
Counterfactual Fairness in Synthetic Data Generation

A Proofs

Definition. The total variation distance for two discrete probability distributions P and Q,
defined on a countable space Ω, is defined as

TV(P,Q) =
1

2

∑
x∈|Ω

|P (x)−Q(x)|. (1)

This is equivalent with this more general definition: TV(P,Q) = supA∈Ω |P (A)−Q(A)|.
Proof of Proposition 1: Since TV satisfies triangle inequality, we have

TV(P ′(f(X)|A = 0), P ′(f(X)|A = 1)) ≤ TV(P ′(f(X)|A = 0), P ′(Y |A = 0))

+ TV(P ′(Y |A = 0), P ′(Y |A = 1))

+ TV(P ′(Y |A = 1), P ′(f(X)|A = 1)).

(2)

The second term above is bounded by δ since P ′ approximately satisfies SP. Now for the first
term of RHS we have:

TV(P ′(f(X)|A = 0), P ′(Y |A = 0))

=
1

2

∑
y∈{0,1}

|P ′(f(X) = y|A = 0)− P ′(Y = y|A = 0)|

=
1

2

∑
y∈{0,1}

|P ′(f(X) = y, Y = y|A = 0) + P ′(f(X) = y, Y = 1− y|A = 0)− P ′(Y = y|A = 0)|

=
1

2

∑
y∈{0,1}

|P ′(f(X) = y, Y = y|A = 0) + P ′(f(X) = 1− y, Y = y|A = 0)

− P ′(f(X) = 1− y, Y = y|A = 0) + P ′(f(X) = y, Y = 1− y|A = 0)− P ′(Y = y|A = 0)|

=
1

2

∑
y∈{0,1}

|P ′(Y = y|A = 0)− P ′(f(X) = 1− y, Y = y|A = 0)

+ P ′(f(X) = y, Y = 1− y|A = 0)− P ′(Y = y|A = 0)|

=
1

2

∑
y∈{0,1}

|P ′(f(X) = y, Y = 1− y|A = 0)− P ′(f(X) = 1− y, Y = y|A = 0)|

≤ 1

2

∑
y∈{0,1}

|P ′(f(X) = y, Y = 1− y|A = 0)|

≤ 1

2

∑
y∈{0,1}

P ′(f(X) = y, Y = 1− y)

P ′(A = 0)

≤ ϵ/2P ′(A = 0)

Similarly for the third term of RHS of (1) we have:

TV(P ′(Y |A = 1), P ′(f(X)|A = 1)) ≤ ϵ/2P ′(A = 1).
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This completes the proof.
Proof of Proposition 2: The error probability of f on P ′ is less than ϵ , that is

Pr{f(X) ̸= Y } = EX,Y∼P ′(X,Y )1[f(X) ̸= Y ] ≤ ϵ. (3)

Now, the error probability of f on distribution P can be upper bounded as follows:

EX,Y∼P (X,Y )1[f(X) ̸= Y ] =
∑
x,y

p(x, y)1[f(x) ̸= y]

≤
∑
x,y

p′(x, y)1[f(x) ̸= y] +
∑
x,y

|p(x, y)− p′(x, y)|1[f(x) ̸= y]

≤ ϵ+
∑
x,y

|p(x, y)− p′(x, y)|

≤ ϵ+ 2δ

Proof of Proposition 3: Similar to Proposition 1, using triangle inequality for TV, we have

TV(P (f(X)|A = 0), P (f(X)|A = 1)) ≤ TV(P (f(X)|A = 0), P ′(f(X)|A = 0))

+ TV(P ′(f(X)|A = 0), P ′(f(X)|A = 1))

+ TV(P ′(f(X)|A = 1), P (f(X)|A = 1)).

(4)

The second term above is bounded by δ1 (since f approximately satisfies SP for P ′), thus the
RHS is upper bounded by

TV

(
P (f(X), A = 0)

P (A = 0)
,
P ′(f(X), A = 0)

P ′(A = 0)

)
+ TV

(
P ′(f(X), A = 1)

P (A = 1)
,
P (f(X), A = 1)

P (A = 1)

)
+ δ1. (5)

For the first term we have:

TV

(
P (f(X), A = 0)

P (A = 0)
,
P ′(f(X), A = 0)

P ′(A = 0)

)
=

∑
y∈{0,1}

∣∣∣∣ 1

P (A = 0)
P (f(X) = y,A = 0)− 1

P ′(A = 0)
P ′(f(X) = y,A = 0)

∣∣∣∣ (6)

Now for y = 0 if the first term in (6) is larger than the second term then we have:

1

P (A = 0)
P (f(X) = 0, A = 0)− 1

P ′(A = 0)
P ′(f(X) = 0, A = 0)

≤ 1

P (A = 0)
P (f(X) = 0, A = 0)− 1

P (A = 0) + δ2
P ′(f(X) = 0, A = 0) (7)

≤ z + δ2
P (A = 0)

− z

P (A = 0) + δ2
(8)

≤ δ2(1 + P (A = 0)) + δ22
P (A = 0)2

(9)

In above equations we used the definition of total variation (TV(P,Q) = supA |P (A) − Q(A)|).
Now if we consider the other case that the second term in (6) is larger than the first term for
y = 0 we get the following upper bound:

δ2(1 + P ′(A = 0)) + δ22
P ′(A = 0)2

(10)

Since g(p) =
δ2(1+p)+δ22

p2
is a decreasing function in p (for p > 0) if we define p0 = min{P (A =

0), P ′(A = 0)} we can bound the (6) with

2δ2(1 + p0) + 2δ22
p20

. (11)
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Similarly if we define p1 = min{P (A = 1), P ′(A = 1)}, then the second term in (5) can be upper
bounded with

2δ2(1 + p1) + 2δ22
p21

. (12)

This completes the proof.
Proof of Proposition 4: We want to prove the following equation, assuming that P ′ is

the distribution induced from G which satisfies GY (u, a) = GY (u, a
′):

P ′(YA←a = y|X = x,A = a) = P ′(YA←a′ = y|X = x,A = a). (13)

Let us denote with Q the posterior distribution of U condtioned on A and X. Then the LHS
can be written as follows (we assume that U is a countable set):

P ′(YA←a = y|X = x,A = a) =
∑
u

P ′(YA←a = y|X = x,A = a, U = u)Q(U = u|X = x,A = a)

(14)

=
∑
u

P ′(Y = y|A = a, U = u)Q(U = u|X = x,A = a) (15)

Similarly we have:

P ′(YA←a′ = y|X = x,A = a) =
∑
u

P ′(YA←a′ = y|X = x,A = a, U = u)Q(U = u|X = x,A = a)

(16)

=
∑
u

P ′(Y = y|A = a′, U = u)Q(U = u|X = x,A = a) (17)

Now comparing (15) and (17) and noting that GY (u, a) = GY (u, a
′) completes the proof.

B Comparison to previous definitions of fairness in SDG

Comparison with the definition in FairGAN [1]: In section 4.1 of [1], authors define
their goal to be: Given a dataset {X,Y, S} ∼ Pdata, FairGAN aims to generate a fair dataset
{X̂, Ŷ , Ŝ} ∼ PG which achieves the statistical parity w.r.t the protected attribute Ŝ, i.e., P (Ŷ =
1|Ŝ = 1) = P (Ŷ = 1|Ŝ = 0). Meanwhile, our goal is to ensure that given a generated dataset
{X̂, Ŷ } as training samples, a classification model seeks an accurate function η : X̂ → Ŷ while
satisfying fair classification with respect to the protected attribute on the real dataset, i.e.,
P (η(X) = 1|Ŝ = 1) = P (η(X) = 1|Ŝ = 0).

In their proposed method they attempt to achieve I(X̂, Ŷ ; Ŝ) = 0. This is because the
second discriminator is given both X̂ and Ŷ and is expected to estimate Ŝ. The goal is to
create samples such that discriminator 2 cannot find Ŝ, thus the mechanism attempts to make
I(X̂, Ŷ ; Ŝ) = 0. Now note that for statistical parity we only need I(Ŷ ; Ŝ) = 0, the addition
of X̂ was required to ensure that I(η(X);Y ) is also zero, thus the predictor will also satisfy
statistical parity constraint. Notice that this is a very strong condition, and with this definition,
any predictor will be fair. This is in contrast with our definition that only expects accurate
predictors to be fair.
Comparison with the definition in CFGAN [2]: Similar to our work, CFGAN attempts to
produce a distribution P ′ such that P ′ satisfies the fairness notion of choice. However, there is no
formal definition or discussion on how such a data will work on the real data (with distribution
P ).
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Figure 1: Example of a more complicated causal graph

B.1 Comparison with the definition in DECAF [3]

First let us review the definition of fair synthetic data given in [3]:
Definition 1. A probability distribution P ′(X) is (I(A, Y ), P )-fair, iff the optimal predictor
Ŷ = f∗(X) of Y trained on P ′(X) satisfies I(A, Y ) when evaluated on P (X).

Closeness of P ′ and P : This definition is ideal from the fairness point of view, and gives us
exactly what we need. That is having a distribution that when used for training a predictor will
gives us a predictor that is fair not on the training data but on the unseen real data. However,
this definition (by itself) does not guarantee any resemblance of the synthetic data with the
actual data. In fact, it is possible to consider a scenario where the support of the distribution
P ′ is disjoint from the support of P and this definition still holds. This by itself is not problem,
but it is unclear how in practice one can impose this definition and also ensure that that P ′

and P are close (closeness of P and P ′ is required since we want the synthetic data to look
like actual data). For example, in DECAF work, there is no guarantee that P ′ and P are even
remotely close. In fact, it is not hard to create two distributions using their method such that
P ′ and P has an arbitrarily large KL distance. For example, consider a dataset where we have
A −→ X −→ Y . Assume that A is a Bernoulli binary random variable (P (A = 0) = P (A = 1)).
When A = 0, then X = 0 and when A = 1 then X = m. Also assume that Y = N (X, 1). Now,
considering DECAF method, (e.g., for satisfying SP) we need to remove both edges from A to
X and then from X to Y , then Y will be either constant or a distribution independent from
X and so m (depending on which strategy one chooses as explained in Section 5.2). Thus, it is
clear that by increasing m we can have arbitrarily large KL-distance between P and P ′.

Proof of Proposition 1 in [3]: The proof of proposition 1 in [3] seems incomplete. Firstly,
there seems to be a typo in the proof. f∗(X) is the ideal classifier trained on P ′ not P , thus
we cannot assume that f∗(X) = P (Y |X), we may assume that f∗(X) = P ′(Y |X) (although
it is unclear why this would be ideal classifier for the real data). Then we have P ′(Y |X) =
P ′(Y |∂G′Y ). The missing step is why P ′(Y |∂G′Y ) = P (Y |∂G′Y ) holds. Note, that if we use the
method suggested in the paper this equation does not hold. For instance, assume that only one
edge is removed have:

P ′(Y |∂G′Y ) = P (Y |∂G′Y, do(Xi = x̃ij)) ̸= P (Y |∂G′Y ). (18)
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C Generalization of counterfactual fairness

In this section by an example we explain in more details how to generalize our proposed method
for a given causal graph. Consider the causal graph in Figure 1. Here we have two unobserved
variables U1 and U2, X represents features, A is the sensitive attribute, and Y is the output.
Considering this graph, U1 and U2 will be the noise for the generators (note that their underlying
distribution is known, and also we assumed that unobserved variables are independent). Then
we will have two generators G1 and G2 to produce X and A given U1 and U1, U2 respectively.
Now all variables to generate Y are available. G3 will have A, X, and U2 as input and will
produce Y as the output. The generator architecture is represented in Figure 1.

Figure 2: The GAN structure corresponding to Causal Graph in Figure 1

The generated samples X,A, Y will be fed to a discriminator. Also, for each sample we can
alternate the value of A while the values of U1 and U2 and X is fixed to get the counterfactual
output and then we can add counterfactual loss to the loss function of the generator.

D Reproducibility

The codes for generating our experiment results can be found here: https://github.com/

MahedAb/FairSyn
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