue

Attack-P 54.64 0.06 0.84 54.75 0.05 0.83 55.08 0.00 0.70
Attack-R 59.54 0.00 0.00 59.99 0.00 0.00 60.21 0.00 0.00
RMIA 63.84 1.86 6.34 64.28 2.03 6.23 64.65 1.94 6.61

C
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A
R

-1
00

Fa
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e Attack-P 59.47 0.14 1.24 61.67 0.12 1.13 64.85 0.12 1.13
Attack-R 66.25 0.00 0.00 69.58 0.00 0.00 73.23 0.00 0.00
RMIA 69.06 1.11 6.29 72.81 1.87 8.24 77.57 2.61 12.01

Tr
ue

Attack-P 59.70 0.14 1.20 61.85 0.13 1.30 64.82 0.12 1.21
Attack-R 71.69 0.00 0.00 73.64 0.00 0.00 75.47 0.00 0.00
RMIA 75.82 2.80 11.14 78.31 3.55 13.06 80.76 4.36 16.16

Attack ANN
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C
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A
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0 Attack-P 56.61 0.00 0.00

Attack-R 59.49 0.00 0.00
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C
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A
R
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RMIA 82.51 6.75 20.25
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Figure 1: Left: ROC curves and AUC values for all-latency SNNs and an ANN under RMIA on
CIFAR-100. Middle: A scatter plot showing the log attack p-scores and distributions for member
and non-member data on SNN (T=1) and ANN for CIFAR-100. Right: A line graph illustrating
RMIA performance for all-latency SNNs under different conditions: with or without input dropout,
and using or not using a transfer model (ANN).

Impact of Input Dropout on Attack Performance. To enhance the attack on SNNs, we apply the
input dropout method. For both CIFAR-10 and CIFAR-100, our experiments demonstrate that in-
corporating input dropout significantly increases the overall attack performance. This improvement
is observed when the adversary is not aware of the target SNN’s architecture and still using ANN as
a reference models (Fig. 1, Right). Furthermore, similar enhancements in attack performance are
also evident for directly trained SNNs, particularly for low-latency configurations (Table F.4).

Attacking SNNs Using an ANN as the Reference Model. In the scenario that the adversary em-
ploys an ANN as the reference model to attack a target SNN. Our experiments show that such
transfer model attacks are significantly less effective(Fig. 1, Right). Although SNNs and ANNs
may share the same architecture (e.g., ResNet-18), their confidence distributions for member and
non-member samples differ substantially (Fig. 1, Middle). Moreover, as the SNN’s latency T in-
creases, its confidence distributions for member and non-member data will become more and more
similar than those of the ANN (Fig.3), thereby reducing the attacker’s difficulty.

4 CONCLUSION

Our study shows that SNNs become increasingly vulnerable as latency increases. Furthermore,
our proposed input dropout technique can significantly increase the risk of MIA, even when the
adversary uses an ANN as a reference model. This effect also persists in direct-trained, low-latency
SNNs. Therefore, we argue that the assumption of SNNs’ inherent privacy protection should be
critically evaluated, highlighting the need to enhance privacy assurance in SNNs.
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A RELATED WORK

A.1 SPIKING NEURAL NETWORKS (SNNS)

Designing and training SNNs is challenging due to their sensitivity to hyperparameters such as
membrane threshold and synaptic latency, both of which significantly impact performance Bouvier
et al. (2019). Consequently, many existing methods focus on achieving low-latency inference with
improved convergence while maintaining accuracy Meng et al. (2022). Traditional approaches like
surrogate gradient learning Neftci et al. (2019) and temporal coding Bellec et al. (2018) have been
further enhanced by advanced techniques Dampfhoffer et al. (2023). Notably, Deng et al. Deng
et al. (2022) introduced a gradient re-weighting mechanism to improve the temporal efficiency of
SNN training.

To eliminate the need for manual threshold selection, Bojkovic et al. Bojkovic et al. (2024) proposed
a data-driven approach for threshold selection and potential initialization. Their method also facil-
itates the conversion of trained ANNs into SNNs, enabling efficient and high-performance training
even in low-latency settings (T = 1, 2, 4). These advancements are crucial for real-time, energy-
constrained applications. Beyond energy efficiency, SNNs have also been explored for their inherent
robustness against adversarial Nomura et al. (2022), El-Allami et al. (2021) and model inversion at-
tacks Kim et al. (2022), further reinforcing their potential towards robust AI.

A.2 MEMBERSHIP INFERENCE ATTACKS (MIAS)

The threat of Membership Inference Attacks (MIAs) was first demonstrated by Shokri et al. Shokri
et al. (2017) in a simple Machine Learning-as-a-Service (MLaaS) black-box setting. Since then,
extensive research has explored the privacy risks associated with diverse neural network architec-
tures for a wide range of applications Hu et al. (2022), Yeom et al. (2018), Salem et al. (2018).
Despite significant advancements and robustness characteristics of SNNs Kim et al. (2022), their
vulnerability to MIAs remains largely unclear and underexplored Sharmin et al. (2019).

The inconsistencies in evaluation metrics and experimental settings across existing studies have
made direct comparisons of MIA challenging Hu et al. (2023). However, authors in Carlini et al.
(2022) presented MIA from the first principle perspective, emphasizing the importance of analyzing
the Receiver Operating Characteristic (ROC) curve in attack’s assessments. The ROC fully captures
the tradeoff between True Positive Rate (TPR) and False Positive Rate (FPR) of the membership
data across different classification thresholds. Reporting TPR under extremely low FPR conditions
(≤1% and ≤ 0.1%) is particularly crucial, as attackers prioritize confidently identifying members
over overall accuracy. More recently, Zarifzadeh et al. (2024) proposed a state-of-the-art robust MIA
(RMIA), and generalized all other existing MIAs under the umbrella of their attack formulation.
RMIA also achieved highly effective attack performance with a limited number of shadow models.

A.3 CONCURRENT WORK

While existing research primarily focuses on traditional ANNs, the membership privacy risks in
SNNs remain largely unexamined. A recent study by Li et al. (2024) explored the robustness of
SNNs against MIAs, incorporating diverse experimental settings and assessing the impact of data
augmentation. However, despite these contributions, the study suffers from several critical limi-
tations. It relies on biased evaluation metrics such as balanced accuracy, which can obscure the
true effectiveness of MIAs, and employs outdated training techniques for SNNsCarlini et al., 2022.
Nowadays, in many research papers, AUC and TPR at very low FPR are the main metrics to study
the performance of MIAs. Additionally, the evaluation is conducted on simple datasets, failing to
provide meaningful insights into real-world scenarios.

More importantly, the study neglects key advancements in attack methodologies, such as Zarifzadeh
et al. (2024), limiting the comprehensiveness of its findings. Furthermore, the analysis is restricted
to timestep variations in neuromorphic datasets, lacking a systematic investigation of static datasets.
These shortcomings underscore the insufficiency of existing efforts in rigorously assessing member-
ship privacy risks in SNNs. A more sound evaluation is necessary to bridge this gap and uncover the
true privacy vulnerabilities of SNNs.
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B PRELIMINARIES

B.1 SPIKING NEURAL NETWORK

In this section, we will briefly explain some terminology related to SNNs, including the inference
process, and mainstream training strategies: direct training, ANN-SNN conversion, and hybrid train-
ing.

B.1.1 DATA ENCODING

Unlike ANNs, SNNs have an additional dimension to represent data: the temporal dimension. This
means that the input to the network is not a single image but is instead encoded over time into a
sequence of T images. T is also called time step or latency in SNN. There are various methods to
encode images for SNNs. One of the classical encoding methods is called constant encoding, Which
simply replicates the original image T times. After encoding, the resulting data is fed into the SNN.

B.1.2 FORWARD PASS

The forward process of SNN begins with encoding the input data, such as an image, into a spike
sequence over time. These spikes represent neuron activity across different time steps. As the spikes
are fed into the network, each neuron updates its membrane potential based on the spikes it receives.
If a neuron’s membrane potential exceeds a certain threshold, the neuron fires a spike and sends it
to the next layer through synapses.

U t
l = λU t−1

l + wlO
t
l−1, Ot

l = H(U t
l − θtr), U t

l = Ureset

The above formula describes the dynamics of a neuron in an SNN across time steps, particu-
larly focusing on the membrane potential and the neuron’s spiking behavior. The first equation
U t
l = λU t−1

l +wlO
t
l−1 represents the membrane potential U t

l of a neuron at layer l and time t. The
membrane potential is updated by combining two components: the decayed potential from the pre-
vious time step λU t−1

l , where λ is a decay factor between 0 and 1, and the weighted input from the
previous layer’s output wlO

t
l−1, where wl is the synaptic weight and Ot

l−1 is the output (spike) from
the previous layer at time t. The second equation Ot

l = H(U t
l −θtr) describes the neuron’s output at

time t, where H is a Heaviside step function. If the membrane potential U t
l exceeds a certain thresh-

old θtr, the neuron generates an output spike (Ot
l = 1); otherwise, no spike is generated (Ot

l = 0).
The third equation U t

l = Ureset indicates that once the neuron fires a spike, its membrane potential
is reset to a specific value Ureset, preparing the neuron for further spike processing in subsequent
time steps. For the last layer L, the output of the network is UT

L , which is the membrane potential for
the final time T . In this setting, if the decay factor λ is 1, the neuron is called an Integrate-and-Fire
(IF) neuron; otherwise, it is a Leaky Integrate-and-Fire (LIF) neuron.

B.1.3 ANN-SNN CONVERSION

The training of SNNs can be categorized into three main approaches: direct backpropagation and
ANN-to-SNN conversion. However, in MIAs, the probability vector output by the neural network is
the most critical feature for determining the membership status of a specific data point. Therefore,
when studying the effectiveness of MIAs, we should focus more on the forward propagation process
of SNNs rather than their backpropagation process.

Since training SNNs through backpropagation is highly time-consuming, we adopted the ANN-to-
SNN conversion approach to obtain our SNN models. There are two commonly used methods for
ANN-SNN conversion: weight scaling (Rueckauer et al., 2017; Diehl & Cook, 2015) and thresh-
old scaling (Sengupta et al., 2019). In Kim et al. (2022), which used the threshold scaling method.
This method works by inputting some training data into the ANN, observing the maximum acti-
vation values at each layer, and then setting these values as the thresholds for each corresponding
layer in the SNN. More recently, there have been works on ANN-SNN conversion techniques that
achieve higher accuracy and have become more widely used. In this paper, we adopt the recent
state-of-the-art conversion method from Bojkovic et al. (2024), which sets the threshold and poten-
tial initialization based on a fine-grained analysis of activation values in the original ANN. After
the ANN-to-SNN conversion, the model can be further fine-tuned for several epochs to enhance

9



I Can’t Believe It’s Not Better Workshop @ ICLR 2025

performance, a process known as hybrid training (Rathi et al., 2020). By applying hybrid training,
the state-of-the-art method proposed by Bojkovic et al. (2024) significantly increases the network
performance for low-latency SNNs.

B.2 MEMBERSHIP INFERENCE

Definition 1 (Binary Classification). Let S = {(xi, yi)}ni=1 be a dataset where:

• xi ∈ R is a one-dimensional feature value.

• yi ∈ {0, 1} represents the class label, where yi = 1 indicates a positive sample, and yi = 0
indicates a negative sample.

A threshold-based classifier with threshold t is defined as:

ŷi =

{
1, xi ≥ t

0, xi < t.
(2)

Definition 2 (True Positive Rate (TPR) and False Positive Rate (FPR)). For a given threshold t, we
define:

TPR(t) =
∑n

i=1 1(xi ≥ t, yi = 1)∑n
i=1 1(yi = 1)

, (3)

FPR(t) =
∑n

i=1 1(xi ≥ t, yi = 0)∑n
i=1 1(yi = 0)

. (4)

The ROC curve is defined as the set of points:

ROC = {(FPR(t),TPR(t)) | t ∈ R}. (5)

The Area Under the Curve (AUC) is given by:

AUC =

∫ 1

0

TPR(FPR) d(FPR). (6)

Definition 3 (Membership Inference Game). Carlini et al., 2022; Zarifzadeh et al., 2024 Let π be
an underlying data distribution and let A be a training algorithm. We begin by drawing a training
set S ∼ πm, and then use A to train a target model θ ← A(S). The game proceeds between two
entities: a challenger and an attacker.

1. Dataset Sampling and Model Training. The challenger samples a dataset S from π, and
trains a model θ using A on S. Here, θ is the target model.

2. Challenge Sample Selection. The challenger tosses a fair coin b ∈ {0, 1}.

• If b = 1, it picks a point x uniformly at random from S. In this case, x is a member of
θ.

• If b = 0, it draws a fresh sample x from π (ensuring x /∈ S). In this case, x is not a
member of θ.

The challenger then provides both the target model θ and the sample x to the attacker.

3. Attacker’s Inference. The attacker, having access to θ (and potentially query access to the
distribution π), computes a membership score

ScoreMIA(x; θ),

indicating how likely it believes x was contained in S. Based on a chosen threshold β, the
attacker issues a membership decision

b̂ ← 1
[
ScoreMIA(x; θ) ≥ β

]
.

Here, 1[·] is the indicator function, so b̂ = 1 (member) if the score exceeds the threshold,
and 0 (non-member) otherwise.
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4. Outcome and Evaluation. The attacker’s prediction b̂ is compared against the true bit b:

Outcome =

{
1, if b̂ = b,

0, otherwise.

By repeating this experiment over many trials, we can plot the ROC for each β. The leakage
of the model is often characterized by the achievable trade-off between TPR and FPR across
all possible threshold values. The attack method is considered to be good with a high AUC
score.

Definition 4 (Equivalence of Score Functions). Let S1 and S2 be two real-valued MIA scoring
functions that assign a score to each data point. We say that S1 and S2 are equivalent if for all data
points x1, x2 ∈ D,

S2(x1) > S2(x2) ⇐⇒ S1(x1) > S1(x2). (7)

C PROOFS

Theorem 1. Let S1 and S2 be two equivalent scoring functions, then the ROC curves for S1 and S2

on the same data set are identical.

Proof. Since S1 and S2 preserve the same ranking of data points, their ordering in terms of clas-
sification thresholds remains unchanged. That is, for any threshold t applied to S2, there exists a
corresponding threshold s applied to S1 such that the classification outcomes remain identical:

ŷi =

{
1, S2(xi) ≥ t

0, S2(xi) < t
⇐⇒ ŷi =

{
1, S1(xi) ≥ s

0, S1(xi) < s.
(8)

Since both functions yield the same classification outcomes for all possible threshold values, they
result in the same TPR and FPR values at each threshold:

TPRS1
(s) = TPRS2

(t), (9)
FPRS1

(s) = FPRS2
(t). (10)

Since the ROC curve is defined as the parametric plot of (FPR(t),TPR(t)), it follows that:

ROCS1 = ROCS2 . (11)

Thus, the theorem is proved.

Theorem 2. Let S1 and S2 be two MIA scoring functions defined as:

S1(x) =
1

N

N∑
j=1

1
(
Pr(x | θ) ≥ Pr(zj | θ)

)
, (12)

S2(x) = Pr(x | θ), (13)

where {zj}Nj=1 is a fixed set of samples. Suppose x1, x2 ∈ D. Then, S2(x1) > S2(x2), if and only
if S1(x1) > S1(x2).

Proof. Assume S2(x1) > S2(x2), meaning

Pr(x1 | θ) > Pr(x2 | θ). (14)

Define the indicator set:
Ax = {zj | Pr(x | θ) ≥ Pr(zj | θ)}. (15)

Since Pr(x1 | θ) > Pr(x2 | θ), we have Ax2 ⊂ Ax1 . Hence,

S1(x1) =
|Ax1
|

N
>
|Ax2
|

N
= S1(x2). (16)

This establishes the order-preserving property in the forward direction.
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Reverse direction: Assume S1(x1) > S1(x2). This implies
|Ax1
|

N
>
|Ax2
|

N
. (17)

Since Ax is defined based on comparisons with Pr(x | θ), if S1(x1) > S1(x2), then x1 ranks strictly
higher than x2 in terms of how often it exceeds reference points zj . The only way for this to happen
is if

Pr(x1 | θ) > Pr(x2 | θ), (18)
which implies S2(x1) > S2(x2).

Since both directions hold, we conclude
S2(x1) > S2(x2) ⇐⇒ S1(x1) > S1(x2). (19)

Hence the S1 and S2 are equivalent. By Theorem 1, the ROC for them are the same

Remark 1. Theorem 2 is used to prove the modified Attack-P method is the same as the empirical
estimation of the original method. And it can be easily used in the same structure of Theorem 2,
to prove the correctness of the modified RMIA method. According to the data-splitting method in
Section 2, for training the reference models, we can confirm that for each x, there must be the same
number of models using and without using x to train. This satisfies the requirement of the original
paper, ensuring that the number of θ′x̄ and θ′x is equal, providing an unbiased estimation of Pr(x).
This contains all the necessary information for an online RMIA attack, allowing it to achieve optimal
performance. See Zarifzadeh et al. (2024) for more details.

D EFFICIENT DATA-SPLITTING STRATEGY FOR ONLINE ATTACK SETTING

We propose a data splitting strategy that emulates an online attack without incurring the computa-
tional cost of repeatedly retraining models. Our method begins by partitioning the dataset D into two
equal halves: one to train our target SNN model and the other to serve as its test set. Subsequently,
we shuffle the original dataset D. This shuffled dataset is then iteratively divided to train n pairs of
reference models, resulting in a total of 2n reference models. Crucially, while each reference model
is trained on a substantial portion of D derived from this process, the data splitting is carefully de-
signed to ensure that each query from the target model’s test set is present in approximately half of
the reference models. This balanced exposure is essential for unbiased MIA evaluation.

This approach effectively simulates an online attack environment by providing a diverse set of pre-
trained reference models against which to assess membership, all without the need for computation-
ally expensive online model retraining. Consistent with standard MIA assumptions in the literature
(Zarifzadeh et al., 2024), we acknowledge that our reference models are designed under the com-
mon assumption that attackers possess knowledge of the target model’s architecture. Our approach
is depicted in Figure 2 providing an intuitive explanation of its effectiveness.

Figure 2: Illustration of Data Splitting Strategy

12



I Can’t Believe It’s Not Better Workshop @ ICLR 2025

This approach ensures a fair and efficient data-splitting strategy for an online attack setting while
maintaining unbiased results. By iteratively shuffling D and training k pairs of reference models, we
distribute each target query across half of the reference models. This allows for effective evaluation
without additional training overhead.

E ALGORITHM

Algorithm 1 Estimate Pr(x | θ) with Input Dropout
Require: θ: Model, x: Input, p: Dropout rate, n: Number of samples
Ensure: Estimated Pr(x | θ)

1: s← 0 ▷ Initialize confidence sum
2: for i = 1 to n do
3: M ∼ Uniform(0, 1) ▷ Generate uniform noise tensor
4: m←M > p ▷ Generate binary dropout mask
5: x̃← x⊙m ▷ Apply dropout mask
6: s← s+ Pr(x̃ | θ) ▷ Pass through model and sum
7: end for
8: Pr(x | θ)← s/n ▷ Compute final estimate
9: return Pr(x | θ)

F EXPERIMENTAL SETUP

F.1 MODEL TRAINING

F.1.1 HYBRID TRAINING VIA ANN-TO-SNN CONVERSION

In this approach, we first train an ANN and subsequently convert it into a SNN using the threshold
extraction and fine-tuning method proposed by Bojkovic et al. (2024). This conversion facilitates
efficient SNN training while maintaining high performance, even under low-latency constraints. We
consider both CIFAR-10 and CIFAR-100 datasets Krizhevsky et al. (2009), where CIFAR-10 repre-
sents a relatively simpler classification task, whereas CIFAR-100 presents a more challenging sce-
nario due to its increased class diversity. To ensure a comprehensive evaluation, we train ResNet18
both datasets. All models are trained for 200 epochs. For CIFAR-10, we initialize the learning rate
at 0.1, while for CIFAR-100, we use 0.02. Optimization is performed using the stochastic gradient
descent (SGD) algorithm with a weight decay of 5× 10−4 and a momentum parameter of 0.1.

Once ANN training is complete, we convert the models into SNNs. Following Bojkovic et al.
(2024), we begin by training the converted SNN models at T = 1 for 50 epochs using surrogate
gradient learning (with a learning rate of 5 × 10−3). Higher latency SNN models (T = 2, 3, 4) are
then obtained through sequential training, where the weights of the SNN model at latency T are
initialized from the previously trained SNN model at T − 1. Each additional latency level is trained
for 30 epochs. All training experiments are conducted on NVIDIA A100 GPUs.

F.1.2 DIRECT SNN TRAINING

To validate the findings obtained from our hybrid ANN-to-SNN training approach, we conduct an
additional set of experiments using directly trained SNNs, following the methodology proposed
in Mukhoty et al. (2023). For this experiment, we focus on CIFAR-10 and CIFAR-100 and train
a ResNet18 SNN model. The model is trained for 250 epochs using the Adam optimizer with a
learning rate of 0.001. We evaluate the SNN at T = 4 to assess its impact on privacy risks. Unlike
the sequential training strategy employed in the hybrid approach, direct SNN training allows for
parallel training of models at different latencies, as each latency level is independently optimized.
To ensure fair comparison, we apply the same data preprocessing and transformations as in the
hybrid training setup.
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F.2 ACCURACY OF TRAINED MODELS

In this section, we report the test accuracy of the trained models. Since MIA experiments are con-
ducted in a setting where only half of the dataset is used for training, the test accuracy is lower
compared to training on the full dataset. However, this reduction in accuracy is expected and does
not impact the validity of our analysis, as the primary objective is to establish a controlled experi-
mental framework to evaluate membership inference risks.

Table F.1: ResNet18 test accuracy in % for trained ANN-2-SNN models across different datasets.
Dataset SNN(T=1) SNN (T=2) SNN (T=4) ANN
CIFAR-10 86.1 87.3 88.2 90.9

CIFAR-100 59.5 62.1 63.9 69.5

From Tables F.1 and F.2, we observe that the results align closely, as expected. Furthermore, both
training paradigms exhibit that the accuracy improves with increasing latency (T ). This aligns with
the theoretical expectation that higher latency allows for precise spike-based representations.

Table F.2: Test accuracy in % for direct training of SNN on CIFAR10 with ResNet18.
Dataset SNN (T=4)
CIFAR-10 87.0

CIFAR-100 66.9

Table F.3: ANN to Attack SNN.
Dataset Dropout Attack SNN(T=1) SNN(T=2) SNN(T=4)

AUC 0.1% 1% AUC 0.1% 1% AUC 0.1% 1%

CIFAR-10
False Attack-R 53.26 0.00 1.74 53.88 0.00 0.49 55.04 0.00 0.00

RMIA 58.52 0.69 3.40 59.68 0.81 3.86 61.32 1.05 4.55

True Attack-R 53.31 0.25 1.56 54.10 0.00 0.50 55.50 0.00 0.00
RMIA 59.32 0.74 3.77 60.52 0.76 4.34 62.29 0.89 4.98

CIFAR-100
False Attack-R 58.99 0.00 0.80 62.71 0.00 1.89 67.98 0.00 0.00

RMIA 63.42 0.62 3.85 67.73 1.02 6.29 74.43 1.37 9.65

True Attack-R 59.41 0.00 0.49 63.31 0.00 1.40 68.58 0.00 0.00
RMIA 65.01 0.38 3.89 69.69 0.72 6.13 76.11 1.10 10.39

Table F.4: Directly trained SNN Attack Results (T=4).
Dataset Dropout Attack AUC 0.1% 1%

CIFAR-10

False
Attack-P 59.76 0.05 1.05
Attack-R 63.53 0.00 0.00
RMIA 63.85 1.04 5.76

True
Attack-P 58.87 0.06 0.96
Attack-R 64.64 0.00 0.00
RMIA 67.58 3.56 8.86

CIFAR-100

False
Attack-P 56.54 0.00 0.74
Attack-R 56.15 0.00 0.00
RMIA 59.62 0.44 2.39

True
Attack-P 56.58 0.00 1.06
Attack-R 57.65 0.00 0.00
RMIA 62.11 0.62 3.13
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Figure 3: These four histograms represent the Attack-P(confidence) distribution for member and
non-member data across all latency SNNs and ANNs in CIFAR-100
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