Under review as a conference paper at ICLR 2024

A BROADER IMPACT

Algorithmic decision-making is becoming increasingly present in many areas of our life. While
this has the potential for benefit, it is also known to automate and perpetuate historical patterns that
are often unjust and discriminatory (Buolamwini & Gebru, 2018; Noble, 2018; Benjamin, 2020;
Birhane, 2021). We believe that cautious interaction is a necessary feature for the type of deployed
algorithmic decision-making systems the RL community envisions, but that technological solutions
alone will not suffice.

B ADDITIONAL RELATED WORKS

Off-policy Methods with Clipped Advantages. Self Imitation Learning (SIL) (Oh et al., 2018)
is a hybrid method that uses clipped advantage estimates to improve the performance of on-policy
algorithms such as PPO and A2C by learning from its successful off-policy trajectories. By lever-
aging experience replay, SIL encourages the agent to imitate its high-reward actions. Self Imitation
Advantage Learning (SIAL) (Ferret et al., 2020) extends SIL to the off-policy domain. SIAL uses
the clipped advantage function to weigh the importance of different actions during self-imitation,
enabling the agent to focus on actions that yield higher long-term rewards. Importantly, even though
SIL and SIAL only update policies when advantage estimates are positive, they differ from VSOP
in that they are off-policy algorithms that learn from successful past trajectories and optimize differ-
ent objectives based on max-entropy reinforcement learning (Aghasadeghi & Bretl, 2011; Haarnoja
etal., 2018).

Mirror Learning. Trust Region Policy Optimization (TRPO) (Schulman et al., 2015a) is an on-
policy, actor-critic method that improves upon the baseline policy gradient method by incorporating
a constraint on the maximum size of policy updates. TRPO takes small steps toward improvement
and limits the step size to ensure that the new policy does not deviate significantly from the old
policy. TRPO achieves this by optimizing a surrogate objective function that approximates the
expected reward under the new policy while imposing a constraint on the KL divergence between
the new and old policies. TRPO is effective in various high-dimensional and continuous control
tasks.

Risk Sensitive Reinforcement Learning. Instead of optimizing expected value, risk-sensitive RL
methods optimize a risk measure. Tamar et al. (2015) propose the risk-averse CVaR-PG which
seeks to minimize the Conditional Value at Risk (CVaR), ®(6) = E, [G¢ | Gy < v4], where v, is
the a-quantile of the return, Gy, distribution under the policy, w(a | s,8). Relatedly, Tang et al.
(2020) have used the CVaR as a baseline function for standard policy updates. By focusing only
on the worse case trajectories, CVaR-PG is susceptible to “blindness to success,” thus Greenberg
et al. (2022) propose a Cross-entropy Soft-Risk algorithm (CeSoR) to address this. Kenton et al.
(2019) and Filos et al. (2022) also propose uncertainty aware, risk-averse methods. For model-
based policy gradient methods, Rajeswaran et al. (2016) propose Ensemble Policy Optimization
(EPOpt), which incorporates restricting policy updates to be risk-averse based on the CVaR and uses
ensembles to sample hypothesized models. In contrast to the above risk-averse methods, Petersen
et al. (2019) present Risk Seeking Policy Gradient (RSPG) which focuses on maximizing best-case
performance by only performing gradient updates when rewards exceed a specified quantile of the
reward distribution. Prashanth et al. (2022) provide a comprehensive discussion on risk-sensitive
RL.

C THEORETICAL RESULTS

C.1 PROOF OF THEOREM 3.1

Theorem C.1. Let, Gy = ZE:t 17 " Ru, denote the discounted return. Let qr(s,a) =
E. [Gt | St = s, Ay = a], denote the state-action value function, and v.(s) = E. [G | Sy = s],

denote the state value function, under policy w(a | s,0). Let (:1:)+ = max(0,x). Assume, with-
out loss of generality, that rewards, R, are non-negative. Assume that the gradient of the policy,

15

Under review as a conference paper at ICLR 2024

Vr(als,8), is a conservative vector field. Then, performing gradient ascent with respect to,

+
V07(0) = B | (1(5: A0~ 0x(80)) Vologn(a |5.,6)] ®
maximizes a lower-bound, vi(s), on the state value function, v, (s), plus an additive term:
vr(s) < vx(s) + Cr(s), ©)
+
where, Cr(s) = [[(’yv7T - vﬁ(s)) dP(s' | Sy = s, Ay = a)dll(a | Sy = s), is the expected,

clipped dlﬁ‘erence in the state value function, yv,(s") — v, (8), over all actions, a, and next states, s/,
under the policy given state s. Here, weuse [...dl(a |s) todenote Yy ...m(a |s) for discrete

action spaces and | ... w(a | s)da for continuous action spaces. Similarly, weuse [...dP(s' | s,a)
to denote), ...p(s' | S a) for discrete state spaces and [...p(s" | s,a)ds’ for continuous state
spaces.

Proof. Lemma C.1 shows that the policy-gradient theorem (Sutton et al., 1999) can be expressed in
terms of the clipped advantage function,

hi(s,a) = (qﬂ(s,a) — v,r(s))+ = max(0, ¢ (s,a) — v (s)),

dP(s — x; k,7)

[,yk/ 1(gn(x,2a) < vr(x))gr(x,a)Vdll(a | x)] dP(s — x; k,),
A
(10)

where, P(s — x;k,), is the probability of transitioning from state s to state x in k steps under
policy .

The first right hand side term above defines the gradient of the lower-bound, v (s), with respect to

s

Letting, Vv (so) = [> reo?" [, hif(s,a)Vdll(a | s)dP(sy — s;k,), a straightforward con-
tinuation of the pohcy gradient theorem (Sutton et al., 1999) will show that

[/ hi(x,a)Vdll(a | x)] dP(s — x; k,). (11)

k=0

VJ(0) = Vvi(sy) x // hf(s,a)Vedll(a | s,8)dP(s).

We then arrive at Equation (8) by moving from the all states/actions to single state/action formula-
tion:

VJ(0) == Vui(so), by definition
+
o / / (qﬂ(s7a) —vw(s)) Vedll(a |s,0)dP(s), Sutton et al. (1999)

~ 5 | [(40(51.2) = 00(5)) Voari(al 5..0)].

+Vedll(a | S, 0
=E, /(qﬁ(St,a) — vﬁ(St)) (ZlH(e(iSttO)dH(a | St,B} ,

—E, /(qw(St,At) —vw(st))+vg log m(Ay | st,a)] .

16

Under review as a conference paper at ICLR 2024

Now we need to show that,

VE(S) < vn(s) + // (’yvﬂ(s’) - vﬁ(s))+dP(s’ 1S, =5, A)dl(a| S, =s).

To do so, we will first prove that it holds for episodes, T, of length 1, then that it holds for episodes
of length 2. These two proofs will then prove Equation (9) for episodes of arbitrary length by
mathematical induction and conclude the proof.

For episodes of length 1, |T| = 1, we have
Vorls) = [asls.a)Vdll(a] 5)+ [Vs a)dii(al s)
:/qﬁ(s,a)VdH(a|s)+/(V/rdP(rs,a))dH(as),
- [aGavanals).
- /h;(s,awdn(a B +/ (1(gr > v2)02(8) + 1(gr < vr)ar(s.2)) Vdll(a | 5)
(13)

Therefore, for |T| = 1,
Vo (s) = / Wt (s,a)VdTl(a | s)
In order to recover v (s), we need to use the work of Willse (2019) to define an inverse function for

the gradient. Assume that the policy, 7(a | s, 8), is a smooth, infinitely differentiable function with
respect to 6. Further, let the gradient of the policy,

a%lﬂ(a |'s,61),
Vr(als,0) = : , (14)
a%kw(a |'s,0k)

be a conservative vector field. We call B(Vﬂ(a | S,B)) the inverse of the gradient operation,
Vr(a|s,8). Assuming that w(a | s,) is a representative of 3, we have that,

m(al|s,8) = 5(Vn(a|s,0)),

= [Vn(a|s,0)dx,

/v 15)
= i(a|sé’)d9 +-~-+i(a\s6‘)d0

- ,78017(- » V1 1 aekﬂ— s Vk k>

where + is a path from the fixed reference point, 6, to 8. The conservativeness of Vr(a | s,)
guarantees that the integrals are path independent.

Now we have,
i) = i([mavanals),
= / hi(s,a)B(Vdll(a]s)), linearity
-~ / hi(s,a)dll(a|s), Equation (15)
< // (r+ (0r(s) = ve(s)) ")dP(s',x | s, @)dll(a |'5), LemmaC.2
= vn(s) + / / (Yur (") — v(s)) "dP(s' | s,a)dII(a | s), —T—=1

17

Under review as a conference paper at ICLR 2024

which concludes the proof for episodes of length 1.

For episodes of length 2, | 7| = 2, we have

Vun(s) = / 4n(s,a)Vdll(a | s) + / Vau(s,a)dMI(a | s),
/qﬂ(sanH ///qﬂsanH | §')dP(s' | a,s)dII(a | s)

///(/rd]P’r|s a))dH(as),
/qﬂ(sanH ///q,rsanH | §')dP(s' | a,s)dII(a | s),

= /hi(s,a Vdll(a | s +// hf(s',a")Vdll(a' | ')dP(s" | a,s)dIl(a | s)
—|—/ (]1 (gr > vr)vr(s) + L(gr < vﬂ)qﬂ(s,a)>VdH(a | s)

i /// (1(ar > vn)un(s) + 1 ar < va)an(s',2) | VAII(@' |)dB(S' | 2,s)dlI(a | 5).

Therefore, for |T'| = 2,
Vui(s) = /h+(s a)Vdll(a ///h"‘ s’,a’)Vdll(a' | s")dP(s’ | a,s)dlI(a | s).

Finally, we apply the /3 operator:

vr(s) 6(/h+(s a)Vdll(a ///h+ s’,a")Vdll(a' | s')dP(s’ | a,s)dII(a |)>

:/hjr'(s,a) VdH /// hi(s',a) VdH(\s))dIP’(s | a,s)dII(a |s), linearity
= /h+ s,a)dll(a|s) + // hf(s';a’)dll(a’ | s")dP(s' | a,s)dll(a|s), Equation (15)
//rdIP | s,a)dll(a //'va — vr(s)d]P’('|sa)dH(| s)
Lemma C.2
+///h+ s’ a')dll(a’ | s')dP(s’ | a,s)dII(a] s),
//rd]P’ | s,a)dII(a //’yfu7T —)dP(s|sa)dH(| s)
Lemma C.3
—|—//'yv7r (s')dP(s’ | a,s)dIl(a | s),
// YR (8") — v (s) dP(s’ | s,a)dIl(a | s). rearranging terms
O

Lemma C.1. Vu,(s) can be written in terms of bt (s, a).

18

Under review as a conference paper at ICLR 2024

Proof.
Virls) = V| [ants.aatal s), (199)
- / 4x(s,2)Vdll(a | 5) + / Vgx (s, a)dM(a | 5), (19b)
= / (hﬁ(s,a) + 1(gr > vz)vr(s) + L(gr < vﬂ)qw(s,a))VdH(a | s)
(19¢)
+/Vq7r(s,a)dH(a |'s),
= / (hﬁ(s,a) + 1(gr > vr)vr(s) + 1(gr < vﬁ)qﬂ(s,a))VdH(a | s)
(19d)
—I—/V[/ (r + yva(s"))dP(s', 1 | s,a)] dll(a|s),
= / (hﬁ(s,a) + 1(gr > vr)vr(s) + L(gr < vﬁ)qw(s,a))VdH(a | s)
(19e)
+’y/ Vo (s')dP(s' | s,a)dll(a|s),
= / (hﬁ(s,a) + 1(gr > vr)vr(s) + 1(gr < vﬂ)qﬂ(s,a))VdH(a | s)
+7// l/qﬂ(s’,a’)VdH(a’ |'s') (196)
+’y/VU7T(s")d]P’(s” | ' a’)dll(a’ | s’)] dP(s' | s,a)dIl(a | s),
= / (hi(s,a) + 1(gr > vr)vr(s) + 1(gr < ’Uw)qﬂ(&a))VdH(a | s)
+’y// [(h;f(s’,a’) + 1(gr > vr)vr(s) + 1(gr < vﬂ)qﬂ(s’,a’)> Vdll(a' | s')
Jr’)//Vv,,(s”)d[@(s” | ' a’)dll(a’ | s’)] dP(s' | s,a)dIl(a | s),
(19¢)
= [(%, a alx s — x;k,m
3> [’y J e avania, >]dﬂm< % k,m)
[X,a) > vy (%)) vg(x al|x s —x;k,m
+/S;)lv [10-06.2) > 0. (0) v () V(e | 3) | dB(s .7
00 . .
+ /S kZ:O lfy /A]l(qﬂ(x,a) < vr(x))gx(x,a)Vdll(a | x)} dP(s — x; k,)
(19h)
O
Lemma C.2.

v (s) < // rdP(r | s,a)dll(a | s) + // (71/7((5') - vﬂ(s))+d]P’(s’ | s,a)dl(a | s)

19

Under review as a conference paper at ICLR 2024

Proof.
wr(s) = [saiial 9
— %/ (qw(s,a) — vr + |gr(s,2) — vﬂ|)dH(a |'s) (2max(0,a) = a + |a|)

5 ([) - v 5.2
+ ’ / (r + yvn(s’) = va(s))dP(s',x | S»a)‘)dn(a s)

1
< // I+ e (s") — vr(s) + 1+ yua(s') — v,,(s)’) (Jensen’s inequality)
dP(s',r | s,a)dIl(a | s)

2r + 'U7r - U7r + v7r - Uﬂ') . . .
/ / v |7) ‘ (triangle inequality)
dP(s',r | s,a)dII(a | s)

r+ (yua(s') — vﬂ(s))+ dP(s',r | s,a)dII(a | s) (2max(0,a) = a + |al)
1/

\ /\

Lemma C.3. When, without loss of generality, rewards, Ry, are assumed to be non-negative:
vy (s) = /hi(s,a)dl'[(a |'s) < vi(s)

Proof.
/h:(s,a)dn(a |'s) = %/ (qﬁ(s,a) — Ur + |gx(s,a) - v,,{)dn(a 's) (2max(0,a) = a+|a])

< / g (s,a)dll(a | s) (triangle inequality)

= v, (s)

C.2 RELATION TO REGRET MATCHING POLICY GRADIENT (RMPG)

Here we provide a derivation starting from RMPG and arriving at our method.

VJ(O) =E, - /A (qﬂ(St,a)— /A (@ | St,H)qﬂ(St,a’)da'>+Vg7r(a|St,B)da]

= a)—v t + T a t a
—E, /A<qﬁ<st,)~ 0n(80))* Vor(|s,e>d}

_E, /h+ Si,a)Vor(a | S,)da]
_E, /Aﬂ(a|St, Bt (S,)Wda}

Veom(Ay | St, 0)
I m(A¢ | S, 0)]

=E [hi(St,At)Vg log (A | St,O)]
Lemma CA4.

ht(Sy, Ay)

ReLU(a) <= |al

20

Under review as a conference paper at ICLR 2024

Proof.
ReLU(a) = max(0, a)

1 +1||
—2a 2a

_Ja a>0
10 a<0

<o a>0
“|l-a a<0 (—a>0)

= |a

D DISCUSSION

D.1 CONCERNING Cy(8), K;-LIPSCHITZ CONTINUITY, AND SPECTRAL NORMALIZATION

In light of the dependence of the Lipschitz constant, K, on the policy, w(a | s, 8), the roles played
by the Lipschitz assumption and the use of critic weight spectral normalization becomes clearer.
When we do gradient ascent according to,

Ex [(4r(S1, Ad) — vx(S0)" Vologm(As [81,9,

we show that we maximize
v(s) < wvg(s) + Cr(s).

We want this optimization to lead to a policy 7 that maximizes value, v, but perhaps it could lead
to an undesirable policy that instead maximizes C.. We show that,

Cr(s) < %// [ve(s") —va(s)|dP(s' | St = s, Ay = a)dll(a | Sy = s).

In theory, a policy that leads to large fluctuations in value, v, as the agent transitions from state, s,
to state, s’, could maximize this objective.

Assuming that the value function, v, (s), is K -Lipschitz continuous allows us to express this bound
as

1
Cr(s) < 5/ K, |ls' —s||dP(s' | St =s, Ay = a)dll(a | S; = s),

but this does not solve the problem in itself: it could still be possible to learn a policy that merely
maximizes K instead of v (s).

Hence, when we use spectral normalization of the critic weights, we regularize K to be 1. We find
this regularization provides increased performance in most experiments run thus far. But empirically,
it does not seem like the pathological behavior of maximizing C(s) is happening to a significant
extent even when we do not use spectral normalization. For example, we can see in Figure 1 that the
performance of VSOP without spectral normalization is about equal to that of PPO on MuJoCo.

Next, we believe this analysis gives us further insight into understanding how we observe spectral
normalization detrimental in highly parallel settings. In the single-threaded setting, a single agent
collects data. This specific experience from a single initialization, coupled with the flexibility of
Neural Networks, could result in the objective maximizing a policy that encourages spuriously high-
frequency (rather than high-value) value functions when the data is sparse early in training. In this
case, regularization from spectral normalization would be beneficial. Conversely, the algorithm
collects data from many agents with unique initializations in the highly parallel setting. Thus, with
more diverse and less sparse data, we can expect more robust value function estimates, less likely to
be spuriously high-frequency between state transitions. Then, the K = 1 assumption induced by
spectral normalization may be too strong and lead to over-regularization.

21

Under review as a conference paper at ICLR 2024

D.2 CONCERNING THE NORMAL-GAMMA ASSUMPTION

Is the normal-gamma assumption necessary? The gamma-normal assumption allows us to in-
terpret adding dropout and weight-decay regularization as sensible approximate Bayesian inference
without adding complex computational overhead to the original A3C optimization algorithm. As
such, this assumption primarily serves to ground Thompson sampling through approximate Bayesian
inference and is not requisite for Theorem 3.1. As with the original result of the policy gradient the-
orem, the results in Equations (5-6) do not make any distributional assumptions on 7 and should
hold for all policies with differentiable probability densities/distributions.

Are the clipped advantages gamma distributed? The intuition behind assuming a gamma dis-
tribution for the clipped advantages is that advantages ideally have zero mean by construction (we
subtract the state-action value by its expected state value over actions), so clipping at zero will re-
sult in a heavy-tailed distribution. Gamma distributions are sensible hypotheses for heavy-tailed
distributions. In Figure 6 we plot the marginal histograms for the advantages (left) and the clipped
advantages (right) over each training update for a training run of Humanoid-v4.

histograms/advantages [] histograms/relu_advantages []

Figure 6: Comparing the histograms of estimated advantages (left) and ReLU’ed advantages (right).

The clipped advantage histogram on the right lends evidence to the gamma assumption (at least for
the marginal distribution). We may expect multi-modality at the state-action level, which integration
over actions may marginalize out at the state level; however, we would still expect a heavy tail in
both cases.

D.3 CONCERNING THOMPSON SAMPLING AND APPROXIMATE BAYESIAN INFERENCE.

Approximate Bayesian inference over the parameters of the policy, 6, yields a distribution over those
parameters, p(f | D). Sampling a policy from this distribution, 6 ~ p(# | D), is as easy as sampling
a dropout mask and then running a forward pass of the network, yielding the likelihood, 7(a | s, é)
Then sampling an action is done by sampling an action from the sampled policy, a ~ 7(a | s, é)

This is precisely the procedure descibed by Thompson sampling. We outline this procedure in lines
5-6 of Algorithm 1.

We hypothesize that this is a better state-aware exploration method for two reasons. First, for less
frequently visited states the diversity of the sampled paramters of the policy will be greater promot-
ing more exploration. As a state is visited more often under actions that yield positive advantages,
the diversity of samples will concentrate promoting less exploration. Thus, we get more exploration
for states that we have less experience of good actions, and less exploration in states where we know
what actions lead to good expected returns. Second, this exploration is done around the mode of the
policy distribution, so the model is less likely to explore actions that are far from the mode, which
could be more likely to lead to failure.

22

Under review as a conference paper at ICLR 2024

E IMPLEMENTATION DETAILS

We have attached the code that replicates the reported results in the folder “vsop-main” and will
release a public github repo after the review process.

E.1 GYMANSIUM

We build off of Huang et al. (2022)’s CleanRL package which provides reproducible, user-friendly
implementations of state-of-the-art reinforcement learning algorithms using PyTorch (Paszke et al.,
2019), Gymnasium (Brockman et al., 2016; Todorov et al., 2012), and Weights & Biases (Biases,
2018). Several code-level optimizations (Engstrom et al., 2020; Andrychowicz et al., 2021) key to
PPO reproducibility are superfluous for our method. We omit advantage normalization, value loss
clipping (Schulman et al., 2017), gradient clipping, and modification of the default Adam (Kingma
& Ba, 2014) epsilon parameter as they either do not lead to an appreciable difference in performance
or have a slightly negative effect. However, we find that orthogonal weight initialization, learning
rate annealing, reward scaling/clipping, and observation normalization/clipping remain to have non-
negligible positive effects on performance Engstrom et al. (2020); Andrychowicz et al. (2021). In
addition to adding dropout, weight decay regularization, and spectral normalization, we also look at
model architecture modifications not present in the CleanRL implementation: layer width, number
of hidden layers, layer activation, layer normalization Ba et al. (2016), and residual connections.
We find that ReLLU activation functions (Nair & Hinton, 2010), increasing layer width to 256, and
a dropout rate of 0.01-0.04 are beneficial. We find that network depth and residual connections are
benign overall. In contrast to recent findings in the context of offline data for off-policy reinforce-
ment learning (Ball et al., 2023), layer normalization — whether applied to the actor, the critic, or
both — is detrimental to performance.

Table 2: Hyper-parameters for ablation of mechinism study. VSOP, no-spectral, no-Thompson, all-
actions, and no ReLLU Advantage variants across Gymnasium MuJoCo environments

Gymnasium MuJoCo
Parameter VSOP no-Spectral all-actions no-ReLU Adv. no-Thompson
timesteps 3e6 3e6 3e6 3e6 3e6
num. envs 1 1 1 1 1
num. steps 2048 2048 2048 2048 2048
learning rate 2e-4 5.5e-4 2e-4 7.5¢e-4 2.5e-4
anneal Ir True True True True True
optim. €. le-8 le-8 le-8 le-8 le-8
GAE ~ 0.99 0.99 0.99 0.99 0.99
GAE) 0.61 0.93 0.60 0.99 0.76
num. minibatch 32 2 4 1 32
update epochs 9 6 10 5 8
clip v-loss False False False False False
v-loss coef. 0.5 0.5 0.5 0.5 0.5
max grad. norm. 7.1 8.5 6.4 8.5 7.2
norm. obs. True True True True True
norm. reward True True True True True
width 256 256 256 256 256
activation relu relu relu relu relu
weight decay 2.4e-4 2.4e-4 2.4e-4 2.4e-4 2.4e-4
dropout 0.025 0.005 0.0 0.025 0.05

In Table 2 we present the hyperparameters used in the ablation of mechanisms study. In Table 3, we
present the hyperparameters used for the VSOP, VSPPO, RMPG, A3C, and PPO algorithms when
trained on Gymnasium MuJoCo environments. The table lists hyperparameters such as the number
of timesteps, thread number, and learning rate, among others. Each algorithm may have a unique set
of optimal hyperparameters. Please note that some hyperparameters: “clip €’, 'norm. adv.’, and ’clip
v-loss’ may not apply to all algorithms, as these are specific to certain policy optimization meth-
ods. The ’width’ and ’activation’ fields correspond to the architecture of the neural network used

23

https://github.com/vwxyzjn/cleanrl

Under review as a conference paper at ICLR 2024

by the policy, and the *weight decay’ and *dropout’ fields pertain to the regularization techniques
applied during training. In general, tuning these hyperparameters is crucial to achieving optimal
performance. Note that Adam optimization (Kingma & Ba, 2014) is used for all algorithms except
for A3C where RMSProp (Hinton et al., 2012) is used.

Table 3: Hyper-parameters for PPO, VSOP, RMPG, A3C, and VSPPO algorithms across Gymna-
sium MuJoCo environments

Gymnasium MuJoCo

Parameter VSOP VSPPO RMPG A3C PPO
timesteps 3e6 3e6 3e6 3e6 3e6
num. envs 1 1 1 1 1
num. steps 2048 2048 2048 5 2048
learning rate 2e-4 2.5¢e-4 2e-4 Te-4 3e-4
anneal Ir True True True True True
optim. €. le-8 le-8 le-8 3e-6 le-5
GAE ~ 0.99 0.99 0.99 099 0.99
GAE \ 0.61 0.89 0.60 1.0 0.95
num. minibatch 32 64 4 1 32
update epochs 9 9 10 1 10
norm. adv. False False False False True
clip e N/A N/A N/A N/A 0.2
clip v-loss False False False False True
ent. coef. 0.0 0.0 0.0 0.0 0.0
v-loss coef. 0.5 0.5 0.5 0.5 0.5
max grad. norm. 7.1 2.1 6.4 0.5 0.5
norm. obs. True True True True True
norm. reward True True True True True
width 256 256 256 64 64
activation relu relu relu tanh tanh
weight decay 24e-4 24e4 24e-4 0.0 0.0
dropout 0.025 0.035 0.0 0.0 0.0

We report mean values and 95% confidence intervals over ten random seeds.

E.2 GYMNAX

Hyperparameter Range Transformation Transformed Range
num. envs [2, 8] 2% where z is int {4, 8, 16, 32, 64, 128, 256}
num. steps [2, 8] 27 where x is int {4,38, 16, 32, 64, 128, 256}

A [0.0, 1.0] round to multiple of 0.002 {0.0,0.002, ..., 1.0}
learning rate [le-4, 1e-3] | round to multiple of 0.00005 {le-4, 1.5e-5, ..., le-3}
max grad. norm. [0.2,5.0] round to multiple of 0.1 {0.2,0.3,...,5.0}
num. minibatch [0, 6] 2% where x is int {1, 2,4,8, 16,32, 64}
update epochs [1, 10] round to int {1,2,3, .., 10}
width [6, 10] 2% where x is int {64, 128, 256, 512, 1024}

Table 4: Hyperparameter search space with transformations

We optimize the hyper-parameters for each algorithm for each set of environments using a Bayesian
optimization search strategy (Snoek et al., 2012). Each algorithm has a budget of 100 search steps.
We use NVIDIA A100 GPUs. The hyperparameters we search over include learning rate, number
of steps, number of environments, GAE)\, update epochs, number of minibatches, and the maxi-
mum gradient norm. We also search over the hidden layer width for Brax-MuJoCo and MinAtar
environments. Each hyperparameter has a specific search space and transformation applied during
the search. We summarize the search sapce in Table 4.

24

Under review as a conference paper at ICLR 2024

For the MinAtar environments, the hyper-parameters search spaces are: the number of steps in
[2, 8] (transformed to 2 where x is the integer part of the sample), GAE X in [0.0, 1.0] (rounded
to the nearest multiple of 0.002), learning rate in [le — 4, le — 3] (rounded to the nearest multiple
of 0.00005), update epochs in [1,10] (rounded to the nearest integer), maximum gradient norm in
[0.0,5.0] (rounded to the nearest multiple of 0.1), number of minibatches in [0, 6] (transformed to
27), update epochs in [1, 10] (rounded to the nearest integer), and number of minibatches in [0, 7]
(transformed to 2%), and hidden layer width in [6, 10] (transformed to 2%). We set the « and number
of environments to fixed values at 0.99 and 64, respectively.

For MuJoCo-Brax, we do not search over the number of environments or steps. Instead we set them
to fixed values at 0.99, 2048, and either 10 or 5, respectively. The search space for the remaining
hyper-parameters the same ranges as for the MinAtar environments. Further, we only optimize
over the Humanoid, Hopper, and Reacher environments for 20 million steps. We test for each
environment for 50 million steps.

Finally, for Classic Control environments, we employ the same hyperparameter search as for Mi-
nAtar, except that we search over the number of environments in [2, 8] (transformed to 2% where x
is the integer part of the sample) and we do not search over the hidden layer width, instead setting it
to a fixed value of 64.

This strategy allows us to thoroughly explore the hyperparameter space and find values that gener-
alize well across a variety of different tasks. Further it allows us to fairly compare each algorithm.
Tables 5 to 7 report the final hyper-parameter values for PPO, VSOP, and A3C.

Table 5: PPO, VSOP, A3C, and DPO Hyper-parameters for MinAtar environments.

Parameter | PPO VSOP A3C DPO
learning rate 9e-4 7.5e-4 Te-4 le-3
num. envs 128 128 128 128
num. steps 64 32 4 16

GAE ~ 0.99 0.99 0.99 0.99
GAE)\ 0.70 0.82 0.87 0.70
num. minibatch 8 16 2 8

update epochs 10 9 1 6

max grad. norm. | 1.9 2.8 1.3 0.4
width 512 512 512 256
activation relu relu relu relu
clipe 0.2 N/A N/A 02
ent. coef. 0.01 0.01 0.01 0.01

Table 6: Hyper-parameters for PPO, VSOP, A3C, and DPO algorithms across Brax-MuJoCo envi-
ronments

Parameter \ PPO VSOP A3C DPO
learning rate 4.5e-4 le4 Te-4 2e-4
num. envs 2048 2048 2048 2048
num. steps 10 10 5 10
GAE ~ 0.99 0.99 0.99 0.99
GAE)\ 0.714 1.0 0.97 0.942
num. minibatch 32 64 2 32
update epochs 3 2 1 6
max grad. norm. 33 3.7 1.0 0.4
width 512 512 128 512
activation relu relu relu relu
clip e 0.2 N/A N/A 0.2
ent. coef. 0.0 0.0 0.0 0.0

25

Under review as a conference paper at ICLR 2024

Table 7: Hyper-parameters for PPO, VSOP, A3C, and DPO algorithms across Classic Control envi-
ronments

Parameter \ PPO VSOP A3C DPO
learning rate le-3 85e-4 5.5e4 le-3
num. envs 8 16 8 4
num. steps 8 64 4 4
GAE ~ 0.99 0.99 099 099
GAE)\ 0.54 0.58 0.13 1.0
num. minibatch 8 16 8 1
update epochs 3 8 1 10
max grad. norm. | 3.4 1.9 3.8 5.0
width 64 64 64 64
activation tanh tanh tanh tanh
clipe 0.2 N/A N/A 0.2
ent. coef. 0.01 0.01 0.01 0.01

Method Ir GAE A num. minibatch update epochs dropout ent. coef.

VSOP 4.5e-4 0.88 8 3 0.075 le-5
PPO 5.0e-4 0.95 8 3 0.000 le-2

Table 8: Final ProcGen hyperparameters for VSOP

All reported results for MinAtar, Classic Control, and MuJoCo-Brax respectively are given by mean
values and 68% confidence intervals over 20 random seeds. During tuning we use 2 random seeds
and for testing we use a different set of 20 random seeds, as per the guidance of Eimer et al. (2023).

E.3 PROCGEN

ProcGen (Cobbe et al., 2020) is a set of 16 environments where game levels are procedurally gener-
ated, creating a virually unlimited set of unique levels. We follow the “easy” generalization protocol
where, for a given environment, models are trained on 200 levels for 25 million time steps and eval-
uated on the full distribution of environments. We use the same architecture as PPO in the CleanRL
library (Huang et al., 2022), and do a Bayesian optimization hyper-parameter search (Snoek et al.,
2012) using the bossfight environment. We search over the learning rate, GAE A\, number of mini-
batches per epoch, number of epochs per rollout, the dropout rate, and the entropy regularization
coefficient. We report the final VSOP hyperparamters in Table 8 and include the relevant PPO hy-
perparameters for comparison. Note also that, VSOP does not make use of advantage normalization
or value loss clipping.

F ADDITIONAL RESULTS

F.1 PROCGEN

Figure 7 compares the ProcGen training and test curves of VSOP to PPO.

F.2 ABLATION OF MECHANISMS

Figure 8 compares VSOP training curves to ablated variants.

F.3 COMPARISON TO BASELINES

Figure 9 compares VSOP training curves to baseline algorithms.

26

Under review as a conference paper at ICLR 2024

ﬁwwrw\uﬂww‘w\w,w

Global step o Gloka step

Figure 7: ProcGen training and test curves. We see significant improvement in test set performance
on 8 environments, statistical equivalence on 5 environments, and VSOP trails PPO on just 3 envi-
ronments.

ntvd HalfCheetah-vd Hopper-va Humanoid-v4
2500
e 5000 Experiment Experiment s000 | Experiment
2000 | — Mo Thompsan —— o Thompson —— o Thompson —— o Thompson
s w0 — € 2000 — ASC — e
L e _ — Mo Spectral _ — Mo Spectral _ 4000
£ P00 pwpe s — RMPG s 1 5 Py 7
H &S £ 200 — vsop 8 1500 — VS0P & i /
S w0 s s g 300 Vi
H % 2000 % oo B
& 1000 w w & 2000
H £ 1000 H H
° S0 1000
o
1000
o 0
0o o5 10 15 20 25 30 00 05 10 15 20 25 30 00 05 10 15 20 25 30 00 o5 15 25 30
Global Step 1e6 Global Step 16 Global Step 16 Global Step 16
InvertedDoublePendulum-v4 sher-v Reachervd
Humanoidstandup-va a0 fushervt i
180000 — -
Experiment oy w =
No Thompsan 000 e B 20
160000 s W L
— No spectral / € i 1 € £ -3
R —= e 2 caoo Experiment H H
) o~ 2 e rorescn @ £ 0
S /AN £ — ¢ o 3
g 3 o e 20 g -5
£ 100000 R 2 a0 o =P 2 3
E P H e £ e el © s s
2 w0000 7 > H H — Mo Thompsan H — No Thompson
/ 2000 S0 | — nc 10 — mic
60000 — Mo Spectral — o Spectral
180 — 50 — RwPG
40000 3 — vsop — vsop
)
00 os 10 15 2 25 30 00 05 10 15 20 25 30 00 05 10 15 20 25 30 00 o5 o 15 2 25 20
Global Step 1es Global tep Tes Global Step 1e6 Global Step 166
Swimmer-va Valker2dva
Experiment En
100 — NoThompson 3500 No Thompson
— nc = ae
— o Spectral 3000 — Mo Spectral
£ 80 — RuPG € — e
g 22500 — vsop
& g
g 5 200
&« & 100
2 2 1000

10 15 20
Global Step

(i) Swimmer

w15 2
Global Step

(j) Walker2d

Figure 8: Comparing the effect of VSOP mechanisms on Mujoco continuous control performance.
Using the single action framework and updating the policy only on positive advantage estimates
have the largest effects, followed by spectral normalization, and finally Thompson sampling. Blue
lines (VSOP) show proposed, optimized method. Orange lines (No Thompson) show VSOP without
Thompson sampling. Green lines (No Spectral) show VSOP without spectral normalization. Pink
lines (RMPG) show VSOP with “all actions”. Red lines (A3C) show VSOP without restricting
policy updates to positive advantages.

F.4 SPECTRAL NORM AND THOMPSON SAMPLING IMPROVE PPO

Interestingly, we see this same trend when applying spectral normalization and dropout to PPO. In
Figure 10 we compare how Thompson sampling and spectral norm effect PPO.

27

Under review as a conference paper at ICLR 2024

Figure 9: Gymnasium-MuJoCo. Comparing VSOP to baseline algorithms.

Hopper-v4 Humanoid-v4 HalfCheetah-v4 Ant-v4 Reacher-v4

pectral o == VSPPO b pectral o =" no spectral » == VSPPO o

- PPO = PPO - PPO = PPO = PPO

) Step of Step 0 Step 0 step
500k 1M 15M 2M 2.5M 500k 1M L5M2M 2.5M 500k 1M 1SM 2M 2.5M S0k 1M 15M 2M 2.5M 500k 1M LSM 2M 25M
Walker2d-v4 InvertedDoublePendulum-v4 Swimmer-v4 HumanoidStandUp-v4 Pusher-v4

ectral o == VSPPO o

= PPO

= PPO — PP

500k 1M 15M 2M 2.5M 500k 1M 15M 2M 2.5 500k 1M L5M 2M 2.5M 500k IM LSM 2M 25M 500k 1M LSM 2M 25M

Figure 10: MuJoCo continuous control benchmark examining the effect of Thompson sampling and
spectral normalization on PPO.

F.5 GYMNAX ENVIRONMENTS

PureJaxRL (Lu et al., 2022) uses Gymnax (Lange, 2022) and Jax (Bradbury et al., 2018) to enable
vectorization, which facilitates principled hyper-parameter tuning. Using it, we explore several envi-
ronments and compare VSOP, PPO, A3C, and DPO. We use Bayesian hyper-parameter optimization
(Snoek et al., 2012) and give each algorithm a search budget of 100 steps. We search over hyper-
parameters such as the learning rate, number of update epochs, number of mini-batches in an update
epoch, the GAE) parameter, the max gradient norm, and the width of the network. We give full
implementation details in Appendix E.2. Table 9 shows the overall ranking of each method. VSOP
is competitive with DPO and improves over PPO and A3C.

Table 9: Rank scores (lower is better) for VSOP, DPO, PPO, and A3C on Brax-MuJoCo, MinAtar,
and Classic Control. Methods are ranked from 1 to 4 based on statistically significant differences
(paired t-test with p-value 0.1) between mean last episode returns. Ties are given the same rank, and
the proceeding score will be the last rank plus the number of additional methods.

Method | Brax-MuJoCo MinAtar Classic Control | Avg. Rank
DPO 1.33 1.75 1.25 1.44
VSOP (Ours) 1.78 2.50 1.00 1.76
PPO 2.00 2.25 1.25 1.83
A3C 4.00 2.25 1.25 2.50

Figure 11 summarize the results for Classic Control. Performance of each method is in general
statistically equal, but VSOP shows significant gain on MountainCar Continuous.

28

Under review as a conference paper at ICLR 2024

Acrobot-vl JAX CartPole1 JAX

100

Episodic Return

300

— mcip-025) — A3cip=062)
— opo(p-03n) -1 — DPO(p-0.38)

o —wor Lum — wsop

0 100000 200000 300000 400000 500000 0 100000 200000 300000 400000 500000 0 100000 200000 300000 00000 500000 0 100000 200000 300000 400000 500000
steps steps steps steps

(a) Acrobot (b) CartPole (c) MountainCar Cont. (d) Pendulum

Figure 11: Classic Control Environments (Lange, 2022). Mean episodic return and 68% CI over
20 random seeds are shown for VSOP (Blue), PPO (Orange), A3C (Green), and DPO (Red). Each
method is hyper-parameter tuned using Bayesian Optimization with 100 search steps. Paired t-test
p-values for last episode with respect to VSOP shown in brackets. Significant improvement is seen
for VSOP compared to all other methods on MountainCar Continuous.

Figure 12 summarize the results for MinAtar (Bellemare et al., 2013; Young & Tian, 2019). VSOP
shows significant improvement over PPO and A3C in Space Invaders. We see marginal improvement
over PPO and DPO in Breakout, with significant improvement over A3C. VSOP trails the baselines
significantly in Asterix and Freeway.

Fresway-Mintar JAX

Episodic Return

! — o
= oo
romoon

o

a 06 08 10 0 02 01 06 08 10 0 02 01 06 08 10 0 2 01 06 0 10
steps 1e7 Steps ie7 Steps ie7 steps 1e7

(a) Asterix (b) Breakout (c) Freeway (d) Spacelnvaders

Figure 12: MinAtar Environments (Young & Tian, 2019). Mean episodic return and 68% CI over
20 random seeds are shown for VSOP (Blue), PPO (Orange), A3C (Green), and DPO (Red). Meth-
ods are hyper-parameter tuned using Bayesian Optimization with 100 search steps. p-values for last
episode with respect to VSOP shown in brackets. VSOP performs well on Breakout and Spaceln-
vaders.

Figure 13 summarize the results for Brax MuJoCo (Todorov et al., 2012; Freeman et al., 2021).
We perform paired t-tests for the last episode between each method and VSOP. We threshold at
a p-value of 0.1 to indicate significance. VSOP significantly outperforms A3C in all environ-
ments. VSOP significantly outperforms PPO in four of nine environments (InvertedDoublePen-
dulum, Pusher, Reacher, and Walker2d), is statistically equivalent in two environments (Hopper
and HumanoidStandUp), and is significantly less effective in three environments (Ant, HalfCheetah,
and Humanoid). VSOP outperforms DPO on Ant, is statistically equivalent in four environments
(HumanoidStandUp, Pusher, Reacher, and Walker2d), but is significantly less effective in four en-
vironments (HalfCheetah, Hopper, Humanoid, and InvertedDoublePendulum). Overall, VSOP out-
performs A3C and PPO and is competitive with DPO.

29

Under review as a conference paper at ICLR 2024

Brax-ant JAX Brax-halfcheetah JAX
— A3C (p=0.00) 5000
— DPO (p=0.01)
— PPO (p=0.00)

— o a0
£ 6000 £
% % 3000 —— A3C (p=0.00)
3 « —— DPO (p=0.00)
£ 4000 < 2000 — PPO (p=0.00)
@ E — VsoP
2000
o
0
Steps. 1e7 Steps 1e7
(a) Brax-ant (b) Brax-halfcheetah
Brax-humanoid JAX Brax-humanoidstandup JAX
10000 — A3C(p=0.00) — A3C (p=0.00)
—— DPO (p=0.00) 140000 —— DPO (p=0.22)
o ip-oo0 oot
8000 — VSOP 120000 — R
z 100000
3 6000
5 80000
3
2 4000 60000
40000
2000
0 o
Steps. le7 Steps 1e7
(d) Brax-humanoid (e) Brax-humanoidstandup
Brax-pusher JAX Brax-reacher JAX
0 — = o
—— DPO (p=0.32)
—— PPO (p=0.01) _.
— s
P ¢ oo
g _600 i ~600
H 800 ¥ ~800
—— A3C (p=0.00)
-1000 —— DPO (p=0.42)
-1000 —— PPO (p=0.07)
-1200 —
o 1 2 3 4 5 0 1 2 3 4 5
Steps. 1e7 Steps 1e7

(g) Brax-pusher (h) Brax-reacher

Brax-hopper JAX

2500

2000

1500 — A3C (p=0.00)
— DPO (p=0.00)
— PPO (p=031)

1000 — vsop

Episodic Return

500

0 1 2 3 4 5
Steps 1e7

(c) Brax-hopper

Brax-inverted_double_pendulum JAX

8
g

— A3C (p=0.00)
— DPO (p=0.01)
—— PPO (p=0.05)
— vsop

Episodic Return

2000

0 1 2 3 4 5
Steps 1e7

(f) Brax-doublependulum

Brax-walker2d JAX

4000 — A3C(p=0.00)
— DPO (p=0.42)
—— PPO (p=0.00)
— vsop

3000

2000

sl

Episodic Return

1000

o 1 2 3 4 5
Steps 17

(i) Brax-walker2d

Figure 13: Brax-MuJoCo Environments (Freeman et al., 2021; Todorov et al., 2012). Mean episodic
return and 68% CI over 20 random seeds are shown for VSOP (Blue), PPO (Orange), A3C (Green),
and DPO (red). Each method is hyper-parameter tuned using Bayesian Optimization (Snoek et al.,
2012) with a budget of 100 search steps. Paired t-test p-values for last episode with respect to VSOP
shown in brackets. VSOP generally out performs PPO and A3C and is competitive with DPO.

30

	Introduction
	Background
	Methods
	Related Works
	Experiments
	MuJoCo
	ProcGen

	Conclusion
	Broader Impact
	Additional Related Works
	Theoretical Results
	Proof of th:main
	Relation to Regret Matching Policy Gradient (RMPG)

	Discussion
	Concerning C(s), K-Lipschitz continuity, and spectral normalization
	Concerning the Normal-Gamma Assumption
	Concerning Thompson Sampling and approximate Bayesian inference.

	Implementation Details
	Gymansium
	Gymnax
	ProcGen

	Additional Results
	ProcGen
	Ablation of Mechanisms
	Comparison to Baselines
	Spectral norm and Thompson sampling improve PPO
	Gymnax Environments

